

FFY25 RFP Questions & Responses

All responses are provided in red and italics.

Administrative Questions

No questions received.

Investigate Removing Existing Abutment Expansion Joints

No questions received.

Optimization of Dowel Bars in Concrete Pavements

As mentioned in the RFP, the Laboratory and/or Accelerated Testing will be conducted
to Validate Modeling Effort. Will the field test be needed for model validation, as the lab
test results can be used to compare with the model for determining the load transfer
efficiency?

Field testing is not required for model validation.

Investigation of Reflective Cracking in Wisconsin

1. I'm having trouble finding an official copy of the special provision specification for BMDs in Wisconsin. I found a copy buried in what appears to be an old bid document, but I'm concerned that this isn't the current, official version. Can you tell us where to find a current copy of the BMD SP specification?

Our BMD SPV is a moving target that we are currently making changes to. The included BMD table is provided to give an idea of the general requirements.

2. The Report Balanced Mix Design Implementation Report (West et al., March 2021, WisDOT ID no. 0092-20-04) includes only summary statistics for the results of the benchmarking experiment. Can you make detailed data available for the benchmarking experiment? Information on mixture volumetric composition and performance test results for the 18 mixes included in the benchmarking experiment would be useful in preparing our proposal.

See the table provided with the performance results from 0092-20-04.

bie 1: Average	1	mary - Benchmar	 						DOT SE A				
	NCAT Mix	Aggregate	Primary						DCT FE Avg.	HB Passes to		HB CRD	
Contractor	ID	Source	Aggregate Type	NMAS	Traffic Level	RAP (%)	· · ·	IDEAL-CT Avg.	(J/m ²)	12.5 mm	HB SIP	20k	HB S
		Christian Gade	Gravel	12.5	LT	29	0	53.1	300	14,400	9,563	5.20	3,00
		Waukeska	Limestone	12.5	LT	29	0	73.7	316	17,100	11,688	5.56	4,16
		Cisler	Granite	12.5	LT	20	2	94.0	465	17,400	12,500	7.72	5,71
		Williams	Quartz	12.5	LT	21	3	46.1	411	>20,000	>20,000	5.99	8,59
		Townline	Gravel	9.5	LT	32	0	86.8	317	16,400	12,688	6.16	4,00
		Christian Gade	Gravel	9.5	MT	30	0	56.8	335	16,019	8,500	3.85	2,70
		Waukeska	Limestone	9.5	MT	31	0	55.2	321	17,300	13,875	5.27	3,54
		Cisler	Granite	12.5	MT	14	2	116.0	556	>20,000	>20,000	4.86	20,00
		Wimmie	Gravel	9.5	MT	35	0	63.1	*240	8,300	5,375	7.05	1,57
		Plant 87	Limestone	12.5	MT	26	0	27.5	310	13,800	8,800	4.13	2,25
		Halquist-Sussex	Limestone	9.5	MT	30	0	62.7	338	9,800	6,125	4.55	1,56
		Halquist-Sussex	Limestone	12.5	MT	10.1	3.4	36.0	349	>20,000	>18,000	2.66	6,07
		Williams	Quartz	12.5	MT	18	3	25.4	433	>20,000	16,063	3.40	20,0
		Townline	Gravel	12.5	MT	38	0	40.6	302	>20,000	>20,000	3.36	8,13
		Waukeska	Limestone	12.5	HT	16	0	50.9	292	19,000	12,688	3.65	3,57
		Wimmie	Gravel	12.5	HT	10	0	39.5	419	14,300	9,938	4.66	1,75
		Plant 87	Limestone	12.5	HT	15	0	45.5	383	11,855	9,000	4.61	2,13
		Waukeska	Limestone	12.5	SMA	0	3	128.1	433	>20,000	>20,000	4.96	20,0
Mix with PG 5	2S-34 binder	tested at -24C. O	ther mixes tested	at -18C.									
ble 2: Suggest	ed Threshold	Criteria											
		DCT Min.		ura									
	Min. CT	Fracture Energy	Min. Passes to	Min. SIP	Max. CRD	Min. SN							
Traffic Level	Index	(J/m2)	12.5 mm	(passes)	20k (mm)	(passes)							
SMA	80	400	15,000	9,000	6.0 mm	2,000	1						
High	40	300	15,000	9,000	6.0 mm	2,000	1						
Med	40	300	15,000	9,000	7.0 mm	2,000							
Low	40	300	10,000	9,000	8.0 mm	2,000							

Hydraulic Conductivity of Base Course Materials, Pavement Drainage, and Relation to Pavement Buckling

1. Given that the data collected from the field will be limited (even hundreds of samples are still not a big dataset for statistical analysis with many interested variables), is there any historical data that can be provided as a supplement to the data source for a data-driven or statistical analysis to assess the relationship between hydraulic parameters (base course material properties) and pavement buckling potential? Meanwhile, is it possible to have access to the design document for the drainage and base course in Wisconsin to facilitate the understanding of local drainage conditions and common base course design?

There is not historic data between hydraulic parameters and pavement buckling potential. Here is the link to the prior WHRP study that reviewed pavement buckling factors: wisconsindot.gov/documents2/research/0092-20-02-final-report.pdf

Here is a link to a WHRP project that evaluated Open Graded Base Course:

<u>Performance Evaluation of Open Graded Base Course with Doweled and Non-Doweled Transverse Joints (marquette.edu)</u>

2. Meanwhile, is it possible to have access to the design document for the drainage and base course in Wisconsin to facilitate the understanding of local drainage conditions and common base course design?

Standard Detail Drawing https://wisconsindot.gov/rdwy/sdd/sd-08d15.pdf#page=1

Subgrade and Base Course FDM Reference 14-5.15 https://wisconsindot.gov/rdwy/fdm/fd-14-05.pdf#fd14-5-15

Select Materials in Subgrade FDM Reference 11-05-15
https://wisconsindot.gov/rdwy/fdm/fd-11-05.pdf#fd11-5-15
When using Select Materials in Subgrade that involves Select Crushed Material (SCM), the SCM may be daylighted approximately every 250 feet to drain trapped water.

Bases, Subbases and Subgrade Agg Standard Specs: 300 Bases, Subbases, and Subgrade Aggregates (wisconsindot.gov)