Wisconsin Highway Research Program (WHRP) Updates

Ali Arabzadeh, PhD, PE

WHRP Flexible Pavements Chair

2023 ASCE WI Section Technical Conference

March 31st, 2023

The materials included in this presentation are the result of research conducted for WisDOT through the WHRP program

WHRP 20-04 Balanced Mix Design Implementation Support

Close Out Presentation April 30, 2021

Research Team

Randy West, Ph.D, P.E.

Fan Yin, Ph.D., P.E.

Adam Taylor, P.E.

Carolina Rodezno, Ph.D.

Project Objective

WHRP 20-04 Balanced Mixture Design Implementation Support

"The overall objective of this research is to test performance-based methodologies with the intent of developing an implementable BMD specification for WisDOT projects."

Project Overview

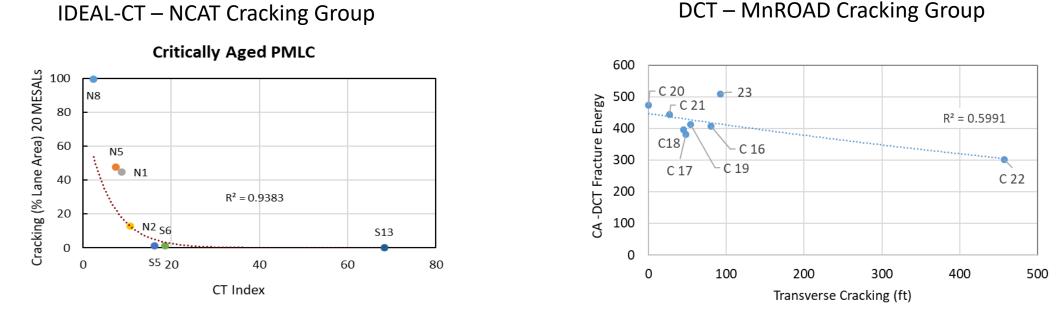
- Task 1 Literature Review
- Task 2 Interviews of Mix Designers
- Task 3 Benchmarking Experiment, Develop Preliminary Criteria, Conduct Workshop
- Task 4 Modify Existing Wisconsin Mixes
- Task 5 Economic Analysis of Mix Design Modifications
- Task 6 Propose Modifications to WisDOT Specs
- Task 7 Final Report

Project Overview

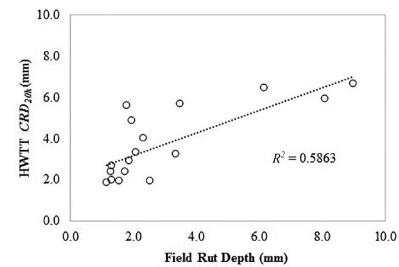
- Task 1 Literature Review
- Task 2 Interviews of Mix Designers
- Task 3 Benchmarking Experiment, Develop Preliminary Criteria, Conduct Workshop
- Task 4 Modify Existing Wisconsin Mixes
- Task 5 Economic Analysis of Mix Design Modifications
- Task 6 Propose Modifications to WisDOT Specs
- Task 7 Final Report

Task 1 Literature Review

- Four BMD Approaches described in AASHTO PP 105-20
 - A. Volumetric Design with Performance Verification
 - B. Volumetric Design with Performance Optimization
 - C. Performance-Modified Volumetric Design
 - D. Performance Design
- 11 SHAs have a draft, provisional, or standard BMD specification (NCAT, 2020)
 - IL, LA, NJ, TX, and VT: Approach A
 - CA, MO, OK: Approach C
 - AL, TN: Approach D
 - VA: Approach A and D


Task 1 Literature Review

- SHAs most popular performance tests (NCAT, 2020):
 - Rutting: HWTT (14) and APA (10)
 - Cracking: BBF (4), IDEAL-CT (3), I-FIT (3), DCT (3), and OT (2)
 - Moisture: TSR (36), HWTT (7), and immersion compression test (2)
- Potential mix design modifications:
 - Asphalt content, asphalt binder grade and source, polymer modification, aggregate gradation, RAM content, rejuvenators, antistrip agents.



Wisconsin Performance Tests Correlation to Field

Limited field validation of most performance tests, but good evidence of labfield correlation from comprehensive studies for IDEAL-CT, HWTT and DCT

Task 2 Interviews of Wisconsin Mix Designers

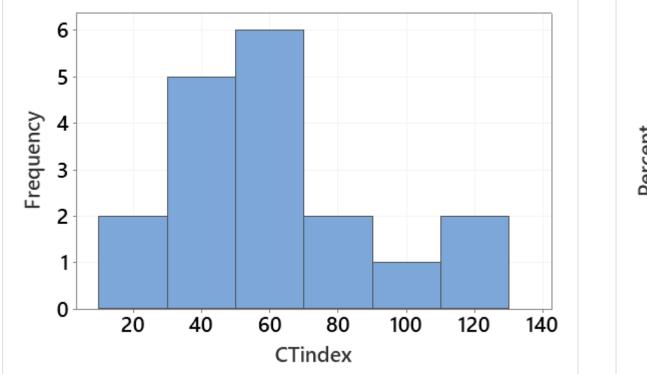
- Seven experienced Wisconsin mix designers were interviewed in March 2020
- Large and medium sized contractors and testing labs that work in multiple states mostly had equipment for popular BMD tests
- Expected mix adjustments for BMD were increased asphalt contents &/or reduce RAP or RAS contents
- Views differed on relaxing current mix design criteria and whether BMD should be used on all projects or certain types of projects such as overlays or other not-traffic factors

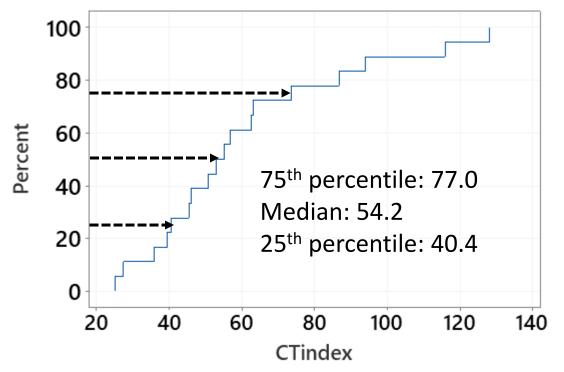
Task 3 Benchmarking Experiment

- Benchmark existing mix design to determine the distribution of test results
- 18 mixes with a wide range of aggregate type, gradation, and traffic level
- Mixes designed with 3% regressed air voids approach
- LMLC specimens prepared by contractors, tested at NCAT
- HWTT (46°C), IDEAL-CT (25°C), and DCT (-18°C)

Mix Aging Procedures

- HWTT: short-term aging for 4 hours at 135°C per AASHTO R30
- IDEAL-CT & DCT: + critical aging for 6 hours at 135°C
 - WHRP field aging and oil modification study (UW-Madison)
 - MnROAD Cracking Group experiment (MnROAD/NCAT)
 - NRRA mix rejuvenator field study (UNH)
 - More severe than aging compacted specimens for <u>5 days at 85°C</u> per AASHTO R30 (1 to 3 years of field aging)
 - More practical than aging loose mix for <u>2 to 3 days at 95°C per</u> NCHRP 09-54 recommendations

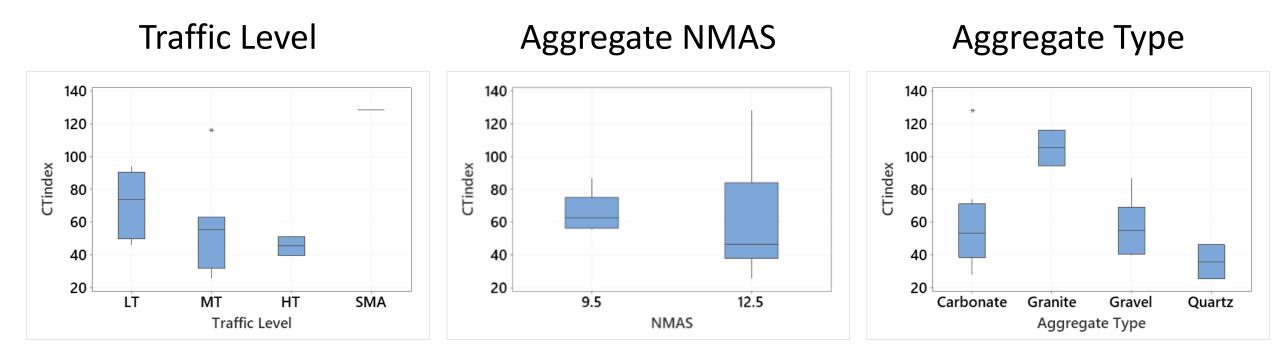




IDEAL-CT Benchmarking Analysis

Histogram

Cumulative Distribution Curve



IDEAL-CT Benchmarking Analysis

Boxplot Analysis by Individual Mix Design Variables

Same benchmarking analyses conducted for HWTT and DCT results

Task 3 Preliminary Performance Test Criteria

		DCT	HWTT				
Traffic Level	IDEAL-CT CT _{Index}	Fracture Energy (J/m ²)	Min. Passes to 12.5	Min. SIP	CRD _{20k} (mm)	Min. SN	
SMA	≥80	≥400		0.000	6.0	2,000	
High			15,000				
Med	≥40	≥300		9,000	7.0		
Low*			10,000		8.0		

* = Regressed Air Voids sufficient for low traffic in lieu of BMD (AASHTO Provisional BMD Standard)

Recommended Criteria & Pass/Fail Rate

Using WisDOT PMLC Database from early Jan. 2021

			DCT Min.				
	IDE	AL-CT	Fracture	Min.			
Traffic	Min.	No. Fail/	Energy	Passes to	No. Fail/		No. Fail/
Level	CT _{Index}	Total No.	(J/m²)	12.5 mm	Total No.	Min. SIP	Total No.
SMA	80	1/1	400		0/1		0/1
High		6/13		15,000	0/11	0.000	0/11
Med	40	10/32	300		12/32	9,000	5/32
Low		1/15		10,000	1/15		5/15

Task 4 Mixes Selected to Modify

Traffic Level	Mix ID	D IDEAL-C		HWTT CRD _{20k}		HWTT SN		DCT Fracture Energy	
Level		Criteria	Avg.	Criteria	Avg.	Criteria	Avg.	Criteria	Avg.
High	Mix C		50.9	≤ 6.0 mm	3.7		3,579		292
	Mix K		27.5	≤ 7.0 mm	4.1	≥ 2,000	2,253	≥ 300 J/m²	310
	Mix L	≥ 40	36.0		2.9		6,076		349
Med	Mix M		25.4		3.4		20,000		433
	Mix F		63.1		7.1		1,573		<mark>240</mark> (337)*

* = Tested at -24°C (-18°C)

at AUBURN UNIVERSITY

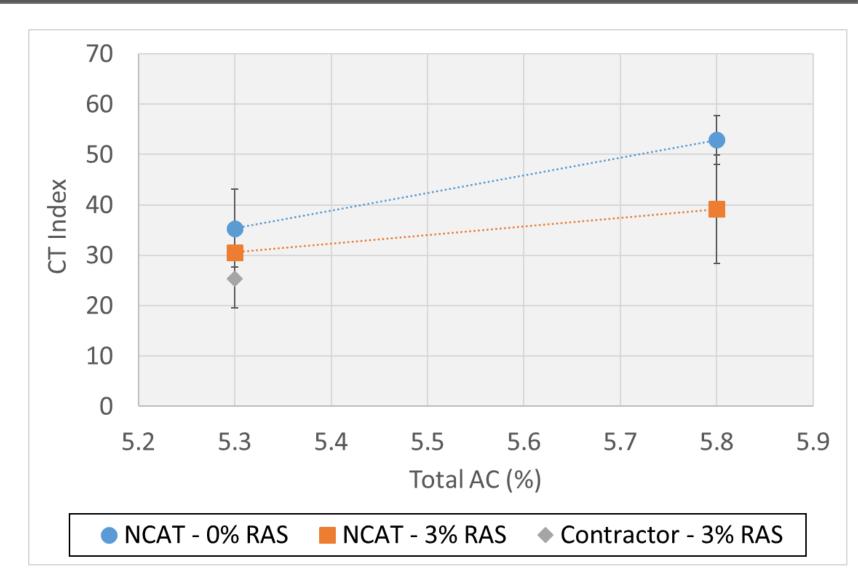
Task 4 Mixes Modified

Mix ID	NMAS (mm)	Traffic Level	Ndes	Base Binder	Primary Aggregate	RAP (%)	RAS (%)
Mix M	12.5	Medium	75	PG 58S-28	Quartz	18	3
Mix L	12.5	Medium	75	PG 58S-28	Carbonate	10.1	3.4
Mix K	12.5	Medium	75	PG 58S-28	Carbonate	26	0
Mix C	12.5	High	100	PG 58S-28	Carbonate	16	0
Mix F	9.5	Medium	75	PG 52S-34	Gravel	35	0

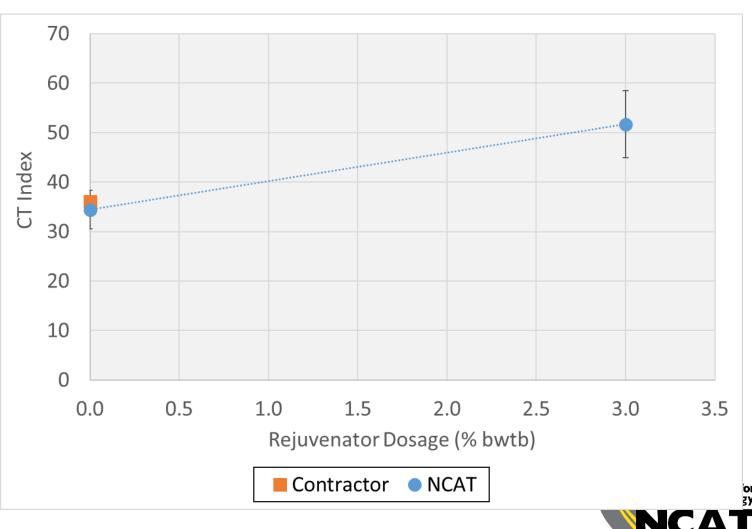
Task 4 Testing Plan

- Critical Test The performance test for a particular mix that fell below the preliminary criteria
 - IDEAL-CT : Mixes M, L, and K
 - HWTT : Mix F ۲
 - DCT : Mix C
- Raw materials provided to NCAT by the contractors
- Lab-mixed, lab-compacted specimens
- Mix design verification
 - *G_{mm}* and *G_{mb}* within AASHTO d2s of JMF Values
- Optimize mix with regard to critical test, then verify other two tests and report volumetrics 20

Attempted Optimization Strategies

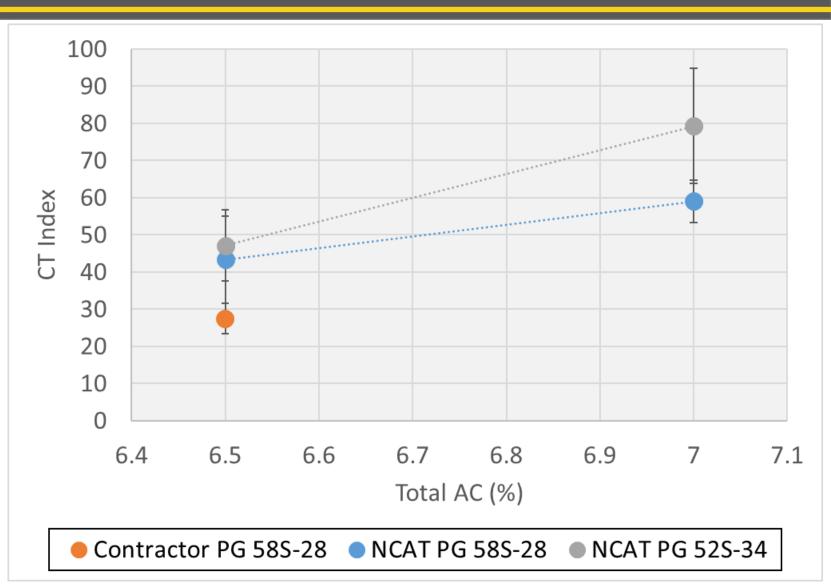

- Add additional asphalt (cracking)
- Remove RAS (cracking)
- Add rejuvenator (cracking)
- Lower low PG grade (cracking)
- Higher MSCR grade (rutting)
- Liquid anti-strip (stripping)

Mix M – IDEAL-CT Optimization


- Critical Test: IDEAL-CT
 - Redesign without RAS
 - Add AC (%)
- BMD OAC
 - CT_{Index} > 40
 - With RAS; OAC = 5.9%
 - No RAS; OAC = 5.5%
- Modified design met DCT and HWTT criteria

Mix L – IDEAL-CT Optimization

- Critical Test: IDEAL-CT
 - BMD Opt. Rejuvenator
 Dosage
 CT_{Index} > 40
- 1.5% Rejuvenator meets IDEAL-CT criteria
- Modified design met DCT and HWTT criteria

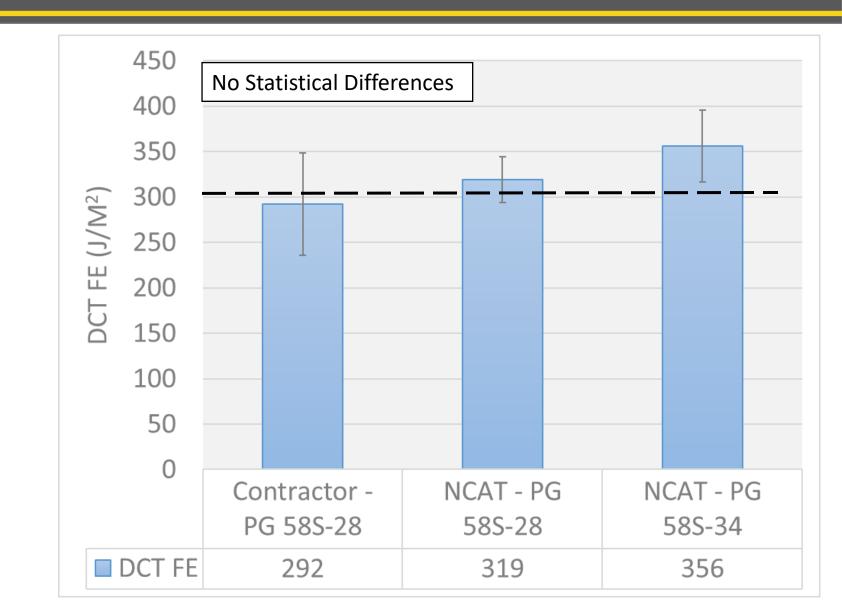


Mix K – IDEAL-CT Optimization

- Critical Test: IDEAL-CT
 - Softer Asphalt
 - More Asphalt
- Regressed Air Voids OAC = 6.5%
- Disconnect with benchmarking result
- Increased OAC for each binder to improve CT_{Index} above baseline
- PG 58S-28 (OAC = 6.8%)
- PG 52S-34 (OAC = 6.6%)

WHRP

Mix K - HWTT


- PG 58H-34 passed at 6.5% AC (regressed air voids OAC)
 - Higher MSCR grade
 - Met all performance criteria
- PG 52S-34 failed quickly at 6.6% AC
- PG 58S-28 barely failed CRD criteria at 6.8% AC •

AC %	Binder Grade	Specimen Origin	(mm)	(passes)	CT Index	DCT FE (J/m²)	
			Max 7.0	Min 2,000	Min. 40	Min. 300	
6.5	PG 58S-28	Contractor	4.1	2,253	27.5	310	
6.5	PG 58H-34	NCAT	5.1	2,319	43.6	449	-
6.6	PG 52S-34	NCAT	10.7	1,061	53.4	n/a	lational Cente sphalt Technol
6.8	PG 58S-28	NCAT	7.3	2,405	52.9	n/a	UBURN UNIVER

Mix C – DCT Optimization

- Critical Test: DCT
- Optimization strategies
 - Use softer asphalt (low grade)
 - PG 58S-34

Mix C – HWTT and IDEAL-CT

- HWTT with PG 58S-34 did not pass CRD SN criteria
 - Added 0.5% anti-strip (LAS) by weight of total binder to get a passing result
- Unexpectedly, mix with PG 58S-34 and LAS did not pass recommended CT_{Index} criteria

AC %	Binder Grade	Specimen Origin	Liquid Anti-Strip (% tbw)	HWTT CRD 20k (mm)	HWTT SN (passes)	CT _{Index}	
				Max 6.0	Min. 2,000	Min. 40	
5.5	PG 58S-28	Contractor	0	3.7	3,579	50.9	
5.5	PG 58S-34	NCAT	0	4.2	1,665	n/a	
5.5	PG 58S-34	NCAT	0.5	3.9	2,405	32.2	

Mix F - HWTT and IDEAL-CT

- Critical Test: HWTT
- LAS alone was insufficient to improve HB results
- PG 58H-34 did provide passing results
 - LAS gives a small improvement to SN
- CT_{Index} and DCT passed for modified mix

AC %	Binder Grade	Specimen Origin	Liquid Anti-Strip (% tbw)		(passes)	CT Index	
				Max 7.0	Min. 2,000	Min. 40	Min. 300
6.4	PG 52S-34	Contractor	0	7.1	1,573	60.6	337
6.4	PG 52S-34	NCAT	0	10.5	1,317	n/a	n/a
6.4	PG 52S-34	NCAT	0.5	8.5	1,661	n/a	n/a
6.4	PG 58H-34	NCAT	0	6.1	2,189	n/a	n/a
6.4	PG 58H-34	NCAT	0.5	6.5	2,557	63.6	416

Findings from Task 4

- With respect to performance testing results, different mixes may respond differently to changes to same variables
 - e.g. Different rates of CT_{Index} improvement when AC% is increased the same amount with different binders
- Fixing one problem may create another problem
 - The steps taken to fix a cracking problem may create a rutting problem
 - Hence the 'Balance' in BMD
- Be cognizant of between-lab variation in performance testing
 - Particularly specimen fabrication

Thank you!

Ali Arabzadeh ali.arabzadeh@dot.wi.gov

Randy West randy.west@auburn.edu

Recommended BMD Criteria

			HWTT		
Traffic Level	IDEAL-CT CT _{Index} ¹	DCT Fracture Energy (J/m ²)	CRD _{20k} (mm)	Min. SN	
SMA	≥80	≥400	6.0		
High	>10	> 200	6.0	2,000	
Med	≥40	≥300	7.0		

¹CT_{index} criteria are for specimens compacted after aging loose mixture for 6 hours at 135°C

LT mixtures should be designed by the regressed air voids approach. No BMD criteria.

