STATE OF WISCONSIN

Convenience Store/Gas Station Trip Generation Study

September 26, 2022

Prepared for: Wisconsin Department of Transportation

CONVENIENCE STORE/GAS STATION TRIP GENERATION STUDY

WISCONSIN - STATEWIDE WISCONSIN DEPARTMENT OF TRANSPORTATION

DATE SUBMITTED:

September 26, 2022

PREPARED BY: MSA Professional Services Inc. 1702 Pankratz Street Madison, WI 53704 Phone: (608) 242-7779 Brian Huibregtse, PE, PTOE Eric Frailing, PE, PTOE Anne Holzem, PE PTOE

TABLE OF CONTENTS

Chapter 1 – EXECUTIVE SUMMARY1-1
PART A – PROJECT BACKGROUND1-1
PART B – STATISTICAL ANALYSIS SUMMARY1-2
PART C – RECOMMENDATIONS1-3
Chapter 2 – INTRODUCTION
PART A – PURPOSE OF STUDY2-1
PART B – WISDOT INTERIM GUIDANCE2-1
PART C – TRIP GENERATION MANUAL, 11TH EDITION2-3
PART D – WISCONSIN STUDY SITE SELECTION
Chapter 3 – METHODOLOGY
PART A – DATA COLLECTION
PART B – DATA AGGREGATION
PART C – DATA REDUCTION
PART D – INITIAL STATISTICAL ANALYSES
PART E – DIESEL TRIP GENERATION RATE3-15
PART F – STAKEHOLDER REVIEW & STATISTICAL REFINEMENT
Chapter 4 – TRIP GENERATION RATES
PART A – STATEWIDE RATES4-1
PART B – 12-HOUR DISTRIBUTIONS
Chapter 5 – SUMMARY & RECOMMENDATIONS5-1
PART A – SUMMARY5-1
PART B – RECOMMENDATIONS
PART C – FUTURE CONSIDERATIONS

LIST OF FIGURES

Figure 3-1, Location of Removed Sites	
Figure 3-2, Box and Whisker Plot Reviewing for Outlier Sites	
Figure 3-3, Site Locations by Region	
Figure 3-4, Site Locations by Freeway/Non-Freeway	
Figure 3-5, Site Locations by Tourism	
Figure 3-6, Site Locations by Rural/Urban	
Figure 3-7, Site Locations by Diesel Availability	
Figure 3-8, Site Locations by Metro Population	
Figure 3-9, Correlation Types, image courtesy of https://statistics.laerd.com	
Figure 3-10, Sites with Two or More DFPs	
Figure 3-11, Sites with Three or More DFPs	
Figure 3-12, Sites with Four or More DFPs	
Figure 3-13, Sites with Five or More DFPs	
Figure 3-14, Sites with Six or More DFPs	

LIST OF TABLES

Table 1-1, Summary of Sites 1-1
Table 1-2, AM Peak Deviation from Actual Trips 1-2
Table 1-3, PM Peak Deviation from Actual Trips1-2
Table 1-4, Friday Peak Deviation from Actual Trips 1-3
Table 1-5, Saturday Peak Deviation from Actual Trips 1-3
Table 1-6, Statewide Trip Generation Rates, AM and PM Peak Hours1-4
Table 1-7, Statewide Trip Generation Rates, Friday and Saturday Peak Hours
Table 1-8, Statewide Trip Generation Rates, Weekday Daily Trips
Table 1-9, Statewide Directional Distributions 1-5
Table 2-1, TGM 11 LUC 945 Subcategories 2-3
Table 2-2, Summary of Sites 2-4
Table 3-1, Site Trip Vehicle Classifications 3-1
Table 3-2, Metro Area Population Categories 3-9
Table 3-3, Correlation Interpretations, source: Pavez Ahammad
Table 3-4, GFA Size Ranges
Table 3-5, Correlations for < 3k SF, 3-5.9k SF, ≥ 6k SF Classification Divisions
Table 3-6, Correlations for < 4k SF, 4-5.9k SF, ≥ 6k SF Classification Divisions
Table 3-7, Correlations for < 4k SF, 4-6.9k SF, ≥ 7k SF Classification Divisions
Table 3-8, Variable Correlation 3-12
Table 3-9, Significant Models for Each Period, R ² Values
Table 3-10, AM Peak Percent Deviation from Actual Trips
Table 3-11, PM Peak Percent Deviation from Actual Trips
Table 3-12, Friday Peak Percent Deviation from Actual Trips
Table 3-13, Saturday Peak Percent Deviation from Actual Trips
Table 3-14, Diesel Correlations 3-15
Table 3-15, Diesel Models for Each Period, R ² Values
Table 3-16, Sites with DFPs for Analysis 3-16
Table 4-1, Revised Significant Factors for Each Period, R ² Values
Table 4-2, AM Peak Deviation from Actual Trips 4-2
Table 4-3, PM Peak Deviation from Actual Trips4-2

Convenience Store/Gas Station Trip Generation Study, Wisconsin – Statewide	September 26, 2022
Table 4-4, Friday Peak Deviation from Actual Trips	4-2
Table 4-5, Saturday Peak Deviation from Actual Trips	4-3
Table 4-6, Percentage of Entering and Exiting Traffic from 6 AM to 6PM	4-3
Table 4-7, Average Weekday 12-hour Distributions	4-4
Table 5-1, Statewide Trip Generation Rates, AM and PM Peak Hours	5-1
Table 5-2, Statewide Trip Generation Rates, Friday and Saturday Peak Hours	5-2
Table 5-3, Statewide Trip Generation Rates, Weekday Daily Trips	5-2
Table 5-4, Statewide Directional Distributions	5-3

LIST OF APPENDICES

Appendix A	Site Statistics
Appendix B	Initial Regression Summaries
Appendix C	Initial Regression Model Trip Generation Comparison
Appendix D	Regression Summaries, Diesel versus Non-Diesel
Appendix E	Final Regression Summaries
Appendix F	Final Regression Model Trip Generation Comparison
Appendix G	Weekday Final Regression Summaries

Chapter 1 – **EXECUTIVE SUMMARY**

PART A – PROJECT BACKGROUND

The Wisconsin Department of Transportation (WisDOT) contracted with MSA Professional Services, Inc. (MSA) to collect trip generation data and use that data to recommend new trip generation rates for future use for Convenience Store/Gas Station developments in Wisconsin.

Study sites were selected from across the state based on recommendations from WisDOT Region Traffic Staff and reviewed by MSA and the WisDOT Traffic Impact Analysis (TIA) Users' Group. Study sites were based on land use codes (LUCs) for Gasoline/Service Station with Convenience Market (945) and Super Convenience Market/Gas Station (960) from the *ITE Trip Generation Manual*, 10th Edition (TGM 10)¹. The following criteria was applied to site selection:

- Locations with at least six vehicle fueling positions (VFPs), preferably eight
- Rural areas were to have a population of less than 5,000 in the adjacent area; Urban areas were to have a population of 5,000 or greater
- Tourist areas were to have a summer annual average daily traffic (AADT) that was 50% or more than the off-peak season. Such areas included Minocqua, Eagle River, Lake Geneva, and Wisconsin Dells.
- Freeway locations were to be within 0.5-miles of an interchange

Sites containing other land uses within the Convenience Market/Gas Station development (e.g., sites with a fast-food restaurant, diner, coffee house, bakery/donut shop, etc.) were excluded from the list of potential study sites as they would introduce additional variables into the analysis. The study site also needed direct driveway access to the main roadway network rather than a shared access; this would assist in the automated data collection process. Table 1-1 includes a summary of sites where data was collected.

Decien			Loca	Aroa			
Reg	JION	Free	eway	Non-Fi	reeway	Area	
	Total	Non- Tourist	Tourist	Non- Tourist	Tourist	Rural	Urban
NC	14	3	2	4	5	7	7
NE	17	7	3	5	2	11	6
NW	12	3	1	2	6	7	5
SE	21	9	3	8	1	4	17
SW	24	9	3	11	1	10	14
Total	88	31	12	30	15	39	49

Table 1-1, Summary of Sites

¹ At the time this study was scoped and contracted, an 11th Edition of the *TGM* was known to be released at some time in the future but an exact date was not known. Subsequent LUC changes in the *TGM 11* (definitions, rates, etc.) were therefore unknown. This study was originally written in terms of the then current *TGM* (10th Edition).

PART B – STATISTICAL ANALYSIS SUMMARY

The site characteristics (variables) identified in the criteria previously listed were used to check for correlation between the variable and the peak periods in which data was collected. Pearson's *r* was used to measure the strength of a linear association between two variables.

Based on the strength of the characteristic's statistical association and subsequent discussion with Region Traffic Staff and the TIA User's Group, equations were developed and were used to compare which combination of characteristics would most accurately calculate development trip generation. Study site characteristics were used as inputs for the equations and their results were compared to the collected site data. The deviations between calculated trips and actual observed trips were calculated and are summarized in Table 1-2 through Table 1-5².

Table 1-2, A	M Peak	Deviation	from	Actual	Trips
--------------	--------	-----------	------	--------	-------

	AM Trips - Number of Sites within Difference Range							
% Difference from	TG	M Classificati	ons		St	tudy-Derived Classif	fications	
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000
+/- 0 - 50 Trips	10	37	10	45	46	51	45	47
+/- 50 - 100 Trips	17	26	17	25	25	16	24	25
+/- 100 - 200 Trips	32	23	20	16	13	18	17	14
+/- 200 - 300 Trips	23		21		2	1		
+/- 300 Trips	4		18					
Total > 100 Trips	59	23	59	16	15	19	17	14

Table 1-3, PM Peak Deviation from Actual Trips

	PM Trips - Number of Sites within Difference Range								
% Difference from	TGI	M Classificati	ons		St	udy-Derived Classif	ications		
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000	
+/- 0 - 50 Trips	30	37	23	49	37	41	46	44	
+/- 50 - 100 Trips	24	32	12	24	28	24	26	30	
+/- 100 - 200 Trips	28	17	32	13	20	20	14	12	
+/- 200 - 300 Trips	4		9		1	1			
+/- 300 Trips			10						
Total > 100 Trips	32	17	51	13	21	21	14	12	

² Data derived from *TGM 10* LUC 960 uses the Midwest filtered rates for all sites for simplicity of comparison; the unfiltered rate is higher, which would result in larger trip generation values. LUC 960 is not available in *TGM 11*.

	Friday Trips - Number of Sites within Difference Range									
% Difference from	TG	M Classificati	ons		St	tudy-Derived Classif	ications			
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000		
+/- 0 - 50 Trips	19	23	6	34	29	23	25	35		
+/- 50 - 100 Trips	13	25	7	18	20	18	24	17		
+/- 100 - 200 Trips	26	17	24	12	15	22	16	12		
+/- 200 - 300 Trips	8		18	1	1	2		1		
+/- 300 Trips		1	11	1	1	1	1	1		
Total > 100 Trips	34	18	53	14	17	25	17	14		

Table 1-4, Friday Peak Deviation from Actual Trips

Table 1-5, Saturday Peak Deviation from Actual Trips

	Saturday Trips - Number of Sites within Difference Range							
% Difference from	TG	M Classificati	ons		St	tudy-Derived Classif	fications	
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000
+/- 0 - 50 Trips	20	18	18	26	25	31	23	29
+/- 50 - 100 Trips	18	21	15	21	22	14	23	18
+/- 100 - 200 Trips	25	20	15	17	15	18	18	17
+/- 200 - 300 Trips	2	6	6	1	4	2	1	1
+/- 300 Trips	1	1	12	1		1	1	1
Total > 100 Trips	28	27	33	19	19	21	20	19

The results shown in Table 1-2 through Table 1-5 indicated the equations for VFP + GFA Classifications (subcategorized as above and below 300,000) generally had the highest number of sites in which the deviation in calculated trips was below 100 (absolute value, under estimating and over estimating). Additional review revealed the equations for above/below 300,000 population also had the least number of sites that were under calculated for trip generation. The equation for VFP + GFA Classifications (without population thresholds) also performed strong as well.

PART C – RECOMMENDATIONS

AM & PM Trip Peak Hour Generation

Based on the performance both in raw trip generation calculation and lowest number of sites underestimated, the VFP + GFA Classification (with subcategories for populations \geq < 300,000) is recommended for use in calculation of AM and PM peak hour trip generation for all Convenience Store/Gas Station (LUC 945) sites in the state of Wisconsin. Equations to be used in the trip generation calculations are shown in Table 1-6.

Dook Hour	Equation							
Реак пош	Population < 300,000	Population ≥ 300,000						
AM	$T = 5.91(VFP) + 63.51(GFA_{class}) - 44.79$	$T = 12.68(VFP) + 54.28(GFA_{class}) - 108.66$						
PM	$T = 5.91(VFP) + 60.09(GFA_{Class}) - 12.15$	$T = 7.88(VFP) + 75.75(GFA_{class}) - 65.54$						
Wh	ere,							
T =	Peak hour trip generation, vehicles per	GFA _{Class} = Category of C-Store GFA, enter 1, 2,						
hou	ır (vph)	or 3						
) - Total number of vahicle fueling	1: < 4,000 SF						
VFP	itions ³	2: 4,000 – 5,999 SF						
pos	IUOIIS	3: ≥ 6,000 SF						

Table 1-6, Statewide Trip Generation Rates, AM and PM Peak Hours

Friday & Saturday Peak Hour Trip Generation

Based on the raw trip generation calculation performance and feedback from the TIA Users' Group, the VFP + GFA Classification (*without* subcategories for populations) is recommended for use in calculation of Friday and Saturday peak hour trip generation for all Convenience Store/Gas Station (LUC 945) sites in the state of Wisconsin. Equations to be used in the trip generation calculations are shown in Table 1-7.

Table 1-7, Statewide Trip Generation Rates, Friday and Saturday Peak Hours

Peak Hour	Equation
Friday	$T = 7.71(VFP) + 73.71(GFA_{class}) - 29.06$
Saturday	$T = 6.76(VFP) + 76.48(GFA_{class}) - 19.33$

Where,

T = Peak hour trip generation, vehicles per
hour (vph) $GFA_{Class} = Category of C-
or 3<math>VFP = Total$ number of vehicle fueling
positions31: < 4,000 SF
2: 4,000 - 5,99
2: > C 000 SF

GFA_{Class} = Category of C-Store GFA, enter 1, 2, or 3 1: < 4,000 SF 2: 4,000 − 5,999 SF 3: ≥ 6,000 SF

AM & PM = Peak Hour of Adjacent Street

Friday & Saturday = Peak Hour of Generator

Weekday Daily Trip Generation

Based on use of the VFP + GFA Classification (with subcategories for populations \geq < 300,000) for weekday AM and PM peak periods, the same models, combined with the 75% 12-hour distribution assumption, were used for creation of weekday daily trip generation equations. Equations to be utilized for weekday daily trip generation are shown in Table 1-8. The 12-hour distribution is discussed in more detail in Chapter 4, Part B.

³ Diesel and non-diesel VFPs combined; not including diesel VFPs that when in use, would prevent the use of the non-diesel VFPs

2,

Population	Equation
< 300,000	$T = 80.61(VFP) + 898.30(GFA_{class}) - 354.83$
≥ 300,000	$T = 144.00(VFP) + 834.76(GFA_{class}) - 1035.89$

Table 1-8, Statewide Trip Generation Rates, Weekday Daily Trips

Where,

T = Weekday daily trip generation, vehicles per	GFA _{Class} = Category of C-Store GFA, enter 1,
day (vpd)	or 3
VFP = Total number of vehicle fueling positions ⁴	1: < 4,000 SF 2: 4,000 − 5,999 SF 3: ≥ 6,000 SF

Equations were generated based on weekday data excluding Friday⁵. It is recommended that the Region Traffic Staff be consulted prior to utilization of these equations for a Friday period.

Peak Directional Distributions

Inbound versus outbound directional distributions were calculated based on a review of the Wisconsin site data. Values to be used in association with the trip generation equations are shown in Table 1-9.

Peak Hour	% Inbound	% Outbound
AM	51%	49%
PM	50%	50%
Friday	51%	49%
Saturday	50%	50%

Table 1-9, Statewide Directional Distributions

The <u>2010 Wisconsin ArcGIS Population Map</u>⁶ used for Saturation Flow Rate estimation should be referenced for determining whether the population of the proposed site is less than or greater than 300,000. Since the populations referenced in the ArcGIS map are from 2010 and many of the municipal population areas continue to expand and in many cases merge with other municipalities; new developments adjacent to the 300,000 population regions could potentially be considered part of the larger regional population. It is recommended that language similar to the below be included in future policy guidance from the Department.

Region Traffic Staff should be consulted before proceeding with calculations for developments that are proposed for areas near a 300,000 urban population area. WisDOT Region Traffic Staff reserve the right to modify the population coefficient based on development location, updated population data, and regional growth patterns.

⁴ Diesel and non-diesel VFPs combined; not including diesel VFPs that when in use, would prevent the use of the non-diesel VFPs

⁵ Fridays are not typically aggregated in weekday count data due to the influence of weekend travel patterns.

⁶<u>http://arcg.is/1GqGa</u>, accessed July 2022

Until a future study is completed, or additional interim guidance is provided, the number of DFPs should continue to be based on the total number of pumps available (diesel and non-diesel combined⁷). This will provide a slightly conservative number of generated truck trips for the site. Given the relatively low number of DFPs at a typical development that is not a Truck Stop, the impact to the number of expected trips should be fairly low.

Due to the evolving nature of the Convenience Store/Gas Station land use, future studies are recommended which account for the changing business models. As new sites are constructed, convenience stores are becoming larger and stand-alone diesel fueling islands more common. Sites with shared land uses (e.g., incorporating a fast-food restaurant or coffee shop) are also appearing. Future studies should investigate how these additional variables impact trip generation as these development changes become more regular.

TGM 11 LUC 944 & 950

Current WisDOT interim guidance includes procedures for Gasoline/Service Station, LUC 944⁸ and Truck Stop, LUC 950⁹ developments. Both LUCs remain in the *TGM 11*; however, this study did not directly focus on these LUCs. Recommended procedures for these LUCs are as follows:

Gasoline/Service Station, LUC 944

The number of sites indirectly included in this study with a GFA < 2,000 SF is very small (two sites total). Sites that were associated to discount club (e.g., Costco), home improvement superstore, or supermarket type of developments were not included in this study, due to the *TGM 11* retaining LUC 944, their mixed/shared-use development nature, and their associated higher percentage of linked trips. It is recommended that *TGM 11* LUC 944 rates be used for developments of this size moving forward. Region Traffic Staff should be consulted for developments of this type that will be associated with discount club or similar land uses for the determination of an appropriate linked trip rate application.

Truck Stop, LUC 950

Previous use of this LUC was associated with the presence of stand-alone diesel VFPs. Equations developed as part of this study include *all* VFPs able to be utilized simultaneously, regardless of the presence of stand-alone diesel VFPs. Based on the outcome of this study, it is recommended that LUC 950 be only used for developments that derive the majority of their business from truckers/large commercial vehicle traffic.

⁷ Not including diesel VFPs that when in use, would prevent the use of the non-diesel VFPs

⁸ For GFA < 2,000 SF

⁹ For stand-alone diesel fueling positions

Chapter 2 – INTRODUCTION

PART A – PURPOSE OF STUDY

The Wisconsin Department of Transportation (WisDOT) wanted to develop trip generation rates for AM, PM, and Saturday peak periods for Convenience Store/Gas Station developments, which were derived from Wisconsin locations rather than a national database, as concerns were raised that trip generation rates for this type of development are different in Wisconsin. The goal of the study is to provide more accurate trip generation calculations for new and remodeled Convenience Market/Gas Station site developments throughout Wisconsin. WisDOT contracted with MSA Professional Services, Inc. (MSA) to collect trip generation data and use that data to recommend new trip generation rates for future use.

PART B – WISDOT INTERIM GUIDANCE

Following the release of the *ITE Trip Generation Manual*, 10th Edition (TGM 10) and its introduction of the Super Convenience Market/Gas Station (Land Use Code (LUC) 960), WisDOT provided interim guidance for trip generation of Convenience Market/Gas Station developments. The interim guidance revealed that rates for the LUCs in the TGM 10 may not accurately project the operations of similar developments within the state of Wisconsin. For instance, rural versus urban, freeway versus non-freeway, tourist versus non-tourist characteristics should factor into calculating the trip generation of those respective sites.

Guidance prescribes that vehicle fueling positions (VFP) (rather than gross floor area (GFA) of the convenience store or the number of employees) is to be utilized as the independent variable for calculating trip generation rates from *TGM 10*. Depending on the size of the convenience store and the number of vehicle fueling pumps (positions) provided, practitioners are to select one of the following LUCs from the *TGM 10* to calculate the expected development trips:

- Convenience Market with Gasoline Pumps, LUC 853
- Gasoline/Service Station, LUC 944
- Gasoline /Service Station with Convenience Market, LUC 945
- Truck Stop, LUC 950
- Super Convenience Market/Gas Station, LUC 960

Based on the proposed GFA and number of VFPs, one of the above LUCs were to be utilized when calculating the expected development trips. Excerpts from the WisDOT Interim Guidance are provided below regarding which LUC was to be utilized under which conditions.

Size (GFA) of Convenience Market	# Fueling Positions	Applicable ITE Land Use Code
≥ 2,000 square feet	<10	853
< 2,000 square feet	Any	944
2,000 to 3,000 square feet	≥ 10	945
≥ 3,000 square feet	≥ 10	Varies by Location, See Table 2

Table 1 ITE Land Use Code Selection

Notes:

- GFA: Gross Floor Area

- Use number of vehicle fueling positions as the independent variable
- Do not count diesel fueling positions that, when in use, would prevent the use of non-diesel fueling positions

For stand-alone diesel fueling positions separated from other fueling positions, use Truck Stop (ITE 950) trip generation rate with number of diesel-fueling positions as the independent variable. Use the applicable trip generation rate as defined above for all other fueling positions. For example, if the development consists of a 2,500 square foot convenience market, with a total of 16 fueling positions (12 non-diesel, 4 stand-alone diesel), the vehicle fueling position trip generation rate for ITE 945 would be applicable for the 12 non-diesel fueling stations and the vehicle fueling position trip generation rate for ITE 950 would be applicable for the 4 stand-alone diesel positions.

- Obtain authorization from the WisDOT regional traffic contact prior to utilizing rates other than those specified above

Table 2 Applicable ITE Land Use Codes for Super Convenience Market/Gas Station

	Applicable ITE Land Use Code				
Non-Tourist Freeway Location		Non-Tourist Non-Freeway Location	Tourist Freeway Location	Tourist Non-Freeway Location	
Rural Area	960 Midwest	945	960 Midwest	945	
Urban Area	960	960 Midwest	960	945	

Notes:

- GFA: Gross Floor Area
- Rural Area: Within or near an isolated community with a population of < 5,000
- Urban Area: Within or near an area with a population of ≥ 5,000
- Tourist Area: Location where summer AADT is ≥ 50% of AADT the rest of the year (e.g., Minocqua, Eagle River, Lake Geneva, Wisconsin Dells)
- Freeway Locations: Locations are typically within ½ mile of an interchange. Consider locations near expressways (WIS 29, US 151, US 53, etc.) as non-freeway locations.
- 960 Midwest: Trip generation rate based on data sources located only within the Midwest region
- Use number of vehicle fueling positions as the independent variable
- Do not count diesel fueling positions that, when in use, would prevent the use of non-diesel fueling positions
- For stand-alone diesel fueling positions separated from other fueling positions, use Truck Stop (ITE 950) trip generation rate with number of diesel-fueling positions as the independent variable. Use the applicable trip generation rate as defined above for all other fueling positions. For example, if the development consists of a 2,500 square foot convenience market, with a total of 16 fueling positions (12 non-diesel, 4 stand-alone diesel), the vehicle fueling position trip generation rate for ITE 945 would be applicable for the 12 non-diesel fueling stations and the vehicle fueling position trip generation rate for ITE 950 would be applicable for the 4 stand-alone diesel positions.
- Obtain authorization from the WisDOT regional traffic contact prior to utilizing rates other than those specified above.

PART C – TRIP GENERATION MANUAL, 11TH EDITION

In fall of 2021, ITE released the 11th Edition of the *TGM (TGM 11)*. Among the updates for the new edition, the LUCs for vehicle fueling developments were reorganized. The LUCs 853, 945, and 960 from *TGM 10* were combined into a single, revised 945 Convenience Store/Gas Station LUC. Within the new 945 LUC, several subcategories were added to allow for multi-variable evaluation with single-variable data plots. Before selecting an independent variable, the practitioner must select one of two subcategories, either GFA of the convenience store or VFP, as indicated in the ranges shown in Table 2-1.

Table 2-1, TGM 11 LUC 945 Subcategories

GFA (per 1,000-square feet)	VFP
2 – 4 SF	2-8
4 – 5.5 SF	9 – 15
5.5 – 10 SF	16-24

These subcategories are then used to generate single variable data plots, based on whichever variable was not used for the initial subcategory. For instance, if a GFA subcategory was selected, then the data plot would show VFP as the independent variable, and vice versa.

As described in the sections that follow, elements from *TGM 10*, WisDOT Interim Guidance, and *TGM 11* will be referenced and compared to the site data collected for this study and ultimately used to determine an appropriate trip generation methodology for Convenience Market/Gas Station developments in Wisconsin.

PART D – WISCONSIN STUDY SITE SELECTION

Study sites were selected from across the state based on recommendations from WisDOT Region Traffic Staff and reviewed by MSA and the WisDOT Traffic Impact Analysis (TIA) Users' Group. Study sites were based on LUCs for Gasoline/Service Station with Convenience Market (945) and Super Convenience Market/Gas Station (960) from the *TGM* 10¹⁰. The following criteria was applied to site selection:

- Locations with at least six VFPs, preferably eight
- Rural areas were to have a population of less than 5,000 in the adjacent area; Urban areas were to have a population of 5,000 or greater
- Tourist areas were to have a summer annual average daily traffic (AADT) that was 50% or more than the off-peak season. Such areas included Minocqua, Eagle River, Lake Geneva, and Wisconsin Dells.
- Freeway locations were to be within 0.5-miles of an interchange

Sites containing other land uses within the Convenience Market/Gas Station development (e.g., sites with a fast-food restaurant, diner, coffee house, bakery/donut shop, etc.) were excluded from the list of potential study sites as they would introduce additional variables into the analysis. The study site also

¹⁰ At the time this study was scoped and contracted, an 11th Edition of the *TGM* was known to be released at some time in the future but an exact date was not known. Subsequent LUC changes in the *TGM 11* (definitions, rates, etc.) were therefore unknown. This study was originally written in terms of the then current *TGM* (10th Edition).

needed direct driveway access to the main roadway network rather than a shared access; this would assist in the automated data collection process.

Attempts were made to select sites evenly across each region based on the site characteristics mentioned previously; however, this was not always possible, as population centers, tourism destinations, and location relative to freeways are not evenly distributed among all the regions. Table 2-2 includes a summary of sites where data was collected.

Region		Location Freeway Non-Freeway			Area		
	Total	Non- Tourist	Tourist	Non- Tourist	Tourist	Rural	Urban
NC	14	3	2	4	5	7	7
NE	17	7	3	5	2	11	6
NW	12	3	1	2	6	7	5
SE	21	9	3	8	1	4	17
SW	24	9	3	11	1	10	14
Total	88	31	12	30	15	39	49

Table 2-2, Summary of Sites

Chapter 3 – METHODOLOGY

PART A – DATA COLLECTION

At each of the approved sites, data collection primarily included 12-hour (6:00 AM to 6:00 PM) weekday site trips (inbound and outbound). For the sites identified:

- Up to 30 locations also included Friday PM peak hour data collection (3:00 PM to 7:00 PM), primarily in tourist areas
- Up to 45 locations also included Saturday peak hour data (10:00 AM to 2:00 PM), primarily in tourist areas

Vehicular trip data was collected via video recording between June 2021 and May 2022. Recorded video data was then processed by Miovision (a data collection company) to establish the number of inbound and outbound trips. A select number of sites were processed and verified manually, due to camera angles or other unique site constraints.

Physical site visits, GIS/Google Earth aerial imagery, and/or data provided by WisDOT were used to collect additional site information; including, convenience store size (gross floor area), the number of non-diesel and diesel fueling positions, presence of a carwash, and if competition exists within a 0.5-mile radius of the study site. Site data, including volume and peak hour summaries are included in Appendix A.

Depending on the site characteristics and where data collection cameras were able to be set up, site trips were processed based on vehicle classifications, as shown in Table 3-1.

Miovision Classification	FHWA Classification	General Description	Study Impact
Lights	Classes 1 – 3	Motorcycles, cars, pick-ups, vans, SUVs	Assumed to use non- diesel VFPs
Mediums	Classes 4 – 7	Single-unit trucks, busses, motorhomes	Assumed to use diesel
Articulated Trucks	Classes 8 – 13	Trucks with two or more units (tractor + trailer)	VFPs

Table 3-1, Site Trip Vehicle Classifications

The vehicle classifications, as shown in Table 3-1, were primarily useful for sites with distinct stand-alone diesel VFP islands, and if data was able to be collected independent of the non-diesel VFPs. Sites which did not have stand-alone diesel islands were excluded from classifications and were processed as general inbound/outbound trips only. Sites which allowed for direct access to stand-alone diesel VFP trip generation were utilized to generate sample diesel VFP rates. Sites which had stand-alone diesel VFP islands were processed with classifications to allow for diesel and non-diesel VFP rates to be reviewed in the event cameras were not able to directly capture usage of the stand-alone VFPs.

Per WisDOT policy, diesel VFPs were not counted that when in use, would block non-diesel VFPs.

PART B – DATA AGGREGATION

All collected trip data was aggregated into an Excel-based spreadsheet for processing. This spreadsheet is then used to power a dashboard which allows the user to select a trip generation rate output based on the various site characteristics, such as:

- Location (Region)
- Freeway versus non-freeway
- Tourist area versus non-tourist area
- Rural versus urban area
- Presence of diesel fueling options
- Metro area population
- Presence of a carwash
- Presence of competition within 0.5-miles
- Desired peak period
 - o AM
 - o PM
 - Friday
 - Saturday

PART C – DATA REDUCTION

As shown in Table 2-2, data was initially collected at a total of 88 sites. Two sites were removed following further review and discussion with WisDOT based on the following reasons:

Site Removed	Reason
SE-106, SE - Fleet Farm Delavan, I-43 & WIS 50	Store branded station with regular special promotions which result in a linked trip factor not present with other sites
SE-118, SE - Mobil Genoa City, US 12 & 125th	Additional land uses found sharing the same space with the convenience store

The location of these sites is shown in Figure 3-1.

Figure 3-1, Location of Removed Sites

An analysis was performed to determine if any of the remaining 86 sites were statistical outliers and should be removed from the dataset prior to calculating trip generation rates. Using a box and whisker plot, the trip generation data was compared by peak hour periods. As shown in Figure 3-2, the site data fell within the upper and lower bounds of the analysis; therefore, the data did not reveal other sites that would be classified as outliers.

Figure 3-2, Box and Whisker Plot Reviewing for Outlier Sites

The locations of the 86 sites are shown in Figure 3-3. As a reference, a geographical breakdown of site locations is shown for the following characteristics:

•	Freeway/Non-Freeway	Figure 3-4
•	Tourism	Figure 3-5
•	Rural/Urban	Figure 3-6
•	Diesel Availability	Figure 3-7

Figure 3-3, Site Locations by Region

Figure 3-4, Site Locations by Freeway/Non-Freeway

Figure 3-5, Site Locations by Tourism

Figure 3-6, Site Locations by Rural/Urban

Figure 3-7, Site Locations by Diesel Availability

While the data was in the early stages of analysis, a request was made to classify the study sites by metro area populations. Metro area population categories were established by WisDOT, as shown in Table 3-2. Study site locations by the metro area population regions are shown in Figure 3-8. Geographic boundaries of the metro areas were created based on <u>2010 WisDOT ArcGIS population data¹¹</u>.

Table 3-2, Metro Area Population Categories

Metro Area Description	Population	Metro Area
Milwaukee & Madison	> 300,000	1
Green Bay & Appleton	200,001 - 300,000	2
Kenosha & Racine	120,001 - 200,000	3
Superior ¹² , Eau Claire, & La Crosse	100,001 - 120,000	4
Sheboygan, Wausau, & Oshkosh	50,001 - 100,000	5
Other	≤ 50,000	6

¹¹ <u>http://arcg.is/1GqGa</u>, accessed July 2022

¹² Includes Duluth, MN area

Figure 3-8, Site Locations by Metro Population

PART D – INITIAL STATISTICAL ANALYSES

The site characteristics (variables) identified earlier were used to check for correlation between the variable and the four peak periods in which data was collected (AM, PM, Friday, and Saturday). Pearson's r was used to measure the strength of a linear association between two variables. Three types of correlations are possible, as shown in Figure 3-9: positive, negative, and no correlation.

Figure 3-9, Correlation Types, image courtesy of https://statistics.laerd.com

The degree of correlation varies from -1.0 to 1.0, with values near zero having the least correlation, as shown in Table 3-3.

Table 3-3, Correlation Interpretations, source: Pavez Ahamma
--

Size of Cori	relation	Interpretation
0.90 to 1.00	(-0.90 to -1.00)	Very high positive (negative) correlation
0.70 to 0.90	(-0.70 to -0.90)	High positive (negative) correlation
0.50 to 0.70	(-0.50 to -0.70)	Moderate positive (negative) correlation
0.30 to 0.50	(-0.30 to -0.50)	Low positive (negative) correlation
0.00 to 0.30	(0.00 to -0.30)	Negligible correlation

Based on data review and discussion with WisDOT Region Traffic Staff, another variable to analyze GFA was introduced to the study. Similar to what is used in the *TGM 11*, as described in Chapter 2, the GFA was grouped into several ranges to determine which best fit the data collected, shown in Table 3-4. GFA classifications were added to the variables considered for further statistical analysis.

Table 3-4, GFA Size Ranges

GFA Range, SF	Number of Sites		GFA Range, SF	Number of Sites			GFA Range, SF	Nur	mber of Sites	
< 3,000	15	17%	-	< 4,000	24	28%	-	< 4,000	24	28%
3,000 – 5,999	44	52%	_	4,000 – 5,999	35	41%		4,000 – 6,999	44	51%
≥ 6,000	27	31%	_	≥ 6,000	27	31%		≥ 7,000	18	21%
Total	86	100%	-	Total	86	100%	-	Total	86	100%

Correlations were reviewed for each of the GFA classifications, as shown in Table 3-5 through Table 3-7.

Table 3-5, Correlations for < 3k SF, 3-5.9k SF, \geq 6k SF Classification Divisions

	AM Peak	PM Peak	Friday Peak	Saturday Peak
GFA Classifications	0.6199	0.6305	0.5817	0.5366

Table 3-6, Correlations for < 4k SF, 4-5.9k SF, ≥ 6k SF Classification Divisions

	AM Peak	PM Peak	Friday Peak	Saturday Peak
GFA Classifications	0.6806	0.6774	0.6635	0.6120

Table 3-7, Correlations for < 4k SF, 4-6.9k SF, ≥ 7k SF Classification Divisions

	AM Peak	PM Peak	Friday Peak	Saturday Peak
GFA Classifications	0.5343	0.5095	0.4716	0.4389

The classification division of < 4,000 SF, 4,000 – 5,999 SF, \geq 6,000 SF had the highest correlations as well as the most even distribution amongst the number of sites.

Table 3-8 shows a summary of the resulting correlation results for the previously identified variables and the added GFA Classifications variable.

Table 3-8, Variable Correlation¹³

	AM Peak	PM Peak	Friday Peak	Saturday Peak
VFP	0.6802	0.6448	0.6021	0.5341
GFA per 1,000 SF	0.5833	0.5760	0.5351	0.5036
Competition	0.0947	0.1259	0.2015	0.2028
Carwash	0.4310	0.4486	0.3666	0.3503
Tourist	0.0102	0.0663	0.1103	0.2878
Freeway	-0.0813	-0.0582	0.0178	-0.0279
Rural/Urban	0.1349	0.1262	0.0478	-0.0243
Non-Diesel vs. Mixed	-0.0422	-0.0419	-0.0492	0.0067
Metro Area Population	0.2158	0.1577	0.0461	-0.1090
Population	0.0551	0.0242	0.0045	-0.1170
GFA Categories	0.6806	0.6774	0.6635	0.6120

As shown in Table 3-8, the variables of VFP, GFA, and GFA Classifications have the highest correlations. Whether the site had a carwash was strong enough to also consider for further analysis. The variables

¹³ *Metro Area Population* is based on the regions shown in Table 3-2. *Population* is based on the recent population of the site's municipality.

with the strongest correlations were then reviewed within statistical modeling, which compared the p-value and R^2 -values. The results from the statistical modeling are shown in Table 3-9. If an independent variable within the model had a p-value greater than 0.05, it was considered to not be a good model. Further, the higher the R^2 -value, the stronger the model would be for trip generation calculation.

	AM Peak	PM Peak	Friday Peak	Saturday Peak			
VFP	0.4626	0.4157	0.3625	0.2853			
GFA	0.3402	0.3317	0.2863	0.2536			
VFP + GFA	0.4827	0.4430	0.3847	0.3112			
VFP + GFA + Carwash	NG	NG	NG	NG			
VFP + Carwash	NG	NG	NG	NG			
GFA + Carwash	NG	NG	NG	NG			
VFP + GFA Classifications	0.5547	0.5238	0.4877	0.3982			
	Post model						

Table 2.0	Significant		or Each	Dariad	D ² Values
i abie 3-9,	Significant	ivioaeis t	or Each	Perioa,	<i>k</i> ⁻ values

Best model

2nd Best Model

3rd Best Model NG Not a good model, p > 0.05

The variable of the presence of a carwash was not strong enough to use on its own, so it was modeled in conjunction with other common variables. Combined with other variables, the car wash characteristic was found to not be suitable for use in modeling due to its *p*-values. The results in Table 3-9 show that the VFP + GFA Classifications (multivariable equation) provides the best model for all peak periods, as it consistently has the strongest R^2 -values. VFP + GFA (multivariable equation) and VFP (solo variable) are strong as well.

Initial correlation and regression summaries are included in Appendix B.

Equations developed from the strongest regression models shown in Table 3-9 were utilized to compare calculated trip generation results to the actual number of trips counted at each of the study sites. A summary of how the calculated trip generation compared to the actual site data is shown in Table 3-10 through Table 3-13.

Table 3-10, AM Peak Percent Deviation from Actual Trips

% Difference from	AM Trips Number of Sites within % Difference Range					
Observed Data (+/-)	VFP	VFP + GFA Class.				
< 25%	33	36	42			
25 - 49%	23	22	21			
50 - 74%	8	8	6			
75 - 99%	5	5	3			
≥ 100%	17	15	14			

Table 3-11, PM Peak Percent Deviation from Actual Trips

% Difference	PM Trips					
from	Number of Sit	es within % Diff	erence Range			
Observed			VFP + GFA			
Data (+/-)	VFP	VFP + GFA	Class.			
< 25%	39	42	44			
25 - 49%	23	20	23			
50 - 74%	6	8	3			
75 - 99%	5	3	4			
≥ 100%	13	13	12			

Table 3-12, Friday Peak Percent Deviation from Actual Trips

% Difference from	Friday Trips Number of Sites within % Difference Range					
Observed Data (+/-)	VFP	VFP + GFA Class.				
< 25%	27	30	39			
25 - 49%	19	18	11			
50 - 74%	7	4	4			
75 - 99%	3	6	6			
≥ 100%	10	8	6			

Table 3-13, Saturday Peak Percent Deviation from Actual Trips

% Difference	Saturday Trips		
from Observed Data (+/-)	VFP	VFP + GFA	VFP + GFA Class.
< 25%	22	25	28
25 - 49%	23	22	20
50 - 74%	4	2	5
75 - 99%	4	7	3
≥ 100%	13	10	10

The results show that the VFP + GFA Classification model consistently has the largest number of sites within 25% of the observed site trip generation. The results also show that the VFP + GFA Classification model generally has the lowest number of sites with calculated trip generation that is off by greater than 100%.

The full results from these comparisons are shown in Appendix C.

PART E – DIESEL TRIP GENERATION RATE

Statistical Analyses

As mentioned in Chapter 3, vehicle trip data included vehicle classifications. Any vehicle within the category of FHWA Class 4 and above (Miovision "Mediums" and "Articulated Trucks") was assumed to be a diesel vehicle at sites in which direct recording of stand-alone diesel vehicle fueling positions (DFP) was not able to be obtained.

An observed trend for new convenience store/gas station developments is to have stand-alone diesel fueling islands (DFPs)¹⁴ especially if they will be located along a roadway with a higher-than-average truck volume. Because of this trend, WisDOT Region Traffic Staff were also interested in investigating the possibility of a trip generation rate equation derived from DFPs. A diesel variable was reviewed for correlation versus the other site variables to determine reasonableness for use as an independent variable. Correlations are shown in Table 3-14.

AM Peak	PM Peak
Trucks	Trucks
0.6184	0.6589
0.3623	0.2873
0.0978	0.0100
0.2727	0.1788
0.0810	0.0643
-0.0479	-0.1645
0.1680	0.2318
0.2359	0.1057
0.4091	0.3719
0.2023	0.0194
	AM Peak Trucks 0.6184 0.3623 0.0978 0.2727 0.0810 -0.0479 0.1680 0.2359 0.4091 0.2023

Table 3-14, Diesel Correlations¹⁵

As shown in Table 3-14, Diesel VFP has the highest correlation for both AM and PM peak periods. The metro area population variable was also strong enough to consider for further model analysis. Results from the statistical modeling analyses are shown in Table 3-15.

Table 3-15, Diesel Models for Each Period, R² Values¹⁶

	AM Peak	PM Peak
Diesel-VFP	0.3825	0.4341
GFA	0.1312	NA
GFA + Metro	0.2328	NA

Best model NA Not applicable for this peak period

¹⁴ Not all new facilities are constructed with stand-alone DFPs

¹⁶ NA is due to low correlation factors for the peak period

¹⁵ Metro Area Population is based on the regions shown in Table 3-2. Population is based on the recent population of the site's municipality.

The results in Table 3-15 show that the DFP variable provides the best statistical model. Correlation and regression summaries for diesel versus non-diesel rate modeling are included in Appendix D.

Rate Application

Current interim WisDOT procedures stipulate the use of trip generation rates from LUC 950 (Truck Stop) for sites with stand-alone diesel islands. VFP is the only variable option currently provided in the *TGM 11*. In *TGM 10*, the LUC references only one study site; *TGM 11* has four study sites for the AM peak and seven study sites for the PM peak. Using the vehicle classification assumption discussed previously, for when camera locations did not allow for direct viewing of the stand-alone DFPs, this study has data for up to 40 sites¹⁷.

Table 3-16 provides a summary of the number of sites available for the AM and PM peaks, based on the number of DFPs. It should be noted that up to 45 of the 86 sites had stand-alone DFP islands. If the site did not have truck traffic during the peak hour to be used for potential analysis, the site was removed from consideration during that peak. As observed, newer site developments in Wisconsin with stand-alone DFPs typically have at least four DFPs.

Number of DFPs	Number of Sites		
	AM Peak	PM Peak	
2+	45	40	
3+	29	27	
4+	14	14	
5+	8	8	
6+	2	2	

Table 3-16, Sites with DFPs for Analysis

As shown in Figure 3-10 through Figure 3-14, as the number of DFPs increases the number of study sites decrease. Subsequently, the number of sites per region and population center also significantly decrease.

Regarding the number of DFPs, historical practice has been to count the total number of pumps; however, having two diesel pumps across an aisle from each other do not necessarily mean two vehicles can refuel simultaneously. Some developments encounter queues for diesel vehicle fueling. Technically, these trips have already been generated regardless of if the vehicle is able to immediately refuel. Since the scope of the study did not include surveying the ability for DFPs to be used simultaneously, such data was not collected during the site visits. Further, not all of the stand-alone DFP islands are visible from the site video that was collected or online resources such as Google Street View. For those that are visible in online resources, simultaneous usage would only be able to be estimated.

Since current development trends show an increase in the number of DFPs per site, additional data needs to be collected at more recently constructed sites (with 5 and 6+ DFPs) in order to confirm the impact of the lesser represented sites. As Figure 3-13 and Figure 3-14 show, sites with five or more DFPs are limited to the southern portion of the state, and sites with six or more DFPs are solely in the southeastern region. Additional data would be needed to get a better representation of other regions of the state. Due to the limitations of the available data and number of assumptions necessary in order to apply the current data

¹⁷ Sites with data for both AM and PM peak periods

into full statistical models, further analysis in order to develop a DFP rate is not recommended to be completed as part of this study.

Figure 3-10, Sites with Two or More DFPs

Figure 3-11, Sites with Three or More DFPs

Figure 3-12, Sites with Four or More DFPs

Figure 3-13, Sites with Five or More DFPs

Figure 3-14, Sites with Six or More DFPs

PART F – STAKEHOLDER REVIEW & STATISTICAL REFINEMENT

During discussions with WisDOT Region Traffic Staff, including a population threshold in the equations was suggested, as it may better represent the operational differences WisDOT staff has observed at urban locations versus less dense, more suburban developments.

Based on historical experience and general metro area population distributions, staff recommended the 100,000 and 300,000 population thresholds be evaluated further for their impacts to the models with the strongest statistical significance.

The recommended population thresholds, combined with the results of the initial analyses were used to further review and refine the statistical analyses in order to create more accurate models for use in trip generation calculation. The refined variables and subsequent statistical model analysis and their results are discussed in the following chapters.

Chapter 4 – TRIP GENERATION RATES

PART A – STATEWIDE RATES

Based on the initial analysis from the 86 sites and WisDOT Region Traffic Staff recommendations, multivariable combinations were further investigated. The AM and PM peaks showed the greatest statistical impact in initial analyses and also had the greatest amount of site data for review; thus, additional refinement analyses focused on the AM and PM peak periods. Saturday peaks were also included, as the scope of the study sought to create equations for weekday AM, PM, and Saturday peak periods. The results from the statistical model analyses are shown in Table 4-1. If a model's *p*-values were greater than 0.05, it was considered to not be a good model for use as an independent variable. The higher the R^2 -value, the stronger the variable would be for trip generation calculation.

	AM Peak	PM Peak	Friday	Saturday
VFP	0.4626	0.4157	0.3625	0.2853
GFA	0.3402	0.3317	0.2863	0.2536
VFP + GFA	0.4827	0.4430	0.3847	0.3112
VFP + GFA Classifications	0.5547	0.5238	0.4877	0.3982
GFA + VFP Classifications	0.4111	0.3875	0.3400	0.2850
VFP + Metro 100,000	0.4537	0.4027	0.3424	0.2829
VFP + Metro 300,000	0.4528	0.4017	0.3423	0.2730
GFA + Metro 100,000	0.3684	0.3452	0.2867	0.2300
GFA + Metro 300,000	0.3562	0.3276	0.2792	0.2302
GFA Class. + Metro 100,000	0.4851	0.4678	0.4341	0.3574
GFA Class. + Metro 300,000	0.4852	0.4596	0.4404	0.3553
GFA Class. + Metro 300,000 + VFP	0.5598	0.5198	0.4854	0.3891
VFP + GFA Class. (< 300,000)	0.4770	0.4469	0.4481	0.3935
VFP + GFA Class. (≥ 300,000)	0.7134	0.6940	0.9938	0.8267

Table 4-1, Revised Significant Factors for Each Period, R² Values¹⁸

Best model
2nd Best Model
3rd Best Model
Not a good model, $p > 0.05$

The results in Table 4-1 show that the VFP + GFA Classifications \geq 300,000¹⁹ (multivariable equation) consistently has the strongest R^2 -values. While the < 300,000 component's R^2 -values aren't quite as

 $^{^{18}}$ R^2 -values shown for several models are also shaded red as their *p*-value indicates this is not a statistically desirable model. However, they were investigated further due the *p*-value's close proximity to the 0.05 threshold or from stakeholder interest in a complete comparison of the models.

¹⁹ The greater than and less than are considered as part of the same model, but require splitting in order to complete statistical analyses.

strong, when considered together, they provide one of the strongest sets of R^2 -values. The VFP + GFA Classifications (multivariable equation) is also strong as well.

Final correlation and regression summaries are included in Appendix E.

Equations developed from the strongest regression models from Table 4-1 were utilized to compare calculated trip generation results to the number of actual trips counted at each of the study sites.

A summary of how the calculated trip generation compared to the actual site data is shown in Table 4-2 through Table 4-5²⁰. Equations used for the comparisons are included in Appendix F.

Table 4-2, AM Peak Deviation from Actual Trips

	AM Trips - Number of Sites within Difference Range							
% Difference from	TG	M Classificati	ons		St	udy-Derived Classif	fications	
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000
+/- 0 - 50 Trips	10	37	10	45	46	51	45	47
+/- 50 - 100 Trips	17	26	17	25	25	16	24	25
+/- 100 - 200 Trips	32	23	20	16	13	18	17	14
+/- 200 - 300 Trips	23		21		2	1		
+/- 300 Trips	4		18					
Total > 100 Trips	59	23	59	16	15	19	17	14

Table 4-3, PM Peak Deviation from Actual Trips

	PM Trips - Number of Sites within Difference Range							
% Difference from	TGM Classifications			St	tudy-Derived Classif	ications		
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000
+/- 0 - 50 Trips	30	37	23	49	37	41	46	44
+/- 50 - 100 Trips	24	32	12	24	28	24	26	30
+/- 100 - 200 Trips	28	17	32	13	20	20	14	12
+/- 200 - 300 Trips	4		9		1	1		
+/- 300 Trips			10					
Total > 100 Trips	32	17	51	13	21	21	14	12

Table 4-4, Friday Peak Deviation from Actual Trips

	Friday Trips - Number of Sites within Difference Range							
% Difference from	TG	M Classificati	ons		St	udy-Derived Classif	ications	
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000
+/- 0 - 50 Trips	19	23	6	34	29	23	25	35
+/- 50 - 100 Trips	13	25	7	18	20	18	24	17
+/- 100 - 200 Trips	26	17	24	12	15	22	16	12
+/- 200 - 300 Trips	8		18	1	1	2		1
+/- 300 Trips		1	11	1	1	1	1	1
Total > 100 Trips	34	18	53	14	17	25	17	14

²⁰ Data derived from *TGM 10* LUC 960 uses the Midwest filtered rates for all sites for simplicity of comparison; the unfiltered rate is higher, which would result in larger trip generation values. LUC 960 is not available in *TGM 11*.

			Sat	turday Trips -	Number of Sites wi	thin Difference Ran	ge	
% Difference from	TG	M Classificati	ons		St	udy-Derived Classif	ications	_
Observed Data (+/-)	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	VFP + GFA Class.	GFA Class. + Metro 100,000	GFA Class. + Metro 300,000	VFP + GFA Class. + Metro 300,000	VFP + GFA Class. ≥ < Metro 300,000
+/- 0 - 50 Trips	20	18	18	26	25	31	23	29
+/- 50 - 100 Trips	18	21	15	21	22	14	23	18
+/- 100 - 200 Trips	25	20	15	17	15	18	18	17
+/- 200 - 300 Trips	2	6	6	1	4	2	1	1
+/- 300 Trips	1	1	12	1		1	1	1
Total > 100 Trips	28	27	33	19	19	21	20	19

Table 4-5, Saturday Peak Deviation from Actual Trips

The results shown in Table 4-2 through Table 4-5 indicated the equations for VFP + GFA Classifications (subcategorized as above and below 300,000) generally had the highest number of sites in which the deviation in calculated trips was below 100 (absolute value, under estimating and over estimating). Additional review revealed the equations for above/below 300,000 population also had the least number of sites that were under calculated for trip generation. The equation for VFP + GFA Classifications (without population thresholds) also performed strong as well.

The full results of these comparisons are shown in Appendix F.

PART B – 12-HOUR DISTRIBUTIONS

As mentioned in Chapter 3, inbound and outbound site traffic data was collected for 12-hour periods. A summary of each site's traffic data is shown in Appendix A. Data was not collected for 24-hour periods to establish daily site traffic as part of this study. To establish daily site trip generation, an assumption of distributions for the balance of the day was made and applied to the 12-hours of data that was collected.

Table 4-6 includes a comparison of 12-hour distributions, from 6 AM to 6 PM, from similar LUCs in the *TGM 10* and *TGM 11*, as well as WisDOT historical data from LUC 946.

Table 4-6, Percentage of Entering and Exiting Traffic from 6 Aivi to 6PM	Table 4-6, Pe	ercentage of E	ntering and I	Exiting Traffic	from 6 AM to 6PI
--	---------------	----------------	---------------	-----------------	------------------

TGM		1110	Source	%	%
Edition		LOC	Source	Inbound	Outbound
9 ²¹	946	Gas Station with Convenience Store & Car Wash	WisDOT	75.8%	77.9%
	853	Convenience Market with Gasoline Pumps	ITE	69.7%	69.7%
	944	Gasoline/Service Station	ITE	70.1%	68.8%
10 ²²	945	Gasoline/Service Station with Convenience Market	ITE	74.1%	72.3%
	950	Truck Stop	ITE	69.9%	70.0%
	960	Super Convenience Market/Gas Station	ITE	70.3%	69.6%
11 ²³	11 23 045	Convenience Store/Gas Station, 2-4 k GFA	ITE	70.1%	69.4%
11 945	Convenience Store/Gas Station, 4-10 k GFA	ITE	72.6%	72.4%	

²¹ <u>https://wisconsindot.gov/dtsdManuals/traffic-ops/manuals-and-standards/12hour-traffic-dist.xlsx</u>, accessed May 2022

²² https://www.ite.org/pub/D223841E-B9D0-DF79-64B4-D8EA2AE7AEDE, accessed May 2022

²³ ITE TripGen Web-based App, TGM Appendices, accessed May 2022

While the LUC 946 data is older than LUCs included in *TGM 10* or *TGM 11*, it is reflective of Wisconsinspecific data. Since the purpose of this study is to establish Wisconsin-based trip generation rates, the source of the data was important in establishing a value to project Wisconsin distributions as part of this study. A value of 75% was therefore assumed and was applied to the 12-hour counts collected, which is based on a rounded average of the inbound and outbound percentages for LUC 946. The average 12-hour distribution percentages for all sites is shown in Table 4-7.

Hour Starting	% Inbound	% Outbound
6:00 AM	5.37%	5.17%
7:00 AM	6.48%	6.22%
8:00 AM	5.75%	5.75%
9:00 AM	5.55%	5.49%
10:00 AM	5.61%	5.57%
11:00 AM	6.48%	6.35%
12:00 PM	7.02%	7.11%
1:00 PM	6.05%	6.11%
2:00 PM	6.16%	6.30%
3:00 PM	6.76%	6.85%
4:00 PM	7.06%	7.13%
5:00 PM	6.70%	6.94%

Table 4-7, Average Weekday 12-hour Distributions

In the absence of 24-hour site data, the 75% distribution assumption, as approved by the TIA Users' Group, was utilized to expand the existing data to establish daily trip generation equations for weekdays. Equations for generating weekday trips and additional discussion is included in Chapter 5.

Full regression summaries for the daily trip generation models are included in Appendix G.

Chapter 5 – SUMMARY & RECOMMENDATIONS

PART A – SUMMARY

Previous policy and current interim policy stipulate the number of VFPs be utilized as the independent variable when calculating trip generation for convenience store/gas station developments.

Data gathered as part of this study took several variables into account, to investigate whether the use of a different independent variable or a combination of variables (multivariable equation) would better represent developments in Wisconsin. Statistical analysis indicated that combining VFP + GFA Classification, with a subcategory of +/- 300,000 Metro Area Population, as a multivariable equation had the strongest correlation. The same equation, but without the subcategory for population performed strong as well.

As for the diesel analysis, based on the LUC description, the intended use of LUC 950 appears to be for truck-based sites and not for mixed diesel and non-diesel sites as collected for this study. A diesel trip generation rate is not recommended to be derived from the data used in this study due to limitations in the number of sites available and the method of determining the number of DFPs.

PART B – RECOMMENDATIONS

AM & PM Trip Peak Hour Generation

Based on the performance both in raw trip generation calculation and lowest number of sites underestimated, the VFP + GFA Classification (with subcategories for populations \geq < 300,000) is recommended for use in calculation of AM and PM peak hour trip generation for all Convenience Store/Gas Station (LUC 945) sites in the state of Wisconsin. Equations to be used in the trip generation calculations are shown in Table 5-1.

Dock Hour	Equation					
Peak Hour	Population < 300,000	Population ≥ 300,000				
AM	$T = 5.91(VFP) + 63.51(GFA_{class}) - 44.79$	$T = 12.68(VFP) + 54.28(GFA_{class}) - 108.66$				
PM	$T = 5.91(VFP) + 60.09(GFA_{class}) - 12.15$	$T = 7.88(VFP) + 75.75(GFA_{class}) - 65.54$				

Table 5-1, Statewide	Trip Generation Rates, AN	/I and PM Peak Hours
----------------------	---------------------------	----------------------

Where,

T = Peak hour trip generation, vehicles per hour (vph)

VFP = Total number of vehicle fueling positions²⁴

GFA_{Class} = Category of C-Store GFA, enter 1, 2, or 3 1: < 4,000 SF 2: 4,000 − 5,999 SF 3: ≥ 6,000 SF

AM & PM = Peak Hour of Adjacent Street

²⁴ Diesel and non-diesel VFPs combined; not including diesel VFPs that when in use, would prevent the use of the non-diesel VFPs

Friday & Saturday Peak Hour Trip Generation

Based on the raw trip generation calculation performance and feedback from the TIA Users' Group, the VFP + GFA Classification (*without* subcategories for populations) is recommended for use in calculation of Friday and Saturday peak hour trip generation for all Convenience Store/Gas Station (LUC 945) sites in the state of Wisconsin. Equations to be used in the trip generation calculations are shown in Table 5-2.

Table 5-2, Statewide Trip Generation Rates, Friday and Saturday Peak Hours

Peak Hour	Equation
Friday	$T = 7.71(VFP) + 73.71(GFA_{class}) - 29.06$
Saturday	$T = 6.76(VFP) + 76.48(GFA_{Class}) - 19.33$

Where,

T = Peak hour trip generation, vehicles per	GFA _{Class} = Category of C-Store GFA, enter 1, 2,
hour (vph)	or 3
	1: < 4,000 SF
VFP = 10 tai number of venicle fueling	2: 4,000 – 5,999 SF
positions ²⁵	3: ≥ 6,000 SF

Friday & Saturday = Peak Hour of Generator

Weekday Daily Trip Generation

Based on use of the VFP + GFA Classification (with subcategories for populations \geq < 300,000) for weekday AM and PM peak periods, the same models, combined with the 75% 12-hour distribution assumption, were used for creation of weekday daily trip generation equations. Equations to be utilized for weekday daily trip generation are shown in Table 5-3.

Table 5-3, Statewide Trip Generation Rates, Weekday Daily Trips

Population	Equation
< 300,000	$T = 80.61(VFP) + 898.30(GFA_{class}) - 354.83$
≥ 300,000	$T = 144.00(VFP) + 834.76(GFA_{class}) - 1035.89$

Where,

T = Weekday daily trip generation, vehicles per day (vpd)	GFA _{Class} = Category of C-Store GFA, enter 1, 2, or 3
VFP = Total number of vehicle fueling positions ²⁵	1: < 4,000 SF 2: 4,000 — 5,999 SF 3: ≥ 6,000 SF

Equations were generated based on weekday data excluding Friday²⁶. It is recommended that the Region Traffic Staff be consulted prior to utilization of these equations for a Friday period.

²⁵ Diesel and non-diesel VFPs combined; not including diesel VFPs that when in use, would prevent the use of the non-diesel VFPs

²⁶ Fridays are not typically aggregated in weekday count data due to the influence of weekend travel patterns

Peak Directional Distributions

Inbound versus outbound directional distributions were calculated based on a review of the Wisconsin site data. Values to be used in association with the trip generation equations are shown in Table 5-4.

Table 5-4, Statewide Directional Distributions

Peak Hour	% Inbound	% Outbound
AM	51%	49%
PM	50%	50%
Friday	51%	49%
Saturday	50%	50%

The <u>2010 Wisconsin ArcGIS Population Map</u>²⁷ used for Saturation Flow Rate estimation should be referenced for determining whether the population of the proposed site is less than or greater than 300,000. Since the populations referenced in the ArcGIS map are from 2010 and many of the municipal population areas continue to expand and in many cases merge with other municipalities; new developments adjacent to the 300,000 population regions could potentially be considered part of the larger regional population. It is recommended that language similar to the below be included in future policy guidance from the Department.

Region Traffic Staff should be consulted before proceeding with calculations for developments that are proposed for areas near a 300,000 urban population area. WisDOT Region Traffic Staff reserve the right to modify the population coefficient based on development location, updated population data, and regional growth patterns.

Until a future study is completed, or additional interim guidance is provided, the number of DFPs should continue to be based on the total number of pumps available (diesel and non-diesel combined²⁸). This will provide a slightly conservative number of generated truck trips for the site. Given the relatively low number of DFPs at a typical development that is not a Truck Stop, the impact to the number of expected trips should be fairly low.

Due to the evolving nature of the Convenience Store/Gas Station land use, future studies are recommended which account for the changing business models. As new sites are constructed, convenience stores are becoming larger and stand-alone diesel fueling islands more common. Sites with shared land uses (e.g., incorporating a fast-food restaurant or coffee shop) are also appearing. Future studies should investigate how these additional variables impact trip generation as these development changes become more regular.

TGM 11 LUC 944 & 950

Current WisDOT interim guidance includes procedures for Gasoline/Service Station, LUC 944²⁹ and Truck Stop, LUC 950³⁰ developments. Both LUCs remain in the *TGM 11*; however, this study did not directly focus on these LUCs. Recommended procedures for these LUCs are as follows:

²⁷ <u>http://arcg.is/1GqGa</u>, accessed July 2022

²⁸ Not including diesel VFPs that when in use, would prevent the use of the non-diesel VFPs

²⁹ For GFA < 2,000 SF

³⁰ For stand-alone diesel fueling positions

Gasoline/Service Station, LUC 944

The number of sites indirectly included in this study with a GFA < 2,000 SF is very small (two sites total). Sites that were associated to discount club (e.g., Costco), home improvement superstore, or supermarket type of developments were not included in this study, due to the *TGM 11* retaining LUC 944, their mixed/shared-use development nature, and their associated higher percentage of linked trips. It is recommended that *TGM 11* LUC 944 rates be used for developments of this size moving forward. Region Traffic Staff should be consulted for developments of this type that will be associated with discount club or similar land uses for the determination of an appropriate linked trip rate application.

Truck Stop, LUC 950

Previous use of this LUC was associated with the presence of stand-alone diesel VFPs. Equations developed as part of this study include *all* VFPs able to be utilized simultaneously, regardless of the presence of stand-alone diesel VFPs. Based on the outcome of this study, it is recommended that LUC 950 be only used for developments that derive the majority of their business from truckers/large commercial vehicle traffic.

PART C – FUTURE CONSIDERATIONS

Several follow-up studies could be considered to ensure practitioners are using the best data when establishing trip generation for developments in Wisconsin:

- Current guidance does not specify whether a "usage factor" should be applied when calculating the number of DFPs per site. Historical practice has been to count the total number of pumps; however, having two pumps across an aisle from each other do not necessarily mean two vehicles can refuel simultaneously. A future study should include how these pumps are used – if simultaneous refueling can occur with DFPs located across the aisle from one another, and if so, how often it occurs.
- 2. The results from this study and the interim use of LUC 950 for the stand-alone diesel island component of convenience store/gas station developments highlight that national data for LUC 950 may also may not be appropriate even for dedicated truck stop facilities in Wisconsin. Unlike LUC 960 (*TGM 10*) and LUC 945 (*TGM 11*), LUC 950 does not include any Midwest study sites. Given the observations from this study's data, it is likely that Wisconsin-based rates for a Truck Stop are lower than the national data. A future study should be completed to determine how trip generation from Wisconsin truck stop sites vary from the national data.
- 3. Similar to other commercial or services land uses, convenience store/gas stations are continually changing and adapting their services to new market trends to attempt to capture more market share. A significant number of sites selected in this study (approximately 40%) have a dozen or less fueling positions. Over 80% have convenience stores of 7,000 or less square feet of GFA. Current market trends are now constructing stations with 20 or more non-diesel VFPs and at least four or more DFPs. Additionally, convenience store GFAs are nearing 10,000-square feet in size. At the rate new stations are being constructed or existing stations converted into newer, larger facilities; the larger sites will soon be the majority. With greater square footage, convenience stores are evolving into mini grocery stores. The convenience/food services are becoming more of the destination than refueling. Stand-alone diesel islands are becoming mini truck stops, particularly with the inclusion of overnight parking stalls. The trip generation rates for these

newer facilities will need to be updated to match, further investigating the viability of a separate DFP rate. Due to the rapid evolution of convenience store services and vehicle servicing needs, a regular evaluation interval may be necessary in order for the most accurate data to be used in determining network improvements. A follow-up study should include sites that are representative of the most current construction trends.

- 4. Shared/mixed-use developments are another land use type growing in popularity in Wisconsin. These developments contain not only a convenience store/gas station, but commonly also a fast food or fast casual restaurant or coffee shop development on-site. Due to data collection limitations, these sites were excluded from the current study. However, given the number of sites across the state, a follow-up study for this development type could be considered in the future for better understanding of their mixed-use rates.
- 5. Similar to the LUC 950, while LUC 944 does have a Midwest filter, albeit a low number of study sites, a follow-up study could be completed to better understand how trip generation for this LUC may vary from the nationally sourced data. Since convenience stores with GFA < 2,000 SF appear to be diminishing, more attention is recommended on the discount club (e.g., Costco) developments which have little or no convenience items for sale with their VFPs.</p>

Appendix A Site Statistics

Site Summary, Overview

								ITE Land	Store	Non - Diesel	Diesel	Total	Car	# of Gas Stations
ID	Region	County	Municipality	DOT Site Name	Location	Highway	Area	Use Codes	Size	Fueling	Fueling	VFP	Wash	within 1/2
								(Toth Gen.)	(Sq Ft)	Positions	POSITIONS		res/ivo	mile
NC-301	NC	Vaushara	Coloma	NC - BP - Coloma - STH 21 west of I-39 NC - Aptigo #451 - US 45 at STH 64 (455 St Hum 64)	Freeway (Non-Lourist)	STH 21 West of IH 39	Rural	960	5,500	10	5	15	No	0
NC-302	NC	Vilas	Arbor Vitae	NC - BP - Arbor Vitae - US 51	Non-Freeway (Tourist)	US 51	Urban	960	8,900	16	3	19	Yes	0
NC-304	NC	Vilas	Eagle River	NC - Eagle River #131 (201 West Wall St)	Non-Freeway (Tourist)	West Wall St	Rural	960	7,500	16	0	16	Yes	3
NC-305	NC	Price	Fifield	NC - Marathon- Fifield - STH 70	Non-Freeway (Non-Tourist)	STH 70	Rural	945	2,600	8	2	10	No	0
NC-306	NC	Lincoln	Merrill	NC - Merrill #241 (300 S Pine Ridge Ave)	Freeway (Tourist)	IH 51	Urban	960	5,000	20	2	22	No	1
NC-307	NC	Oneida	Minocqua	NC-Krist Food Mart/Citgo - Minocqua - US 51 (208 Uneida St)	Non-Freeway (Tourist)	US 51 US 51	Rural	960	3,800	12	2	14	NO Ves	0
NC-309	NC	Waushara	Plainfield	NC - BP - Plainfield - STH 73 off I-39	Freeway (Non-Tourist)	STH 73 off IH 39	Rural	945	1,900	6	3	9	No	1
NC-310	NC	Marathon	Wausau	NC - Wausau BP - Bus 51	Freeway (Non-Tourist)	IH 39	Urban	960	3,500	12	0	12	No	0
NC-311	NC	Marathon	Stratford	NC - Cenex - Stratford, STH 97	Non-Freeway (Non-Tourist)	STH 97	Rural	960	4,500	8	2	10	No	2
NC-312	NC	Oneida	Rhinelander	NC - Shell - Rhinelander - STH 47 at CTH K	Non-Freeway (Non-Tourist)	STH 47 at CHT K	Urban	960	5,300	8	2	10	No	0
NC-313 NC-314	NC	Price	Phillins	NC - Waupaca #888 (106 County Rd QQ)	Freeway (Tourist)	STH 54 & CTH QQ STH 13	Rural	960	5,800	20	3	23	Yes	3
NE-201	NE	Brown	Ashwauhenor	NE - Ashwauhenon #125 (940 Wauhe Ln)	Freeway (Non-Tourist)	IH 41	Urban	960	7,400	16	0	16	No	1
NE-201	NE	Brown	De Pere	De Pere - Kwik Trin #127 (746 Main Ave)	Non-Freeway (Non-Tourist)	Main Ave	Urban	945	4 100	8	0	8	No	1
NE-202	NE	Brown	Denmark	NF - Denmark #1015 (111 Bohemia Dr)	Freeway (Tourist)	STH 96 F of IH 43	Rural	960	7.000	14	4	18	Yes	1
NE-204	NE	Outagamie	Appleton	NE - Appleton #678 (3232 S Oneida St)	Freeway (Non-Tourist)	IH 441	Urban	960	4,300	12	0	12	No	1
NE-205	NE	Winnebago	Larsen	NE- Larsen #628 (5600 County Rd II)	Freeway (Non-Tourist)	IH 45	Rural	960	5,500	10	3	13	No	0
NE-206	NE	Winnebago	Neenah	NE-Speedway, Neenah; IH 41 & CTH II	Freeway (Non-Tourist)	IH 41	Urban	960	5,100	16	4	20	No	0
NE-207	NE	Dodge	Lomira	NE - Exxon, Lomira, I-41 & WIS 67/CTH H	Freeway (Non-Tourist)	IH 41	Rural	945	2,900	8	5	13	No	2
NE-208	NE	Manitowoc	Manitowoc	NE- Manitowoc Kwiki rip#611 (formerly Tobaco Outlet); 2102 Washington St (US151)	Non-Freeway (Non-Tourist)	US 151	Urban	945	2,500	8	0	8	No	1
NE-209	NE	Oconto	Mountain	NE- R-Store/BP Mountain	Non-Freeway (Tourist)	STH 32 & CTH W	Rural	945	3,600	6	2	8	No	0
NE-210	NE	Door	Sturgeon Bay	NE-BP STH 57 South Sturgeon Bay (7513 42 State Hwy)	Non-Freeway (Tourist)	STH 57	Rural	960	2,900	8	3	11	No	0
NE-211	NE	Calumet	New Holstein	NE - New Holstein #644 (1517 Wisconsin Ave)	Non-Freeway (Non-Tourist)	STH 57/32	Rural	960	5,600	16	2	18	yes	0
NE-212	NE	Winnebago	Winneconne	NE- Winneconne #612; WIS 116 (915 E Main St)	Non-Freeway (Non-Tourist)	STH 116	Rural	960	4,500	16	0	16	No	0
NE-213	NE	Oconto	Abrams	NE - Sheboygan #139 (7002 Sauk Trail Rd)	Freeway (Non-Tourist)		Rural	960	5,000	12	5	13	NO	0
NE-214	NE	Winnebago	Oshkosh	NE-BP Pantry Oshkosh (3700 Jackson Street, Oshkosh)	Non-Freeway (Non-Tourist)	Jackson Street	Urban	960	5,800	8	3	11	Yes	1
NE-216	NE	Oconto	Lena	NE - Lena #587 (5908 Duame Rd)	Freeway (Tourist)	US 141 & STH 22	Rural	960	6,500	10	4	14	No	0
NE-217	NE	Sheboygan	Cedar Grove	NE - Citgo; Cedar Grove; IH 43 & WIS 32	Freeway (Non-Tourist)	IH 43 & STH 32	Rural	960	8,000	8	2	10	No	0
NW-401	NW	Jackson	Black River Fall	s NW - Black River Falls #648 (751 State Hwy 54)	Freeway (Non-Tourist)	STH 54	Rural	960	9,500	14	5	19	No	2
NW-402	NW	Ashland	Ashland	NW - Ashland #110 (1814 Lakeshore Dr W)	Non-Freeway (Tourist)	US 2 & STH 112	Urban	960	9,900	20	2	22	Yes	2
NVV-403	NW	Chippowa	Hayward	NW - Mobil, Hayward, 15771 USH 63	Non-Freeway (Tourist)	US 63	Rural	945	3,000	12	0	8	Yes	5
NW-404	NW	Fau Claire	Fau Claire	NW - Fau Claire Holiday Station (5511 WI-93, Fau Claire WI)	Freeway (Non-Tourist)	STH-93	Urban	960	3,000	12	0	12	No	1
NW-406	NW	Sawyer	Hayward	NW - Hayward #327, USH 63 & STH 27 (15831 US Hwy 63)	Non-Freeway (Tourist)	US 63 & STH 27	Rural	960	4,000	16	3	19	No	5
NW-407	NW	Douglas	Superior	NW - Superior #203 (1419 Banks Ave)	Non-Freeway (Non-Tourist)	US 2	Urban	960	4,500	20	2	22	Yes	1
NW-408	NW	Washburn	Spooner	NW - Spooner #329, USH 63 & STH 70 (201 W Maple St)	Non-Freeway (Tourist)	STH 70	Rural	960	5,000	16	0	16	No	1
NW-409	NW	Barron	Chetek	NW -Chetek #602 (324 2nd St)	Non-Freeway (Tourist)	2nd & Mill St	Rural	960	5,900	16	0	16	No	2
NVV-410	NW	Barron St Croix	Rice Lake	NW - Rice Lake #476 (2851 Decker Dr)	Freeway (Tourist)	US 53	Urban	960	6,900 E 100	12	3	15	Yes	0
NW-412	NW	St Croix	Hudson	NW - N Hudson #935 (740 6th St N)	Non-Freeway (Tourist)	STH 35 & 04	Urban	960	7 200	20	0	22	Yes	1
SE-101	SE	Washington	Allenton	SE - Mobil Allenton, I-41 & WIS 33	Freeway (Non-Tourist)	IH 41 & STH 33	Rural	960	4,835	10	3	13	Yes	1
SE-102	SE	Walworth	Delavan	SE - Delavan #1046, WIS 50 & Wright (408 S Wright Street)	Freeway (Tourist)	STH 50	Urban	960	8,000	20	0	20	Yes	2
SE-103	SE	Washington	Germantown	SE - Speedway Germantown, I-41 & CTH Q	Freeway (Non-Tourist)	IH 41 & CTH Q	Urban	960	3,400	12	0	12	No	2
SE-104	SE	Walworth	Lake Geneva	SE - Mobil Lake Geneva, WIS 50 & Edwards	Freeway (Tourist)	STH 50	Urban	960	4,100	8	2	10	No	1
>E-105	SE	Walworth	Lake Geneva	SE - Lake Geneva #219 (710 Williams St)	Freeway (Tourist)		Urban	960	6,500 5,400	12	0	12	Yes	1
SE-106	SF	Washington	Erin	SE - BP Erin, WIS 83 & WIS 167	Non-Freeway (Non-Tourist)	STH 83 & STH 167	Rural	960	3,400	8	2	10	No	0
SE-108	SE	Waukesha	Muskego	SE - Muskego #664 (S79W18884 Janesville Rd)	Non-Freeway (Non-Tourist)	Janesville Rd	Urban	960	5,000	16	0	16	No	0
SE-109	SE	Waukesha	New Berlin	SE - Speedway, New Berlin, I-43 & Moorland	Freeway (Non-Tourist)	IH 43	Urban	945	2,900	12	0	12	No	0
SE-110	SE	Milwaukee	Oak Creek	SE - BP Oak Creek CTH BB & CTH V	Freeway (Non-Tourist)	IH 41	Urban	945	2,200	12	0	12	No	1
SE-111	SE	Kenosha	Kenosha	SE - MODII Kenosha, I-94 & WIS 50 SE Quad	Freeway (Non-Lourist)	IH 41/94 & STH 50	Urban	945	2,850	12	0	12	No	5
SE-112 SE-113	SE	Kenosha	Kenosha	SE - Speedway Kacille Wis 20 & Enimerison SE - Speedway Kenosha, WIS 50 & 60th	Non-Freeway (Non-Tourist)	STH 20 STH 50 & 60th	Urban	960	2,900	12	0	12	No	1
SE-113	SE	Waukesha	Waukesha	SE - Speedway Waukesha, WIS 59 & Sunset	Non-Freeway (Non-Tourist)	STH 59	Urban	960	4,400	16	0	16	Yes	0
SE-115	SE	Ozaukee	Saukville	SE - Saukville #879 (750 E Green Bay Ave)	Freeway (Non-Tourist)	IH 43 & STH 33	Rural	960	5,600	20	0	20	Yes	1
SE-116	SE	Waukesha	Waukesha	SE - Pewaukee/Waukesha #396, CTH F & CTH M (Redford Blvd)	Non-Freeway (Non-Tourist)	CTH F & CTH M	Urban	960	7,400	23	6	29	Yes	0
SE-117	SE	Kenosha	Pleasant Prairie	SE - Pleasant Prairie #296 (10215 120th Ave)	Freeway (Non-Tourist)	IH 94 & STH 165	Urban	960	6,600	24	0	24	Yes	1
* SE-118	SE	Walworth	Genoa City	SE - Mobil Genoa City, US 12 & 125th	Non-Freeway (Non-Tourist)	US 12	Rural	960	12,100	12	3	15	No	1
^ SE-119	SE	Waukesha	Delafield	SE - Delafield #972 (2694 Sun Valley Dr)	Freeway (Non-Tourist)	STH 83	Urban	960	8,000	16	0	16	No	0
^ SE-120	SE	Waukesha	Waukesha	SE - Waukesha #970 (2106 S West Ave)	Non-Freeway (Non-Tourist)	STH 59	Urban	960	7,700	18	5	23	Yes	0
^ SE-121	SE	Milwaukee	Uak Creek	SE - Uak Creek #422 (9535 S 13th St)	Freeway (Non-Tourist)	IH 41/94 & STH 100	Urban	960	6,500	26	8	34	Yes	2
SW-501	SW	Sank	Balapoo	Svv - baraboo - Amoco at 33 and 136	rieeway (Tourist)	51H 33 & 51H 136	urban	960	9,300	12	4	16	INÓ	

Site Summary, Overview

ID	Region	County	Municipality	y DOT Site Name	Location	Highway	Area	ITE Land Use Codes (10th Gen.)	Store Size (Sq Ft)	Non - Diesel Fueling Positions	Diesel Fueling Positions	Total VFP	Car Wash Yes/No	# of Gas Stations within 1/2 mile
SW-502	SW	Sauk	Baraboo	SW - Baraboo - Caseys on CTH W	Non-Freeway (Tourist)	CTH W	Urban	945	2,500	8	0	8	No	1
SW-503	SW	Jefferson	Fort Atkinson	SW - Fort Atkinson -Caseys	Non-Freeway (Non-Tourist)	USH 12	Urban	945	4,400	8	0	8	No	2
SW-504	SW	La Crosse	La Crosse	SW - La Crosse #750 (4828 Mormon Coulee Rd)	Non-Freeway (Non-Tourist)	Hwy 14/61	Urban	960	6,300	16	3	19	Yes	1
SW-505	SW	Green	Brodhead	SW - Brodhead #1021 (2107 1st Center Ave)	Non-Freeway (Non-Tourist)	STH 11	Rural	960	8,000	20	3	23	Yes	0
SW-506	SW	Grant	Cuba City	Cuba City - KwikTrip#339 (212 S Main Street)	Non-Freeway (Non-Tourist)	Main St	Rural	945	4,000	8	0	8	No	1
SW-507	SW	Dane	Windsor	SW - Windsor/Deforest Speedway	Freeway (Non-Tourist)	STH 19 E of IH 39/90	Urban	960	3,300	12	0	12	No	2
SW-508	SW	Dane	Belleville	SW - Casey's Belleville, STH 69	Non-Freeway (Non-Tourist)	STH 69	Rural	960	4,500	10	3	13	No	0
SW-509	SW	Jefferson	Johnson Creek	k SW - Johnson Creek #487 (465 Village Walk Ln)	Freeway (Non-Tourist)	STH 26 S of IH 94	Rural	960	6,000	20	0	20	No	2
SW-510	SW	Jefferson	Lake Mills	SW - Lake Mills - #306 (105 W Tyranena Park Rd)	Freeway (Non-Tourist)	IH 94	Urban	960	5,800	16	3	19	No	1
SW-511	SW	Sauk	Lake Delton	SW - Lake Delton - Exxon - Off USH 12 (local streets, shared driveway)	Freeway (Tourist)	USH 12	Rural	945	2,500	8	0	8	No	3
SW-512	SW	Sauk	Lake Delton	SW - Lake Delton/Wisconsin Dells #583 (532 W Munroe Ave)	Freeway (Tourist)	IH 90	Rural	960	4,200	8	3	11	No	1
SW-513	SW	Columbia	Portage	SW - Portage BP - STH 33 W of IH 90/94	Freeway (Non-Tourist)	STH 33 W of IH 90/94	Rural	945	1,700	8	0	8	No	0
SW-514	SW	Vernon	Viroqua	SW - Viroqua - KwikTrip#758, 603 S. Main St	Non-Freeway (Non-Tourist)	USH 14	Rural	945	2,300	8	0	8	No	1
SW-515	SW	Dodge	Horicon	Horicon - Kwik Trip #782 (716 E Lake Street)	Non-Freeway (Non-Tourist)	STH 33	Rural	945	2,600	8	0	8	No	0
SW-516	SW	Monroe	Tomah	SW - Tomah - Mobil on Gopher Ave	Freeway (Non-Tourist)	IH 90 & STH 131	Urban	945	2,800	8	2	10	No	0
SW-517	SW	Monroe	Sparta	SW - Sparta BP - Travel Center with Scale	Freeway (Non-Tourist)	IH 90 & STH 16	Urban	960	5,900	10	5	15	No	0
SW-518	SW	Vernon	Viroqua	SW - Viroqua #757 (1301 N Main St)	Non-Freeway (Non-Tourist)	USH 14	Rural	960	6,400	10	2	12	Yes	0
^ SW-519	SW	Dane	Madison	SW - Madison #960 (401 N Third St)	Non-Freeway (Non-Tourist)	STH 113	Urban	960	7,600	16	4	20	Yes	1
^ SW-520	SW	Dane	Madison	SW - Madison #961 (3528 E Washington Ave)	Non-Freeway (Non-Tourist)	USH 151	Urban	960	5,700	16	0	16	Yes	1
^ SW-521	SW	Dane	Verona	SW - Verona #1075 (233 Wildcat Way)	Freeway (Non-Tourist)	Wildcat Way	Urban	960	10,800	24	0	24	Yes	0
^ SW-522	SW	Dane	Monona	SW - Monona Speedway (2500 Royal Ave)	Freeway (Non-Tourist)	USH 12/18	Urban	960	4,500	10	3	13	No	1
^ SW-523	SW	Dane	Middleton	SW - Middleton Mobil (8613 University Green)	Non-Freeway (Non-Tourist)	USH 14	Urban	960	4,400	12	3	15	Yes	1
^ SW-524	SW	Dane	Madison	SW - Kellys Market (33 Junction Ct)	Freeway (Non-Tourist)	USH 12/14	Urban	960	4,500	12	0	12	Yes	0

* Site removed from analysis, (2)
^ Site added after original selection, (9)

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations													
Site Summary													
Site Name: Spee	edway Germanto	wn, I-41 & CTH Q											
Site Information		Site ID: SE-103											
Municipality Germantown													
County Washington	-Tourist)	DOT Region SE		ion in									
Highway IH 41 & CTH Q		Area orbaii											
ITE Land Use Code (10th Ed.)	960												
Store Size (Sq Ft)	3400		Speed										
No. Driveway Entrances	3 Car Wash			11									
No. of Gas Stations within 1/2 mile	2 Dieser Fuerin		TA :- A										
	_			6 6									
Count Information													
List Day of Count Wedn	esday, June 23, 2021												
Wean	csuay - mutsuay			1 1 1 1 1 1 1									
Hourly Volume Summary													
Wednesday Inbound Outbound Total	Thursday Inbound Outbound Tot	Friday al Inbound Outbound Total	Saturday Average We	ekday Hourly Distributions % IN % OUT									
6:00 AM 55 55 110	71 74 14	5	6:00 AM	4.84% 5.11%									
8:00 AM 75 71 146	64 61 12	5	7:00 AM 8:00 AM	5.34% 5.23%									
9:00 AM 78 74 152 10:00 AM 85 91 176	73 75 14	8	9:00 AM	5.80% 5.90% 6.07% 6.41%									
11:00 AM 98 97 195	93 95 18	8	0 0 0 0 11:00 AM	7.34% 7.60%									
12:00 PM 101 97 198 1:00 PM 87 81 168	84 87 17 75 79 15	4	0 0 0 12:00 PM 0 0 0 1:00 PM	7.11% 7.29% 6.22% 6.34%									
2:00 PM 77 75 152	70 78 14	8	2:00 PM	5.65% 6.06%									
3:00 PM 88 79 167 4:00 PM 81 69 150	100 86 18 97 87 18	6 0 0 0 4 0 0 0	3:00 PM 4:00 PM	7.22% 6.53% 6.84% 6.18%									
5:00 PM 89 83 172	94 90 18	4 0 0 0	5:00 PM	7.03% 6.85%									
6:00 PM TOTAL 976 933 1909	976 961 19	0 0 0 37 0 0 0	0 0 0										
DISTRIBUTION 51% 49%	50% 50%			whowed Total									
WEEKDAY AVE: 976 947 1923			Total 12-hour Trips 976	947 1923									
DISTRIBUTION 51% 49%			Adjust to 24-hour trips* 1301	1263 2564									
Peak Hour Summary			*(75% of daily	traffic assumed in 12-hour period)									
	Weekday (Average)	Friday	Saturday										
AM PEAK HOUR - ADJ. STREET	82 81 16	3											
DISTRIBUTION	50% 50%	N4											
PEAK HOUR	7.13 AWI - 8.13 A												
PM PEAK HOUR - ADJ. STREET	92 87 17 51% 49%	9											
PEAK HOUR	5:00 PM - 6:00 F	M											
AM PEAK HOUR - GENERATOR	100 95 19	5											
DISTRIBUTION	51% 49%	844											
PEAK HOUR	11:30 AM - 12:30												
PM PEAK HOUR - GENERATOR	100 89 18 53% 47%	9											
PEAK HOUR	11:45 AM - 12:45	РМ											
PEAK HOUR GENERATOR		0 0 0	0 0 0										
DISTRIBUTION PEAK HOUR													
Not	P: Deak Hour is calculated from the	our consecutive 15-minuto time coments with	the binhast measured volume of traffic and move not										
	align with the top of the hour (e.g	, 8:15 instead of 8:00) as shown in the hourly	volume summary.										
	AM Peak Hour - Adjo PM Peak Hour - Adjo	cent Street Any hour between 7:00 A cent Street Any hour between 4:00 F	M - 9:00 AM M - 6:00 PM										
	AM Peak Hour - Gen	erator Any hour in the AM											
	Рил Реак Hour - Gen Peak Hour Generato	r Any hour in the PM Any hour in the time peri	od collected (applies to Friday and Saturday only)										
Tuin Datas													
irip kates		PEAK HOUR GENERATOR	l										
	Weekday	Weekday Friday Saturday	1										
Independent Variable Gross Floor Area (GFA)	AM Rate PM Rate AM I 47.9 52.6 57	tate PM Rate Rate Rate	4										
Vehicle Fueling Positions (VFP)	13.6 14.9 16	3 15.8 0.0 0.0]										

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations																	
	Site Summary																
Site Nam	ne:		Kenos	sha Sp	eedwa	iy (595	59 75th	n St)			a contraction of the second se		6	0.4	1	4	h I
Site Infor	mation						Site ID:	SE-113	-		1		A.C.		All A	the second second	
Mur	nicipality	Kenosha	a				T Dogion	CF	-	1 10	-	-	-	and the second s			
	Location	Non-Fre	a eway (N	on-Tour	ist)	WISDO	Area	SE Urban			-		R	and in case of	-	1 14	ka 🐨
	Highway	STH 50 8	& 60th					orban		F2	1		19	1		121	Contra de
ITE Land Use	e Code (1	Oth Ed.)		960						2	F		1 -	1		AC INC	<u> N. 6</u>
Store Size (S	q Ft)			4200	Can Maa	. In		N.				R. S. La	6 3	T	1 1 March		Same 1
No. Drivewa Non-Diesel F	y Entrand Fueling (N	(FP)		2 10	Diesel F	n ueling (V	FP)								2.0.00		
No. of Gas St	tations w	rithin 1/2	mile	10	Dicociti	ac	,	Ŭ				4	1	1/1	Cottonic		
Count Inf	ormati	on								A	L	1	-	J.			
1st Day of Co	ount		Wednes	sday, Jun	e 30, 202	21							-			0	
Days Counte	ed		Wednes	sday - Sa	turday			l			10 33	in a	i s	6			
Hourly Vo	olume S	Summa	ry														
	Inhound	Wednesday	/ Total	Inhound	Thursday Outbound	Total	Inhound	Friday	Total	Inhound	Saturday Outbound	Total		Average W	/eekday Hourl % IN	y Distribution	ns
6:00 AM	64	62	126	78	74	152								6:00 AM	4.06%	3.79%	
7:00 AM 8:00 AM	103	78 102	163 205	88 81	81 87	169 168								7:00 AM 8:00 AM	4.95% 5.27%	4.43% 5.27%	
9:00 AM 10:00 AM	86 96	97 97	183 193	99 90	92 91	191 181	-			101	108	209		9:00 AM 10:00 AM	5.29% 5.32%	5.27% 5.24%	
11:00 AM	107	119	226	123	120	243				109	105	214		11:00 AM	6.58%	6.67%	
1:00 PM	118	107	225	133	144	277	1			130	146	276		1:00 PM	7.18%	7.00%	
2:00 PM 3:00 PM	126 119	138 134	264 253	110 137	117 132	227	147	155	302					2:00 PM 3:00 PM	6.75% 7.33%	7.11%	
4:00 PM 5:00 PM	131 135	135 133	266 268	135 135	155 147	290 282	163 127	165 168	328 295					4:00 PM 5:00 PM	7.61%	8.09% 7.81%	
6:00 PM	1202	1222	2624	1220	1257	2696	110	140	250	496	400	095					
DISTRIBUTION	49%	51%	2024	49%	51%	2080	47%	53%	11/3	480	495 51%	585		r	-		
WEEKDAY AVE: DISTRIBUTION	1310.5 49%	1344.5 51%	2655]								Total 1 Adjust to 24	2-hour Trip -hour trips	Inbound os 1311 * 1747	Outbound 1345 1793	Total 2655 3540	
														*(75% of da	ily traffic assun	ned in 12-hour	period)
Peak Hou	r Sumn	nary															
				We	ekday (Aver	age)		Friday			Saturday						
	AM PFAK H	OUR - ADI, S	TREET	Inbound 94	Outbound 94	Total 188	Inbound	Outbound	Total	Inbound	Outbound	Total					
		DISTRIBUTI	ON	50%	50%												
		PEAK HOUR	?	7:30 AM	-	8:30 AM											
	PM PEAK H	OUR - ADJ. S	TREET ON	141 48%	155 52%	296											
		PEAK HOUR	2	4:15 PM	-	5:15 PM	1										
	AM PEAK H	OUR - GENEI DISTRIBUTIO	RATOR ON	128 50%	127 50%	255											
			DATOR	141	155	200											
	PIVI PEAK H	DISTRIBUTIO	ON R	141 48% 4:15 PM	- 52%	5:15 PM											
	PEAK HOUF	R GENERATO	R				162	175	337	146	140	286					
		DISTRIBUTI PEAK HOUR	ON ?				48% 3:45 PM	- 52%	4:45 PM	51% 12:00 PM	49%	1:00 PM					
			Note:	Peak Hour is	calculated fro	m the four co	nsecutive 15-	ninute time s	eaments with	he highest m	easured volum	ne of traffic o	nd may not				
			Note.	align with th	e top of the h	our (e.g., 8:15	instead of 8:0	10) as shown	in the hourly v	olume summa	ry.		ina may not				
					AM Peak Hou PM Peak Hou	ır - Adjacent S ır - Adjacent S	Street Street	Any hour be Any hour be	tween 7:00 AN tween 4:00 PN	- 9:00 AM - 6:00 PM							
					AM Peak Hou PM Peak Hou	ır - Generator ır - Generator		Any hour in Any hour in	the AM the PM								
					Peak Hour G	enerator		Any hour in	the time perio	l collected (ap	oplies to Frida	y and Saturd	ay only)				
Trip Rates	5																
				PEAK AD	J. TRAFFIC		PEAK HOUR	GENERATO	R								
	Independe	nt Variable		AM Rate	PM Rate	AM Rate	PM Rate	Rate	Rate								
	Gross Floor Vehicle Fue	Area (GFA)	ns (VFP)	44.8 18.8	70.5 29.6	60.7 25.5	70.5 29.6	80.2 33.7	68.1 28.6								
				•	-	-		-									

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Saukville #879 (750 E Green Bay Ave) Site Information Site ID: SE-115 Municipality Saukville WisDOT Region SE County Ozaukee Location Freeway (Non-Tourist) Area Rural Highway IH 43 & STH 33 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 5600 Car Wash No. Driveway Entrances 2 Yes 20 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 0 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Wednesday, June 9, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** werage Weekday Hourly Distributions Friday Thursday Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 177 184 361 164 170 334 6:00 AM 6.49% 6.71% 7:00 AN 172 334 173 178 351 7:00 AM 6.38% 6.64% 162 8:00 AN 140 139 279 177 168 345 8:00 AM 6.03% 5.82% 9:00 AN 9:00 AM 303 160 159 319 5.94% 5.88% 152 151 211 201 10:00 AM 5.50% 5.38% 11:00 AM 5.84% 5.48% 10:00 AN 140 130 270 149 154 303 204 415 399 11:00 AN 198 141 166 153 319 136 277 12:00 PN 175 185 360 184 194 378 179 177 356 12:00 PM 6.83% 7.19% 1:00 PM 1:00 PM 6.53% 6.20% 145 145 290 198 182 380 350 2:00 PN 151 155 306 156 167 323 2:00 PM 5.84% 6.10% 3:00 PN 158 3:00 PM 6.51% 6.16% 176 167 343 166 324 195 188 383 4:00 PN 184 186 370 187 192 379 168 171 339 4:00 PM 7.06% 7.17% 5:00 PN 154 5:00 PM 6.05% 6.28% 164 176 340 155 309 160 160 320 6:00 PN 139 140 279 TOTAL 1932 1943 3875 2009 2013 4022 662 659 1321 754 766 1520 DISTRIBUTION 50% Inbound Outbound Total WEEKDAY AVE 1970.5 Total 12-hour Trip 1978 3948.5 1971 1978 3949 DISTRIBUTION Adjust to 24-hour trips* 5265 50% 50% 2627 2637 *(75% of daily traffic assu ed in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 343 168 175 DISTRIBUTION 49% 51% PEAK HOUR 7:00 AM 8:00 AM PM PEAK HOUR - ADJ. STREET 184 197 381 DISTRIBUTION 48% 52% PEAK HOUR 4:15 PM 5:15 PM AM PEAK HOUR - GENERATOR 192 176 368 DISTRIBUTION 52% 48% PEAK HOUR 11:30 AM 12:30 PM PM PEAK HOUR - GENERATOR 381 184 197 48% 52% PEAK HOUR 4:15 PM 5:15 PM PEAK HOUR GENERATOR 194 199 393 203 215 418 DISTRIBUTION PEAK HOUR 49% 51% 49% 51% 3:30 PM 4:30 PM 10:30 AM 11:30 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturda AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 68.0 68.0 70.2 74.6 61.3 65.7 Vehicle Fueling Positions (VFP) 17.2 19.1 18.4 19.1 19.7 20.9

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Oak Creek #422 (9535 S 13th St) Site Information Site ID: SE-121 Municipality Oak Creek WisDOT Region SE County Milwaukee Location Freeway (Non-Tourist) Area Urban Highway IH 41/94 & STH 100 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 6500 Car Wash No. Driveway Entrances 3 Yes 26 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 8 No. of Gas Stations within 1/2 mile 2 **Count Information** 1st Day of Count Wednesday, May 4, 2022 Oak Days Counted Wednesday - Thursday **Hourly Volume Summary** Average Weekday Hourly Distributions Friday Thursday Saturday dnesda Total Total Total Total Inbound Outbound Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 217 193 410 198 181 379 6:00 AM 7.04% 6.14% 7:00 AN 415 212 219 431 7:00 AM 7.01% 7.10% 201 214 8:00 AN 179 196 375 214 221 435 8:00 AM 6.67% 6.84% 9:00 AN 9:00 AM 140 148 288 163 180 343 5.14% 5.38% 10:00 AM 5.21% 4.99% 11:00 AM 6.72% 6.74% 10:00 AN 147 143 290 160 161 321 0 11:00 AN 163 242 233 475 169 332 0 0 0 12:00 PN 182 199 381 188 214 402 12:00 PM 6.28% 6.78% 1:00 PN 1:00 PM 5.33% 5.25% 160 158 318 154 162 316 2:00 PM 5.75% 5.86% 3:00 PM 6.65% 6.42% 2:00 PN 169 190 359 170 167 337 3:00 PN 184 208 199 407 192 376 0 4:00 PN 186 201 387 181 181 362 4:00 PM 6.23% 6.27% 0 5:00 PN 5:00 PM 6.99% 7.24% 206 227 433 206 214 420 0 0 6:00 PN TOTAL 2228 2310 4538 2193 2261 4454 n 0 DISTRIBUTION 499 51% Inbound Outbound Total WEEKDAY AVE 2210.5 4496 Total 12-hour Trip 2285.5 2211 2286 4496 DISTRIBUTION Adjust to 24-hour trips* 5995 49% 51% 3047 2947 *(75% of daily traffic assu ned in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 424 207 217 DISTRIBUTION 49% 51% PEAK HOUR 7:00 AM 8:00 AM PM PEAK HOUR - ADJ. STREET 206 221 427 DISTRIBUTION 48% 52% PEAK HOUR 5:00 PN 6:00 PM AM PEAK HOUR - GENERATOR 458 230 228 DISTRIBUTION 50% 50% PEAK HOUR 7:30 AM 6:30 AM PM PEAK HOUR - GENERATOR 427 206 221 48% 52% PEAK HOUR 5:00 PM 6:00 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 70.5 65.7 0.0 0.0 65.2 65.7 Vehicle Fueling Positions (VFP) 12.5 12.6 13.5 12.6 0.0 0.0

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Ashwaubenon #125 (940 Waube Ln) Site ID: NE-201 Site Information Municipality Ashwaubenon County Brown WisDOT Region NE Location Freeway (Non-Tourist) Area Urban Highway IH 41 ITE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 7400 No. Driveway Entrances Car Wash 2 No Non-Diesel Fueling (VFP) 16 Diesel Fueling (VFP) 0 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Wednesday, September 29, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** Wednesda Thursday Friday Saturday verage Weekday Hourly Distrib Inbound Outbour Total Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total % IN % OUT Hou 265 324 132 146 256 299 6:00 AI 137 128 124 6:00 AN 7.20% 6.71% 7:00 AN 7:00 AN 8.17% 8.47% 159 165 153 8.00 AN 114 234 121 8.00 A 6.45% 6.15% 120 238 9:00 AI 82 85 167 98 103 201 9:00 AN 4.82% 5.01% 10:00 AN 78 82 160 82 80 162 147 10:00 AM 4.28% 4.32% 11:00 AI 114 107 221 126 130 256 151 11:00 AN 6.43% 6.31% 12:00 PM 166 173 339 305 152 8.60% 8.61% 150 12:00 PM 1:00 PN 109 103 212 90 98 188 1:00 PM 5.33% 5.36% 130 2:00 PN 90 101 191 105 102 2:00 PM 5.22% 5.41% 207 3:00 PN 105 103 208 120 114 234 127 124 251 3:00 PM 6.02% 5.78% 4:00 PN 108 113 221 124 129 253 119 239 4:00 PM 6.21% 6.45% 120 5:00 PN 243 119 232 100 5:00 PM 6 27% 6 / 2% 105 6:00 PN 160 84 ΤΟΤΑ 1389 1396 2785 1412 1419 2831 427 428 855 290 580 290 DISTRIBUTION 50 Tota WEEKDAY AVE 1400.5 1407.5 2808 Total 12-hour Trin 1401 1408 2808 Adjust to 24-hour trips' DISTRIBUTION 3744 50% 50% 1867 1877 *(75% of daily traffic assumed in 12-hour period) **Peak Hour Summary** Wee kday (Average) Friday Saturday Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 164 154 318 DISTRIBUTION 48% 52% 7:15 AM PEAK HOUR 8:15 AM PM PEAK HOUR - ADJ. STREET 128 124 252 **51%** 4:30 PM DISTRIBUTION 49% PEAK HOUR 5:30 PM AM PEAK HOUR - GENERATOR 318 164 154 DISTRIBUTION 52% 48% PEAK HOUR 7:15 AM 8:15 AM PM PEAK HOUR - GENERATOR 323 161 162 DISTRIBUTION 50% 50% PEAK HOUR 12:00 PM 1:00 PM PEAK HOUR GENERATOR 126 134 260 76 81 157 DISTRIBUTION 48% 52% 52% PEAK HOUR 3:15 PN 4:15 PM 10:45 AM 11.45 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume summary. AM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM PM Peak Hour - Adjacent Street Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Any hour in the time period collected (applies to Friday and Saturday only) Peak Hour Generator Trip Rates PEAK ADJ. TRAFFIC PEAK HOUR GENERATOR Weekday AM Rate PM Rate Weekday Friday Saturday Independent Variable AM Rate PM Rate Rate Rate 21.2 Gross Floor Area (GFA) 43.0 34.1 43.0 43.6 35.1 Vehicle Fueling Positions (VFP) 199 15.8 19.9 16.3 9.8 20.2

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Appleton #678 (3232 S Oneida St) Site ID: NE-204 Site Information Municipality Appleton County Outagamie WisDOT Region NE Location Freeway (Non-Tourist) Area Urban Highway IH 441 ITE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 4300 No. Driveway Entrances Car Wash 2 No Non-Diesel Fueling (VFP) 12 Diesel Fueling (VFP) 0 No. of Gas Stations within 1/2 mile 1 **TRIP #678 Count Information** 1st Day of Count Wednesday, September 8, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** Wednesda Thursday Friday Saturday verage Weekday Hourly Distrib Inbound Total Outbound Total Inbound Outbound Total Inbound Outbound Total % IN % OUT Inbound Outbou Hou 142 193 140 146 6:00 AI 70 72 72 72 68 6:00 AN 5.75% 5.75% 7:00 AN 7:00 AN 6.89% 98 95 6.95% 74 8.00 AN 8.00 A 6.69% 6.21% 86 79 79 151 9:00 AI 72 59 131 69 70 139 9:00 AN 5.71% 5.30% 10:00 AN 64 67 131 66 70 136 10:00 AM 5.27% 5.63% 154 149 303 11:00 AI 62 64 126 77 74 151 119 114 233 11:00 AN 5.63% 5.67% 12:00 PM 82 77 159 74 276 6.40% 6.21% 76 150 14 12:00 PM 1:00 PN 55 51 106 70 72 142 240 1:00 PM 5.06% 5.05% 2:00 PN 67 137 74 80 2:00 PM 5.71% 6.16% 70 154 3:00 PN 88 86 174 92 89 181 99 86 185 3:00 PM 7.29% 7.19% 4:00 PN 89 88 177 83 79 116 119 235 4:00 PM 6.97% 6.86% 162 5:00 PN 183 98 200 186 5:00 PM 7.62% 8 01% ۵n 91 6:00 PN 171 85 86 ΤΟΤΑΙ 923 901 1824 928 924 1852 391 38 777 533 519 1052 DISTRIBUTION 49 49% Tota WEEKDAY AVE 925.5 912.5 1838 Total 12-hour Trin 1838 913 Adjust to 24-hour trips' DISTRIBUTION 2451 1234 1217 *(75% of daily traffic assumed in 12-hour period) **Peak Hour Summary** Wee kday (Average) Friday Saturday Inhound Outbound Total Inbound Outbound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 88 83 171 DISTRIBUTION 51% 49% PEAK HOUR 7:30 AN 8:30 AM PM PEAK HOUR - ADJ. STREET 100 101 201 **50%** 4:45 PM DISTRIBUTION 50% PEAK HOUR 5:45 PM AM PEAK HOUR - GENERATOR 87 173 86 DISTRIBUTION 50% 50% PEAK HOUR 6:45 AM 7:45 AM PM PEAK HOUR - GENERATOR 201 100 101 DISTRIBUTION 50% 50% PEAK HOUR 4:45 PM 5:45 PM PEAK HOUR GENERATOR 116 119 235 154 149 303 DISTRIBUTION 49% 51% 51% 49% PEAK HOUR 4:00 PN 5:00 PM 10:00 AM 11.00 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume summary. AM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM PM Peak Hour - Adjacent Street Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Any hour in the time period collected (applies to Friday and Saturday only) Peak Hour Generator Trip Rates PEAK ADJ. TRAFFIC PEAK HOUR GENERATOR Weekday AM Rate PM Rate Weekday Friday Saturday Independent Variable AM Rate PM Rate Rate Rate 70.5 Gross Floor Area (GFA) 54.7 39.8 46.7 40.2 46.7 Vehicle Fueling Positions (VFP) 143 16.8 14.4 19.6 25.3 16.0

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Larsen #628 (5600 County Rd II) Site ID: NE-205 Site Information Municipality Larsen County Winnebago WisDOT Region NE Location Freeway (Non-Tourist) Area Rural Highway IH 45 ITE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 5500 -TRIP #628 No. Driveway Entrances Car Wash 1 No Non-Diesel Fueling (VFP) 10 Diesel Fueling (VFP) 3 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Wednesday, September 8, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** Wednesda Thursday Friday Saturday verage Weekday Hourly Distrib Total Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total % IN % OUT Inbound Outbou Hou 179 211 181 188 6:00 AI 91 88 91 97 90 6:00 AN 6.00% 6.36% 7:00 AN 7:00 AN 106 105 6.69% 7.00% 91 8.00 AN 84 155 86 8.00 A 5.60% 5.36% 71 165 9:00 AI 94 93 105 199 85 178 9:00 AN 6.52% 6.40% 10:00 AN 103 89 192 81 72 153 244 10:00 AM 6.06% 5.75% 115 11:00 AI 93 82 175 84 75 159 131 118 249 11:00 AN 5.83% 5.61% 12:00 PM 89 89 178 94 87 181 117 238 6.03% 12:00 PM 6.29% 1:00 PN 79 69 148 81 78 159 101 1:00 PM 5.27% 5.25% 2:00 PN 99 93 81 74 2:00 PM 5.93% 5.97% 192 155 3:00 PN 98 96 194 106 94 200 143 127 270 3:00 PM 6.72% 6.79% 4:00 PN 119 112 231 110 94 204 166 152 318 4:00 PM 7.55% 7.36% 5:00 PN 98 203 101 94 195 133 133 266 5:00 PM 6 79% 6 86% 6:00 PN 89 88 ΤΟΤΑΙ 1171 1086 2257 1105 1013 2118 531 500 103 489 451 940 DISTRIBUTION 48% 48% 48% Tota WEEKDAY AVE 1138 1049.5 2187.5 Total 12-hour Trin 1138 1050 2188 . Adjust to 24-hour trips' DISTRIBUTION 48% 1517 2917 *(75% of daily traffic assumed in 12-hour period) **Peak Hour Summary** Wee kday (Average) Friday Saturday Inbound Outbound Total Inhound Outhound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 102 98 200 DISTRIBUTION 49% 51% 7:00 AN PEAK HOUR 8:00 AM PM PEAK HOUR - ADJ. STREET 114 106 220 **52%** 4:15 PM DISTRIBUTION 48% PEAK HOUR 5:15 PM AM PEAK HOUR - GENERATOR 103 202 99 DISTRIBUTION 51% 49% PEAK HOUR 6:45 AM 7:45 AM PM PEAK HOUR - GENERATOR 224 116 108 DISTRIBUTION 52% 18% PEAK HOUR 3:45 PM 4:45 PM PEAK HOUR GENERATOR 165 156 321 132 117 249 DISTRIBUTION 51% 49% 53% 47% PEAK HOUR 4:15 PN 5:15 PM 10:45 AM 11.45 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume summary. AM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM PM Peak Hour - Adjacent Street Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Any hour in the time period collected (applies to Friday and Saturday only) Peak Hour Generator Trip Rates PEAK ADJ. TRAFFIC PEAK HOUR GENERATOR Weekday AM Rate PM Rate Weekday Friday Saturday Independent Variable AM Rate PM Rate Rate Rate 45.3 Gross Floor Area (GFA) 58.4 36.4 40.0 36.7 40.7 Vehicle Fueling Positions (VFP) 15.4 16.9 24.7 192 10.0 17 3

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Sheboygan #139 (7002 Sauk Trail Rd) Site ID: NE-212 Site Information Municipality Winneconne County Winnebago WisDOT Region NE Location Non-Freeway (Non-Tourist) Area Rural Highway STH 116 ITE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 4500 No. Driveway Entrances 3 Car Wash No Non-Diesel Fueling (VFP) 16 Diesel Fueling (VFP) 0 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Wednesday, July 21, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** Wednesda Thursday Friday Saturday verage Weekday Hourly Distrib Total Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total % IN % OUT Inbound Outbou Hou 164 168 6:00 AI 90 74 75 96 66 141 6:00 AN 5.59% 5.28% 7:00 AN 6.65% 100 68 179 7:00 AN 83 5.69% 8.00 AN 63 134 101 185 8.00 AM 5.83% 5.54% 84 9:00 AI 82 60 142 87 71 158 9:00 AN 5.73% 4.94% 10:00 AN 89 83 172 98 93 191 244 10:00 AM 6.34% 6.64% 143 101 11:00 AI 91 87 178 108 85 193 131 117 248 11:00 AN 6.75% 6.49% 12:00 PM 80 174 97 239 6.48% 6.41% 94 90 187 114 12:00 PM 1:00 PN 91 91 182 78 79 157 103 1:00 PM 5.73% 6.41% 2:00 PN 81 86 91 177 2:00 PM 5.59% 6.49% 79 160 3:00 PN 92 84 176 101 91 192 91 193 3:00 PM 6.54% 6.60% 4:00 PN 101 87 188 109 110 219 97 187 4:00 PM 7.12% 7.43% 90 5:00 PN 174 210 87 164 5:00 PM 6.65% 7 00% 85 6:00 PN 189 99 90 ΤΟΤΑΙ 1065 947 2012 1147 1042 2189 385 348 733 508 435 943 DISTRIBUTION 473 48% 54% 46% Tota WEEKDAY AVE 1106 994.5 2100.5 Total 12-hour Trin 1106 99 . Adjust to 24-hour trips' DISTRIBUTION 2801 47% 1475 *(75% of daily traffic assumed in 12-hour period) **Peak Hour Summary** Wee kday (Average) Friday Saturday Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 98 76 174 DISTRIBUTION 56% 44% 7:00 AM PEAK HOUR 8:00 AM PM PEAK HOUR - ADJ. STREET 108 101 209 **52%** 4:15 PM DISTRIBUTION 48% PEAK HOUR 5:15 PM AM PEAK HOUR - GENERATOR 117 215 98 DISTRIBUTION 54% 46% PEAK HOUR 11:30 AM 12:30 PN PM PEAK HOUR - GENERATOR 108 101 209 DISTRIBUTION 52% 18% PEAK HOUR 4:15 PM 5:15 PM PEAK HOUR GENERATOR 105 95 200 160 125 285 DISTRIBUTION 53% 48% 44% PEAK HOUR 3:15 PN 4:15 PM 10:30 AM 11.30 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume summary. AM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM PM Peak Hour - Adjacent Street Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Any hour in the time period collected (applies to Friday and Saturday only) Peak Hour Generator Trip Rates PEAK ADJ. TRAFFIC PEAK HOUR GENERATOR Weekday AM Rate PM Rate Weekday Friday Saturday Independent Variable AM Rate PM Rate Rate Rate 63.3 Gross Floor Area (GFA) 44.4 38.7 46.4 47.8 46.4 Vehicle Fueling Positions (VFP) 10.9 13.1 13.4 13.1 12.5 17.8

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Sheboygan #139 (7002 Sauk Trail Rd) Site ID: NE-213 Site Information Municipality Sheboygan County Sheboygan WisDOT Region NE Location Freeway (Non-Tourist) Area Rural Highway IH 43 & Sauk Trail ITE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 5000 No. Driveway Entrances Car Wash 3 No Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 8 5 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Wednesday, July 21, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** Wednesda Thursday Friday Saturday Average Weekday Hourly Distrib Inbound Outbour Total Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total % IN % OUT Hou 107 93 212 185 5.80% 5.24% 6:00 AI 105 109 113 222 6:00 AN 5.96% 7:00 AN 193 7:00 AN 101 5.01% 92 92 8.00 AM 87 169 111 115 8.00 A 5.24% 5 47% 82 226 9:00 AI 118 119 237 89 81 170 9:00 AN 5.61% 5.42% 10:00 AN 117 110 94 96 190 10:00 AM 5.72% 5.58% 227 138 135 273 11:00 AI 129 129 258 132 129 261 137 129 266 11:00 AN 7.08% 6.99% 12:00 PM 132 139 271 108 213 248 6.43% 105 120 12:00 PM 6.69% 1:00 PN 124 113 237 104 108 212 236 1:00 PM 6.18% 5.99% 2:00 PN 133 142 135 277 2:00 PM 7.38% 130 263 7.26% 3:00 PN 137 146 283 142 144 286 147 150 297 3:00 PM 7.57% 7.86% 4:00 PN 137 136 273 121 129 250 162 161 323 4:00 PM 7.00% 7.18% 5:00 PN 95 194 224 106 207 5:00 PM 5 75% 5 58% 99 6:00 PN 178 91 87 ΤΟΤΑΙ 1402 1407 2809 1363 1361 2724 501 504 1005 517 506 1023 DISTRIBUTION 50 49% Inbour Tota 1384 WEEKDAY AVE: 1382.5 1384 2766.5 Total 12-hour Trin 1383 2767 Adjust to 24-hour trips* DISTRIBUTION 3689 50% 1843 1845 *(75% of daily traffic assumed in 12-hour period) **Peak Hour Summary** Weekday (Average) Friday Saturday Inbound Outbound Total Inhound Outbound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 100 101 201 DISTRIBUTION 50% 50% PEAK HOUR 7:45 AM 8:45 AM PM PEAK HOUR - ADJ. STREET 129 133 262 DISTRIBUTION 49% 51% PEAK HOUR 4:00 PM 5:00 PM AM PEAK HOUR - GENERATOR 133 132 265 DISTRIBUTION 50% 50% PEAK HOUR 11:30 AM 12:30 PN PM PEAK HOUR - GENERATOR 294 150 144 DISTRIBUTION 51% 49% PEAK HOUR 3:30 PM 4:30 PM PEAK HOUR GENERATOR 162 161 323 139 152 291 DISTRIBUTION 50% 50% 52% PEAK HOUR 4:00 PN 5:00 PM 10:30 AM 11.30 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume summary. AM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM PM Peak Hour - Adjacent Street Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Any hour in the time period collected (applies to Friday and Saturday only) Peak Hour Generator Trip Rates PEAK ADJ. TRAFFIC PEAK HOUR GENERATOR Weekday Weekday AM Rate PM Rate AM Rate PM Rate Friday Saturday Independent Variable Rate Rate 58.2 Gross Floor Area (GFA) 58.8 64.6 40.2 52.4 53.0 Vehicle Fueling Positions (VFP) 15.5 20.2 20.4 22.6 24.8 22.4

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations

Site Summary

Site Name:

Lena Kwik Trip # 587 (5908 Duame Rd)

Site Information			Site ID:	NE-216	
Municipality	Lena				
County	Oconto			WisDOT Region	NE
Location	Freeway (Tourist)			Area	Rural
Highway	US 141 & STH 22				
ITE Land Use Code (10th Ed.)		960			
Store Size (Sq Ft)		6500			
No. Driveway Entrances		2	Car Wash		No
Non-Diesel Fueling (VFP)		10	Diesel Fueling (VFP)		4
No. of Gas Stations within 1/2 mile		0			

Count Information

1st Day of Count	Thursday, August 12, 2021
Days Counted	Thursday - Saturday

Hourly Volume Summary

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: BP - Arbor Vitae - US 51 Site ID: NC-303 Site Information Municipality Arbor Vitae WisDOT Region NC County Vilas Location Non-Freeway (Tourist) Area Urban Highway US 51 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 8900 Car Wash No. Driveway Entrances 4 Yes Non-Diesel Fueling (VFP) 16 Diesel Fueling (VFP) 3 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Thursday, August 5, 2021 Days Counted Thursday - Saturday **Hourly Volume Summary** Average Weekday Hourly Distributions Thursday Friday Saturday Total Total Total Inbound Outbou Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 18 16 34 6:00 AM 2.31% 2.33% 7:00 AN 39 27 66 7:00 AM 5.00% 3.93% 8:00 AN 55 42 97 8:00 AM 7.05% 6.12% 9:00 AN 98 9:00 AM 54 44 6.92% 6.41% 129 150 10:00 AN 50 38 88 67 62 10:00 AM 6.41% 5.53% 0 11:00 AN 65 11:00 AM 7.69% 6.99% 60 48 108 85 0 12:00 PN 57 49 106 49 119 12:00 PM 7.31% 7.14% 70 1:00 PM 1:00 PM 6.79% 8.88% 53 61 114 127 2:00 PN 50 53 103 2:00 PM 6.41% 7.72% 3:00 PN 3:00 PM 5.51% 6.12% 43 42 85 74 81 155 4:00 PN 49 40 89 145 4:00 PM 6.28% 5.83% 79 66 5:00 PM 57 55 112 5:00 PM 7.31% 8.01% 75 71 146 49 6:00 PN 61 110 TOTAL 0 585 515 1100 277 279 556 289 236 525 DISTRIBUTIO Inbound Outbound Total WEEKDAY AVE Total 12-hour Trip 292.5 257.5 550 585 515 1100 DISTRIBUTION Adjust to 24-hour trips* 1467 53% 687 *(75% of daily traffic assu ed in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 97 55 42 DISTRIBUTION 57% 43% PEAK HOUR 8:00 AM 9:00 AM PM PEAK HOUR - ADJ. STREET 57 112 55 DISTRIBUTION 51% 49% PEAK HOUR 5:00 PN 6:00 PM AM PEAK HOUR - GENERATOR 60 48 108 DISTRIBUTION 56% 44% PEAK HOUR 11:00 AM 12:00 PM PM PEAK HOUR - GENERATOR 114 59 55 52% 48% PEAK HOUR 12:30 PM 1:30 PN PEAK HOUR GENERATOR 175 85 153 85 90 DISTRIBUTION PEAK HOUR 49% 51% 56% 3:15 PM 4:15 PM 10:30 AM 11:30 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 10.9 12.6 12.1 12.8 19.7 17.2 Vehicle Fueling Positions (VFP) 5.1 5.9 5.7 6.0 9.2 8.1

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Plainfield BP (N6481 5th Ave) Site Information Site ID: NC-309 Municipality Plainfield WisDOT Region NC County Waushara Location Freeway (Non-Tourist) Area Rural Highway STH 73 off IH 39 TE Land Use Code (10th Ed.) 945 Store Size (Sq Ft) 1900 Car Wash No. Driveway Entrances 2 No Non-Diesel Fueling (VFP) Diesel Fueling (VFP) 6 3 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Saturday, June 19, 2021 Days Counted Tuesday - Wednesday **Hourly Volume Summary** Average Weekday Hourly Distributions Wednesday Friday Tuesday Saturday Total Total Total Inbound Outbound Inbound Outbound Total Inbound Outbound Inbound Outbo Hour % IN % OUT 6:00 AM 33 29 62 35 21 56 6:00 AM 5.28% 3.98% 7:00 AN 34 32 37 69 7:00 AM 4.89% 5.65% 31 65 8:00 AN 33 33 66 18 21 39 8:00 AM 3.96% 4.30% 9:00 AN 40 87 48 9:00 AM 47 28 20 5.82% 4.78% 10:00 AN 26 27 53 33 41 74 10:00 AM 4.58% 5.41% 11:00 AN 11:00 AM 5.28% 5.10% 32 32 67 33 65 35 12:00 PN 39 40 48 45 93 12:00 PM 6.75% 6.77% 79 1:00 PN 1:00 PM 6.99% 36 36 72 54 53 107 7.09% 2:00 PM 6.83% 7.96% 3:00 PM 7.53% 6.85% 2:00 PN 45 58 103 43 42 85 3:00 PN 77 55 42 35 51 106 4:00 PN 54 58 112 64 59 123 4:00 PM 9.16% 9.32% 0 5:00 PN 59 60 5:00 PM 7.92% 7.80% 43 38 81 119 0 6:00 PN TOTAL 460 444 904 506 498 1004 0 n 0 DISTRIBUTIO 519 Inbound Outbound Total WEEKDAY AVE 483 Total 12-hour Trip 471 954 483 471 954 DISTRIBUTION Adjust to 24-hour trips* 644 519 628 1272 *(75% of daily traffic assu ned in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 32 68 36 DISTRIBUTION 47% 53% PEAK HOUR 7:00 AM 8:00 AM PM PEAK HOUR - ADJ. STREET 59 59 118 DISTRIBUTION 50% 50% PEAK HOUR 4:00 PN 5:00 PM AM PEAK HOUR - GENERATOR 41 35 76 DISTRIBUTION 54% 46% PEAK HOUR 7:30 AM 6:30 AM PM PEAK HOUR - GENERATOR 58 62 120 48% 52% PEAK HOUR 3:45 PM 4:45 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 35.8 40.0 63.2 0.0 0.0 62.1 Vehicle Fueling Positions (VFP) 7.6 13.1 8.4 13.3 0.0 0.0

Convenience Store/Gas Station Trip Generation Study

WisDOT Bureau of Traffic Operations

Site Summary Site Name: Rhinelander Shell (1999 River St) tt fr Site ID: NC-312 Site Information Municipality Rhinelander WisDOT Region NC County Oneida Location Non-Freeway (Non-Tourist) Area Urban Highway STH 47 at CHT K TE Land Use Code (10th Ed.) 960 IIO Store Size (Sq Ft) 5300 Car Wash No. Driveway Entrances 3 No Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 8 2 No. of Gas Stations within 1/2 mile 0 **Count Information** tt th ftat 1st Day of Count Wednesday, July 28, 2021 Days Counted Wednesday - Saturday E HI **Hourly Volume Summary** Friday Average Weekday Hourly Distributions Thursday Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 A 79 72 151 76 78 154 6:00 AM 5.75% 5.58% 7:00 AN 74 147 87 88 175 7:00 AM 5.94% 6.02% 73 8:00 AN 90 83 173 81 75 156 8:00 AM 6.35% 5.88% 9:00 AN 9:00 AM 68 75 143 72 74 146 5.20% 5.54% 187 177 10:00 AM 5.90% 5.58% 11:00 AM 6.13% 5.73% 10:00 AN 78 78 156 81 72 153 93 94 11:00 AN 79 89 86 73 159 81 160 88 12:00 PN 91 103 194 79 83 162 85 85 170 12:00 PM 6.31% 6.92% 1:00 PM 92 87 179 68 69 137 139 1:00 PM 5.94% 5.80% 2:00 PN 112 216 97 188 2:00 PM 7.24% 7.77% 104 91 3:00 PN 98 3:00 PM 6.72% 6.17% 83 74 157 92 190 111 105 216 4:00 PN 106 108 214 87 97 191 4:00 PM 7.39% 7.25% 180 94 5:00 PM 90 98 112 5:00 PM 6.13% 6.77% 84 159 188 108 220 6:00 PN 71 79 150 TOTAL 1025 1023 2048 995 994 1989 388 389 777 335 338 673 DISTRI Inbound Outbound Total WEEKDAY AVE 1010 1008.5 2018.5 Total 12-hour Trip 1010 1009 2019 DISTRIBUTION Adjust to 24-hour trips* 1347 2691 50% 1345 *(75% of daily traffic ass ed in 12-h Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 165 86 79 DISTRIBUTION 52% 48% PEAK HOUR 8:00 AM 9:00 AM PM PEAK HOUR - ADJ. STREET 100 101 201 DISTRIBUTION 50% 50% PEAK HOUR 4:15 PN 5:15 PM AM PEAK HOUR - GENERATOR 88 88 176 DISTRIBUTION 50% 50% PEAK HOUR 11:30 AM 12:30 PM PM PEAK HOUR - GENERATOR 105 203 98 48% 52% PEAK HOUR 2:00 PM 3:00 PN PEAK HOUR GENERATOR 112 108 220 92 100 192 DISTRIBUTION PEAK HOUR 51% 49% 18% 5:00 PM 6:00 PM 11:15 AM 12:15 PM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturda AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 31.1 33.2 38.3 41.5 36.2 37.9 Vehicle Fueling Positions (VFP) 16.5 20.1 17.6 20.3 22.0 19.2

Co	nvenience Sto _{Wis}	re/Gas Station	Trip Generation S	itudy
		Site Summa	ry	
Site Name: Hayw	vard Kwik Trip (158	31 US Hwy 63)		0 4 9 F
Site Information		Site ID: NW-406		51
Municipality Hayward			Seales	AND AND
County Sawyer	WisD(OT Region NW		6.
Highway US 63 & STH 27	ourist)	Area Rural		
ITE Land Use Code (10th Ed.)	960			KUIK TRIPLER
Store Size (Sq Ft)	4000			
No. Driveway Entrances	4 Car Wash	No	Mar S	
Non-Diesel Fueling (VFP)	16 Diesel Fueling (/FP) <u>3</u>	3	
No. of Gas Stations within 1/2 mile	5			208 1 119
Count Information			a 6 12	A A A A A A A A A A A A A A A A A A A
1st Day of Count Thursda	ay, July 29, 2021]	3 . 3	13 10
Days Counted Thursda	ay - Saturday		1 1 1 1 3	
Hourly Volume Summers				
Wednesday Inbound Outbound Total	Thursday Inbound Outbound Total	Friday Inbound Outbound Total	Saturday Inbound Outbound Total	Average Weekday Hourly Distributions Hour % IN % OUT
6:00 AM 0 0 0	97 72 169			6:00 AM 4.62% 3.95%
7:00 AM 0 0 0 8:00 AM 0 0 0	124 96 220 109 102 211	-		7:00 AM 5.91% 5.27% 8:00 AM 5.19% 5.60%
9:00 AM 0 0 0	109 90 199 147 133 370	-	179 172 250	9:00 AM 5.19% 4.94%
11:00 AM 0 0 0	147 132 279 165 144 309		178 172 350 193 190 383	11:00 AM 7.86% 7.91%
12:00 PM 0 0 0	124 132 256 147 121 268	-	<u>160 157 317</u> 154 117 271	12:00 PM 5.91% 7.25%
2:00 PM 0 0 0	159 124 283		134 117 271	2:00 PM 7.58% 6.81%
3:00 PM 0 0 0 4:00 PM 0 0 0	114 111 225 151 123 274	148 115 263 190 141 331	-	3:00 PM 5.43% 6.09% 4:00 PM 7.20% 6.75%
5:00 PM 0 0 0	128 119 247	152 157 309		5:00 PM 6.10% 6.53%
TOTAL 0 0 0	1574 1366 2940	118 115 233 608 528 1136	685 636 1321	
DISTRIBUTION	54% 46%	54% 46%	52% 48%	Inbound Outbound Total
WEEKDAY AVE: 787 683 1470]		Total 12-hour Tr	ips 1574 1366 2940
DISTRIBUTION 54% 46%	1		Adjust to 24-hour tri	os* 2099 1821 3920
Peak Hour Summary				*(75% of daily traffic assumed in 12-hour period)
Peak Hour Summary				
	Weekday (Average)	Friday	Saturday	
AM PEAK HOUR - ADJ. STREET	137 105 242	Inbound Cutbound Total		
DISTRIBUTION	57% 43%	_		
FEAK TOUK	7.13 Fill - 6.13 AM			
PM PEAK HOUR - ADJ. STREET DISTRIBUTION	152 123 275 55% 45%	-		
PEAK HOUR	4:15 PM - 5:15 PM			
AM PEAK HOUR - GENERATOR	171 144 315			
DISTRIBUTION	54% 46%			
PEAK NUUK	11.50 AIWI - 12.30 PM			
PM PEAK HOUR - GENERATOR	159 149 308 52% 48%	-		
PEAK HOUR	11:45 AM - 12:45 PM	-		
PEAK HOUR GENERATOR		190 141 331	189 199 388	
DISTRIBUTION PEAK HOUR		57% 43% 4:00 PM - 5:00 PM	49% 51%	
			10.507/10/ 11.507/10/	
Note:	Peak Hour is calculated from the four or align with the top of the hour (e.g., 8:1	consecutive 15-minute time segments with 5 instead of 8:00) as shown in the hourly	h the highest measured volume of traffic and may n volume summary.	ot
	AM Peak Hour - Adjacent	Street Any hour between 7:00 A	IM - 9:00 AM 2M - 6:00 PM	
	AM Peak Hour - Generate	or Any hour in the AM		
	PM Peak Hour - Generato Peak Hour Generator	or Any hour in the PM Any hour in the time peri	iod collected (applies to Friday and Saturday only)	
Trip Rates				
-	PEAK ADJ. TRAFFIC	PEAK HOUR GENERATOR]	
Independent Variable	Weekday	eekday Friday Saturday PM Rate Rate Rate	-	
Gross Floor Area (GFA)	60.5 68.8 78.8 13.7 14.5 16.5	77.0 82.8 97.0	-	
venicle ruening Positions (VPP)	14.5 16.6	10.2 17.4 20.4	_	

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Superior #203 (1419 Banks Ave) Site Information Site ID: NW-407 Municipality Superior WisDOT Region NW County Douglas Location Non-Freeway (Non-Tourist) Area Urban Highway US 2 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 4500 Car Wash No. Driveway Entrances 3 Yes 20 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 2 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Wednesday, July 28, 2021 19.81 -Days Counted Wednesday - Saturday **Hourly Volume Summary** Average Weekday Hourly Distributions Friday Thursday Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 A 82 86 168 100 98 198 6:00 AM 4.94% 5.01% 7:00 AN 137 289 133 116 249 7:00 AM 7.74% 6.89% 8:00 AN 99 109 208 86 99 185 8:00 AM 5.02% 5.66% 9:00 AN 77 157 9:00 AM 4.45% 87 85 80 4.49% 103 89 210 182 10:00 AM 5.54% 5.09% 11:00 AM 6.52% 6.53% 10:00 AN 94 95 189 110 92 202 107 11:00 AN 126 93 124 114 116 230 250 12:00 PN 154 160 314 129 120 249 120 105 225 12:00 PM 7.68% 7.62% 1:00 PM 115 123 238 139 139 278 189 1:00 PM 6.90% 7.13% 2:00 PM 6.27% 6.21% 3:00 PM 6.82% 7.00% 2:00 PN 117 126 111 237 10 222 3:00 PN 131 146 120 111 231 277 133 125 258 4:00 PN 117 113 230 118 116 234 150 152 302 4:00 PM 6.38% 6.23% 5:00 PN 137 5:00 PM 6.73% 7.13% 111 131 242 131 268 147 133 280 6:00 PN 95 207 TOTAL 1350 1383 2733 1412 1372 2784 525 522 1047 422 384 806 DISTRIBUTIO 499 519 51 Inbound Outbound Total Total 12-hour Trip WEEKDAY AVE 1381 1377.5 2758.5 1381 1378 2759 DISTRIBUTION Adjust to 24-hour trips* 50% 1841 1837 3678 50% *(75% of daily traffic assu ned in 12-ho Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 278 141 137 DISTRIBUTION 51% 49% PEAK HOUR 7:15 AM 8:15 AM PM PEAK HOUR - ADJ. STREET 135 128 263 DISTRIBUTION 49% 51% PEAK HOUR 4:30 PM 5:30 PM AM PEAK HOUR - GENERATOR 141 137 278 DISTRIBUTION 51% 49% PEAK HOUR 8:15 AM 7:15 AM PM PEAK HOUR - GENERATOR 142 140 282 50% 50% PEAK HOUR 12:00 PM 1:00 PN PEAK HOUR GENERATOR 150 152 302 120 225 105 DISTRIBUTION PEAK HOUR 50% 50% 53% 47% 4:00 PM 5:00 PM 12:00 PM 1:00 PM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 58.4 61.8 62.7 67.1 50.0 61.8 Vehicle Fueling Positions (VFP) 12.6 12.0 12.6 12.8 13.7 10.2

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Spooner # 329 (201 W Maple St) Site Information Site ID: NW-408 Municipality Spooner WisDOT Region NW County Washburn Location Non-Freeway (Tourist) Area Rural Highway STH 70 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 5000 Car Wash No. Driveway Entrances 2 No Non-Diesel Fueling (VFP) 16 Diesel Fueling (VFP) 0 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Thursday, July 29, 2021 Days Counted Thursday - Saturday **Hourly Volume Summary** Average Weekday Hourly Distributions Friday Thursday Saturday Total Total Total Inbound Outbo Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 58 52 110 6:00 AM 3.45% 3.46% 7:00 AN 82 81 163 7:00 AM 4.88% 5.39% 8:00 AN 102 88 190 8:00 AM 6.07% 5.85% 9:00 AN 9:00 AM 111 218 6.60% 7.11% 107 317 253 10:00 AM 5.83% 5.19% 11:00 AM 7.26% 7.25% 10:00 AN 98 78 176 140 0 177 11:00 AN 117 122 136 109 231 0 12:00 PN 101 100 201 140 128 268 12:00 PM 6.01% 6.65% 1:00 PM 124 102 226 100 223 1:00 PM 7.38% 6.78% 2:00 PM 6.30% 7.51% 3:00 PM 7.55% 7.45% 2:00 PM 106 113 219 3:00 PN 127 112 239 127 101 228 4:00 PN 124 101 225 141 123 264 4:00 PM 7.38% 6.72% 5:00 PM 106 5:00 PM 6.30% 5.65% 85 191 124 101 225 6:00 PN 109 231 TOTAL 0 1261 1128 2389 514 434 948 576 485 1061 DISTRIBUTIO Inbound Outbound Total Total 12-hour Trip WEEKDAY AVE 630.5 564 1194.5 1261 1128 2389 DISTRIBUTION Adjust to 24-hour trips* 3185 539 1681 1504 *(75% of daily traffic ass ed in 12-ho Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 190 102 88 DISTRIBUTION 54% 46% PEAK HOUR 8:00 AM 9:00 AM PM PEAK HOUR - ADJ. STREET 124 101 225 DISTRIBUTION 45% 55% PEAK HOUR 4:00 PM 5:00 PM AM PEAK HOUR - GENERATOR 123 110 233 DISTRIBUTION 53% 47% PEAK HOUR 11:30 AM 12:30 PM PM PEAK HOUR - GENERATOR 242 129 113 53% 47% PEAK HOUR 3:15 PM 4:15 PN PEAK HOUR GENERATOR 148 123 271 177 140 317 DISTRIBUTION PEAK HOUR 55% 45% 56% 11% 3:45 PM 4:45 PM 10:00 AM 11:00 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sun AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturda AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 45.0 48.4 54.2 63.4 38.0 46.6 Vehicle Fueling Positions (VFP) 11.9 14.1 14.6 15.1 16.9 19.8

Co	onvenier	ice Stoi WisD	r e/G a OOT Bui	as Static reau of Tra	on Trip Gene	eration S	tudy
			S	Site Summ	nary		
Site Name: Chete	ek Kwik Tri	o #602 (3.	24 2nd	St)			
Site Information			Site ID:	NW-409		1	Thinks St.
Municipality Chetek				-			
County Barron		WisDO	T Region	NW			
Location Non-Freeway (1	ourist)		Area	Rural			
Highway 2nd & Mill St	0.00						
Storo Sizo (Sg Et)	960						
No. Driveway Entrances	3 Car 1	Mash		No		1 12	
Non-Diesel Fueling (VFP)	16 Dies	el Fueling (V	FP)	0			
No. of Gas Stations within 1/2 mile	2		,	-	- t + +	=	
Count Information	1 1						
1st Day of Count Thursda	ay, July 29. 20	21			24 1	e part	Rettar .
Days Counted Thursd	ay - Saturday				- Hummer	1110	
	,					A RUS	44
Hourly Volume Summary	-						
Wednesday Inbound Outbound Total	Thur Inbound Outbo	sday ound Total	Inbound	Friday Outbound To	Saturday tal Inbound Outbound	Total	Average Weekday Hourly Distributions Hour % IN % OUT
6:00 AM 0 0 0	76 7	7 153					6:00 AM 4.14% 4.18%
7:00 AM 0 0 0 8:00 AM 0 0 0	95 8 118 11	8 183 6 234					7:00 AM 5.18% 4.78% 8:00 AM 6.43% 6.30%
9:00 AM 0 0 0	111 11	4 225	1				9:00 AM 6.05% 6.19%
10:00 AM 0 0 0 11:00 AM 0 0 0	124 12 100 10	1 245 0 200			209 199 181 190	408 371	10:00 AM 6.76% 6.57% 11:00 AM 5.45% 5.43%
12:00 PM 0 0 0	132 13	1 263	1		179 171	350	12:00 PM 7.19% 7.11%
1:00 PM 0 0 0 2:00 PM 0 0 0	116 12 126 12	8 244 4 250			131 151	282	1:00 PM 6.32% 6.95% 2:00 PM 6.87% 6.73%
3:00 PM 0 0 0	132 13	3 265	153	151 30	14		3:00 PM 7.19% 7.22%
4:00 PM 0 0 0 5:00 PM 0 0 0	128 12 118 12	6 254 4 242	132 136	138 27	'0 i1		4:00 PM 6.98% 6.84% 5:00 PM 6.43% 6.73%
6:00 PM			132	142 27	4		
TOTAL 0 0 0 DISTRIBUTION	1376 13 50%	50%	553 50%	556 11 50%	09 700 711 50% 50%	1411	
							Inbound Outbound Total
WEEKDAY AVE: 688 691 1379 DISTRIBUTION 50%						Total 12-hour Tri Adjust to 24-hour trip	ps 1376 1382 2758 s* 1835 1843 3677
							*(75% of daily traffic assumed in 12-hour period)
Peak Hour Summary							
	Weekday	(Average)		Friday	Saturday		
	Inbound Outbo	ound Total	Inbound	Outbound To	tal Inbound Outbound	Total	
AM PEAK HOUK - ADJ. STREET DISTRIBUTION	50%	50%					
PEAK HOUR	8:00 AM -	9:00 AM					
PM PEAK HOUR - ADJ. STREET	128 12	6 254					
DISTRIBUTION	50%	50%					
PEAK HOUR	4:00 PM -	5:00 PM					
AM PEAK HOUR - GENERATOR	124 12	1 245	1				
DISTRIBUTION PEAK HOUR	51% 10:00 AM -	49% 11:00 AM					
		- 1					
PM PEAK HOUR - GENERATOR DISTRIBUTION	129 13 48%	7 266 52%					
PEAK HOUR	2:45 PM -	3:45 PM					
PEAK HOUR GENERATOR			153	151 30	4 209 199	408	
DISTRIBUTION			50%	50%	51% 49%		
PEAK HOUR			3:00 PM	- 4:00 F	M 10:00 AM -	11:00 AM	
Note	Peak Hour is calculat	ted from the four co	nsecutive 15-n	ninute time segment	with the highest measured volu	ime of traffic and may no	t
	ungri with the top of AM Per	the nour (e.g., 8:15 ak Hour - Adjacent S	msteaa of 8:0 treet	o, as snown in the ho Any hour between 7	iai iy volume summary. :00 AM - 9:00 AM		
	PM Pec	ak Hour - Adjacent S	treet	Any hour between 4	:00 PM - 6:00 PM		
	AM Peo PM Peo	ак ноиг - Generator ak Hour - Generator		Any nour in the AM Any hour in the PM			
	Peak H	our Generator		Any hour in the time	period collected (applies to Frid	ay and Saturday only)	
Trip Rates					_		
	PEAK ADJ. TRAF	FIC	PEAK HOUR	GENERATOR Friday Satu	rdav		
Independent Variable	AM Rate PM F	Rate AM Rate	PM Rate	Rate Ra	te		
Gross Floor Area (GFA) Vehicle Fueling Positions (VFP)	39.7 43 14.6 15	.1 41.5 .9 15.3	45.1 16.6	51.5 69 19.0 25	.2 .5		

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: SW - Fort Atkinson -Caseys Site Information Site ID: SW-503 Municipality Fort Atkinson WisDOT Region SW County Jefferson Location Non-Freeway (Non-Tourist) Area Urban Highway USH 12 TE Land Use Code (10th Ed.) 945 Store Size (Sq Ft) 4400 Car Wash No. Driveway Entrances 4 No Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 8 0 No. of Gas Stations within 1/2 mile 2 **Count Information** 1st Day of Count Wednesday, June 23, 2021 Days Counted Wednesday - Thursday **Hourly Volume Summary** Average Weekday Hourly Distributions Thursday Friday Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 26 27 53 25 25 50 6:00 AM 5.27% 5.29% 7:00 AN 28 28 56 7:00 AM 5.58% 5.29% 26 24 50 8:00 AN 24 23 47 28 23 51 8:00 AM 5.37% 4.68% 9:00 AN 9:00 AM 30 55 33 38 71 6.51% 6.41% 25 10:00 AM 7.02% 7.12% 11:00 AM 5.58% 6.31% 10:00 AN 43 46 89 25 24 49 11:00 AN 32 56 28 60 26 30 12:00 PN 32 33 65 31 28 59 12:00 PM 6.51% 6.21% 1:00 PN 23 25 48 26 30 56 1:00 PM 5.06% 5.60% 2:00 PM 7.23% 6.51% 3:00 PM 6.40% 6.61% 2:00 PN 34 33 30 63 37 71 3:00 PN 26 28 54 36 37 73 4:00 PN 31 34 65 36 40 4:00 PM 6.92% 7.53% 76 0 5:00 PN 66 39 41 5:00 PM 7.54% 7.43% 34 32 80 6:00 PN TOTAL 360 363 723 366 374 740 n 0 DISTRIBUTIO 51 50 Inbound Outbound Total WEEKDAY AVE 731.5 Total 12-hour Trip 363 368.5 363 369 732 DISTRIBUTION Adjust to 24-hour trips* 491 975 50% *(75% of daily traffic assu ned in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 57 28 29 DISTRIBUTION 49% 51% PEAK HOUR 7:15 AM 8:15 AM PM PEAK HOUR - ADJ. STREET 37 76 39 DISTRIBUTION 51% 49% PEAK HOUR 4:45 PM 5:45 PM AM PEAK HOUR - GENERATOR 69 34 35 DISTRIBUTION 49% 51% PEAK HOUR 11:00 AM 10:00 AM PM PEAK HOUR - GENERATOR 37 39 76 49% 51% PEAK HOUR 4:45 PM 5:45 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 13.0 17.3 15.7 17.3 0.0 0.0 Vehicle Fueling Positions (VFP) 7.1 9.5 8.6 9.5 0.0 0.0

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: La Crosse #750 (4828 Mormon Coulee Rd) Site Information Site ID: SW-504 Municipality La Crosse WisDOT Region SW County La Crosse Location Non-Freeway (Non-Tourist) Area Urban Highway Hwy 14/61 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 6300 Car Wash No. Driveway Entrances 2 Yes 16 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 3 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Wednesday, September 22, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** werage Weekday Hourly Distributions Friday Thursday Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 A 86 88 174 69 76 145 6:00 AM 3.79% 4.04% 7:00 AN 102 200 113 115 228 7:00 AM 5.16% 5.34% 98 8:00 AN 101 106 207 112 119 231 8:00 AM 5.21% 5.54% 9:00 AN 9:00 AM 4.80% 94 194 113 214 5.21% 100 101 110 126 351 290 10:00 AM 5.33% 5.29% 11:00 AM 6.22% 6.27% 10:00 AN 108 104 212 111 221 174 177 133 134 11:00 AN 156 128 122 250 259 12:00 PN 149 155 304 145 141 286 140 152 292 12:00 PM 7.19% 7.28% 1:00 PM 140 123 263 140 122 262 307 1:00 PM 6.85% 6.03% 2:00 PM 6.92% 7.31% 3:00 PM 7.78% 7.73% 2:00 PN 140 143 283 143 154 297 3:00 PN 175 169 143 145 288 344 184 176 360 4:00 PN 175 177 352 152 151 303 170 166 336 4:00 PM 8.00% 8.07% 5:00 PN 154 5:00 PM 7.32% 7.31% 145 144 289 153 307 141 140 281 6:00 PN 97 209 TOTAL 1513 1503 3016 1552 1545 3097 592 594 1186 626 614 1240 DISTRIBUTIO 50 Inbound Outbound Total 1532.5 Total 12-hour Trip WEEKDAY AVE 1524 3056.5 1533 1524 3057 DISTRIBUTION Adjust to 24-hour trips* 4075 50% 50% 2043 2032 *(75% of daily traffic ass ed in 12-ho Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 238 117 121 DISTRIBUTION 49% 51% 8:30 AM PEAK HOUR 7:30 AM PM PEAK HOUR - ADJ. STREET 162 167 329 DISTRIBUTION 51% 49% PEAK HOUR 4:45 PM 5:45 PM AM PEAK HOUR - GENERATOR 138 139 277 DISTRIBUTION 50% 50% PEAK HOUR 11:30 AM 12:30 PM PM PEAK HOUR - GENERATOR 162 167 329 49% 51% PEAK HOUR 4:45 PM 5:45 PN PEAK HOUR GENERATOR 178 188 174 366 35: DISTRIBUTION PEAK HOUR 49% 51% 50% 3:15 PM 4:15 PM 10:00 AM 11:00 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sun AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturda AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 44.0 52.2 58.1 55.7 37.8 52.2 Vehicle Fueling Positions (VFP) 12.5 17.3 14.6 17.3 19.3 18.5

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Casey's Belleville, STH 69 Site Information Site ID: SW-508 Municipality Belleville WisDOT Region SW County Dane Location Non-Freeway (Non-Tourist) Area Rural Highway STH 69 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 4500 Car Wash No. Driveway Entrances 2 No Non-Diesel Fueling (VFP) 10 Diesel Fueling (VFP) 3 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Wednesday, October 6, 2021 Days Counted Wednesday - Thursday **Hourly Volume Summary** Average Weekday Hourly Distributions Thursday Friday Saturday dnesda Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 19 19 38 14 13 27 6:00 AM 2.40% 2.33% 7:00 AN 57 65 57 122 7:00 AM 9.38% 8.29% 64 121 8:00 AN 42 42 84 41 47 88 8:00 AM 6.04% 6.47% 9:00 AN 38 74 43 9:00 AM 4.29% 36 23 20 4.22% 10:00 AM 5.53% 5.53% 11:00 AM 6.47% 6.33% 10:00 AN 43 45 88 33 31 64 11:00 AN 40 48 47 41 81 95 12:00 PN 60 119 51 56 107 12:00 PM 8.00% 8.44% 59 1:00 PN 1:00 PM 4.80% 4.95% 37 69 34 31 65 32 2:00 PM 7.78% 8.07% 3:00 PM 6.18% 6.40% 2:00 PN 46 96 65 122 50 3:00 PN 48 41 40 44 92 81 4:00 PN 50 46 96 44 47 91 4:00 PM 6.84% 6.77% 0 5:00 PM 7.27% 7.20% 5:00 PN 46 93 53 53 47 106 0 6:00 PN TOTAL 527 524 1051 504 507 1011 n 0 DISTRIBUTIO 50 Inbound Outbound Total WEEKDAY AVE 1031 Total 12-hour Trip 515.5 515.5 516 516 1031 DISTRIBUTION Adjust to 24-hour trips* 687 687 1375 50% 50% *(75% of daily traffic assu ed in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 130 65 65 DISTRIBUTION 50% 50% PEAK HOUR 8:15 AM 7:15 AM PM PEAK HOUR - ADJ. STREET 50 50 100 DISTRIBUTION 50% 50% PEAK HOUR 5:00 PN 6:00 PM AM PEAK HOUR - GENERATOR 65 65 130 DISTRIBUTION 50% 50% PEAK HOUR 8:15 AM 7:15 AM PM PEAK HOUR - GENERATOR 115 55 60 48% 52% PEAK HOUR 11:45 AM 12:45 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 28.9 28.9 25.6 0.0 0.0 22.2 Vehicle Fueling Positions (VFP) 10.0 7.7 10.0 8.8 0.0 0.0

			Со	nven	ience	e Sto Wis	r e/G a DOT Bu	as Sta reau of	tion Traffic	Trip Opera	Gene ations	eratio	on St	udy			
							9	Site Su	mmar	y							
Site Nam	е:		Johnso	n Creek	: #487 (4	165 Ville	age Wal	lk Ln)		1	-	Panana	man 2	112	11.		1 12
Site Inform	nation						Site ID:	SW-509		1	0			A Cant		ANT THE	1 the
Mur	nicipality	Johnson	n Creek					_		1	PP 1	and.		-	and the	1.	-CAP
	County	Jefferso	n v (Non-Tr	ourist)		WisDO	T Region	SW		۲	1	la	* 4	-			Contra P
	Highway	STH 26	S of IH 94	4			Aiea	Kurai			P.	E:		THE	19.00	11 - 12	
ITE Land Use	Code (1	Oth Ed.)	<u> </u>	960						-	1.	and and	1	V.L.		("1/2=	-
Store Size (Se	q Ft)			6000						4	14	leg /	F	KW	IK TRIP #	487	and the second second
No. Driveway	y Entrano	ces		2	Car Was	h ualina () (No					3			112	6-1-
Non-Diesei F	ueling (V	/FP) vithin 1/2	mile	20	Diesei Fi	ueling (v	FP)	0			1	1 K	-			11-	210
Count Info	ormati	on	. mile	2							4	E	77			1ª L	
1st Day of Co	ount		Wednes	day, No	vember 3	, 2021]		- 74	5	Pro an	And and a		1 Alter	1 de	1 11
Days Counte	d		Wednes	day - Sa	turday			J			61	1 -	*		1 for	1	
Hourly Vo	lume S	Summa	ry														
	laha	Wednesday	Tat-1	Inhour d	Thursday	Tak-1	Inhour d	Friday	Tatel	Internet	Saturday	Tata		Average We	ekday Hourly	Distributions	
6:00 AM	115	113	228	125	127	252	moound	outbound	Total	bnuound	Jurbound	rocar		6:00 AM	6.56% 6	5.59%	
7:00 AM 8:00 AM	157 111	147 99	304 210	150 91	137 94	287 185	-							7:00 AM 8:00 AM	8.40% 7 5.53% 5	.80% .30%	
9:00 AM	76	83 91	159 197	108	107	215	-			148	146	294		9:00 AM	5.03% 5	5.22%	
11:00 AM	121	132	253	120	126	246	1			130	131	261		11:00 AM	6.59% 7	.09%	
12:00 PM 1:00 PM	106	108	214 148	131 94	131 92	186				127	132 126	259		12:00 PM 1:00 PM	6.48% E	4.64%	
2:00 PM 3:00 PM	105 109	94 112	199 221	121 114	125 113	246 227	140	139	279					2:00 PM 3:00 PM	6.18% 6	5.01% 5.18%	
4:00 PM	112	122	234	147	149	296	178	178	356					4:00 PM	7.08% 7	.44%	
6:00 PM	125	150	255	119	127	240	126	131	263					5.00 PW	0.07% /	.00%	
TOTAL DISTRIBUTION	1314 50%	1308 50%	2622	1428 50%	1423 50%	2851	595 50%	605 50%	1200	534 50%	535 50%	1069					
WEEKDAY AVE: DISTRIBUTION	1371 50%	1365.5 50%	2736.5									Total 12 Adjust to 24-I	-hour Trips	Inbound 1371 1828	Outbound 1366 1821	Total 2737 3649	
														*(75% of dail	ly traffic assume	d in 12-hour per	od)
Peak Hou	r Sumn	nary															
				W	ekdav (Aver	age)	1	Friday			Saturday	1					
				Inbound	Outbound	Total	Inbound	Outbound	Total	Inbound	Outbound	Total					
	AM PEAK H	DISTRIBUTI	ON	154 52%	142 48%	296											
		PEAK HOUR	?	7:00 AM	-	8:00 AM											
	PM PEAK H	OUR - ADJ. S	TREET ON	133 49%	138 51%	271											
				-1.50 FIV		5.551111											
	AM PEAK H	DISTRIBUTI PEAK HOUR	RATOR ON R	154 52% 7:00 AM	142 48% -	296 8:00 AM											
	PM PEAK H	OUR - GENE	RATOR ON	133 49%	138 51%	271											
	PEAK HOUF	GENERATO	R	4:30 PM	-	5:30 PM	173	185	358	148	146	294					
		PEAK HOUR	ON ?				48% 4:15 PM	-	5:15 PM	10:00 AM	-	11:00 AM					
			Note:	Peak Hour is align with th	caiculated fro ie top of the h	om the four co our (e.g., 8:15	instead of 8:0	minute time se 00) as shown ii	yments with h the hourly v	une nighest m olume summe	easured volur ary.	ne oj traffic an	u may not				
					AM Peak Hou PM Peak Hou	ır - Adjacent S ır - Adjacent S	itreet itreet	Any hour bet Any hour bet	ween 7:00 AN ween 4:00 PN	1 - 9:00 AM 1 - 6:00 PM							
					AM Peak Hou	ır - Generator		Any hour in t	he AM								
					Peak Hour Ge	nerator		Any nour in t Any hour in t	he time perio	d collected (a	pplies to Frida	y and Saturda	y only)				
Trin Rates																	
p nates	•			PEAK AD	J. TRAFFIC		PEAK HOUR	GENERATOR		Ì							
	Independe Gross Floor Vehicle Fue	nt Variable r Area (GFA) eling Positior	ns (VFP)	We AM Rate 49.3 14.8	ekday PM Rate 45.2 13.6	Wee AM Rate 49.3 14.8	PM Rate 45.2 13.6	Friday Rate 59.7 17.9	Saturday Rate 49.0 14.7								

Convenience Store/Gas Station Trip Generation Study

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Horicon KT #782(716 E Lake St) Site ID: SW-515 Site Information Municipality Horicon WisDOT Region SW County Dodge Location Non-Freeway (Non-Tourist) Area Rural Highway STH 33 TE Land Use Code (10th Ed.) 945 Store Size (Sq Ft) 2600 Car Wash No. Driveway Entrances 3 No 8 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 0 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Wednesday, November 3, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** werage Weekday Hourly Distributions Thursday Friday Saturday dnesda Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 55 54 109 42 40 82 6:00 AM 6.43% 6.35% 7:00 AN 46 94 58 52 110 7:00 AM 7.02% 6.62% 48 8:00 AN 37 38 75 28 29 57 8:00 AM 4.31% 4.53% 9:00 AN 9:00 AM 4.11% 34 29 63 28 32 60 4.12% 123 109 10:00 AN 49 45 94 34 34 68 58 10:00 AM 5.50% 5.34% 65 50 11:00 AM 4.44% 4.26% 11:00 AN 34 32 35 69 29 61 59 12:00 PN 56 114 48 50 98 47 41 88 12:00 PM 7.02% 7.16% 58 1:00 PM 56 109 35 36 71 108 1:00 PM 5.83% 6.22% 2:00 PN 38 50 45 95 2:00 PM 6.69% 5.61% 89 3:00 PN 3:00 PM 7.42% 8.31% 98 72 137 47 51 65 66 62 128 4:00 PN 63 128 67 60 127 54 99 4:00 PM 8.61% 8.45% 65 45 5:00 PN 49 55 5:00 PM 7.62% 8.04% 66 64 130 104 48 43 91 6:00 PN 42 92 TOTAL 596 576 1172 536 534 1070 218 192 410 225 203 428 DISTRIBUTIO Inbound Outbound Total WEEKDAY AVE 1121 Total 12-hour Trip 566 555 566 1121 DISTRIBUTION Adjust to 24-hour trips 1495 755 *(75% of daily traffic assu ed in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 109 55 54 DISTRIBUTION 50% 50% 8:15 AM PEAK HOUR 7:15 AM PM PEAK HOUR - ADJ. STREET 143 70 73 DISTRIBUTION 51% 49% PEAK HOUR 4:30 PN 5:30 PM AM PEAK HOUR - GENERATOR 55 54 109 DISTRIBUTION 50% 50% PEAK HOUR 8:15 AM 7:15 AM PM PEAK HOUR - GENERATOR 143 70 73 49% 51% PEAK HOUR 4:30 PM 5:30 PN PEAK HOUR GENERATOR 62 128 65 123 66 DISTRIBUTION PEAK HOUR 52% 48% 53% 47% 3:00 PM 4:00 PM 10:00 AM 11:00 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturda AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 41.9 55.0 49.2 47.3 41.9 55.0 Vehicle Fueling Positions (VFP) 13.6 17.9 13.6 17.9 16.0 15.4

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Sparta BP (4105 Theater Rd) Site Information Site ID: SW-517 Municipality Sparta WisDOT Region SW County Monroe Location Freeway (Non-Tourist) Area Urban Highway IH 90 & STH 16 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 5900 Car Wash No. Driveway Entrances 3 No Non-Diesel Fueling (VFP) 10 Diesel Fueling (VFP) 5 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Wednesday, October 27, 2021 Days Counted Wednesday - Saturday **Hourly Volume Summary** Average Weekday Hourly Distributions Thursday Friday Saturday dnesda Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 12 12 24 21 25 46 6:00 AM 3.95% 4.46% 7:00 AN 17 19 36 7:00 AM 4.43% 4.82% 20 21 41 8:00 AN 20 23 43 21 17 38 8:00 AM 4.90% 4.82% 9:00 AN 9:00 AM 26 55 20 45 5.86% 6.15% 25 10:00 AN 18 20 38 19 19 38 62 10:00 AM 4.43% 4.70% 30 32 27 58 11:00 AN 11:00 AM 6.82% 5.67% 34 32 66 23 15 38 31 12:00 PN 30 65 32 30 62 24 49 12:00 PM 8.01% 7.23% 35 25 1:00 PM 23 49 15 23 38 1:00 PM 4.90% 5.55% 26 2:00 PM 7.30% 6.99% 3:00 PM 8.97% 10.61% 2:00 PN 62 30 27 57 31 3:00 PN 38 52 90 37 36 73 24 48 4:00 PN 28 56 39 29 42 34 76 4:00 PM 8.01% 6.87% 28 68 5:00 PM 5:00 PM 7.42% 7.11% 31 66 27 28 55 27 30 57 6:00 PN 34 26 60 TOTAL 326 329 655 301 293 594 127 114 241 108 106 214 DISTRIBUTIO Inbound Outbound Total WEEKDAY AVE 624.5 Total 12-hour Trip 313.5 311 314 311 625 DISTRIBUTION Adjust to 24-hour trips* 418 415 833 50% *(75% of daily traffic assu ned in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Total AM PEAK HOUR - ADJ. STREET 42 19 23 DISTRIBUTION 45% 55% PEAK HOUR 7:15 AM 8:15 AM PM PEAK HOUR - ADJ. STREET 36 71 35 DISTRIBUTION 51% 49% PEAK HOUR 4:30 PN 5:30 PM AM PEAK HOUR - GENERATOR 35 30 65 DISTRIBUTION 54% 46% PEAK HOUR 11:30 AM 12:30 PM PM PEAK HOUR - GENERATOR 38 44 82 46% 54% PEAK HOUR 3:00 PM 4:00 PN PEAK HOUR GENERATOR 30 42 34 76 DISTRIBUTION PEAK HOUR 55% 45% 18% 52% 4:00 PM 5:00 PM 10:00 AM 11:00 AM Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sun AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 12.0 11.0 13.9 12.9 10.5 7.1 Vehicle Fueling Positions (VFP) 2.8 4.7 4.3 5.5 51 4.1

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Viroqua KT # 757(1301 N Main St) Site ID: SW-518 Site Information Municipality Viroqua WisDOT Region SW County Vernon Location Non-Freeway (Non-Tourist) Area Rural Highway USH 14 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 6400 Car Wash No. Driveway Entrances 2 Yes 10 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 2 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Wednesday, August 18, 2021 Days Counted Wednesday - Thursday PEREEFFER SEEFEEE FE E **Hourly Volume Summary** werage Weekday Hourly Distributions Friday Thursday Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 A 92 92 184 94 87 181 6:00 AM 4.01% 3.85% 7:00 AN 145 132 277 110 104 214 7:00 AM 5.50% 5.08% 8:00 AN 123 129 252 126 131 257 8:00 AM 5.37% 5.59% 9:00 AN 9:00 AM 144 136 280 139 271 6.10% 5.77% 132 10:00 AN 149 157 306 165 156 321 10:00 AM 6.77% 6.73% 11:00 AM 7.59% 7.14% 11:00 AN 184 178 168 154 322 362 12:00 PN 168 174 342 170 190 360 12:00 PM 7.29% 7.83% 1:00 PM 137 150 287 151 146 297 1:00 PM 6.21% 6.37% 2:00 PN 135 150 285 134 135 269 2:00 PM 5.80% 6.13% 3:00 PN 147 153 3:00 PM 6.79% 6.71% 168 159 327 300 4:00 PN 144 146 290 172 171 343 4:00 PM 6.81% 6.82% 0 5:00 PN 5:00 PM 6.77% 6.97% 163 168 331 151 156 307 6:00 PN TOTAL 1736 1747 3483 1743 1739 3482 n 0 DISTRIBUTIO 50 Inbound Outbound Total WEEKDAY AVE 1739.5 1743 3482.5 Total 12-hour Trip 1740 1743 3483 DISTRIBUTION Adjust to 24-hour trips* 4643 50% 2319 2324 50% *(75% of daily traffic assu ed in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 265 133 132 DISTRIBUTION 50% 50% PEAK HOUR 7:45 AM 8:45 AM PM PEAK HOUR - ADJ. STREET 162 165 327 DISTRIBUTION 50% 50% PEAK HOUR 4:45 PM 5:45 PM AM PEAK HOUR - GENERATOR 188 183 371 DISTRIBUTION 51% 49% PEAK HOUR 12:15 PM 11:15 AM PM PEAK HOUR - GENERATOR 362 181 181 50% 50% PEAK HOUR 11:45 AM 12:45 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 58.0 56.6 0.0 0.0 41.4 51.1 Vehicle Fueling Positions (VFP) 22.1 27.3 30.9 30.2 0.0 0.0

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Madison #960 (401 N Third St) Site ID: SW-519 Site Information Municipality Madison WisDOT Region SW County Dane Location Non-Freeway (Non-Tourist) Area Urban Highway STH 113 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 7600 Car Wash No. Driveway Entrances 2 Yes 16 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 4 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Wednesday, April 6, 2022 Days Counted Wednesday - Thursday **Hourly Volume Summary** Average Weekday Hourly Distributions Friday Thursday Saturday Total Total Total Inbound Outbound Inbound Outbound Total Inbound Outbound Inbound Outbo Hour % IN % OUT 6:00 AM 115 108 223 110 116 226 6:00 AM 4.79% 4.80% 7:00 AN 286 151 140 291 7:00 AM 6.31% 6.02% 145 141 8:00 AN 133 131 264 174 176 350 8:00 AM 6.54% 6.57% 9:00 AN 144 9:00 AM 136 145 281 150 294 5.96% 6.32% 10:00 AM 6.01% 5.55% 11:00 AM 6.97% 7.13% 10:00 AN 141 128 269 141 131 272 11:00 AN 151 176 175 351 158 309 12:00 PN 148 148 296 161 157 318 12:00 PM 6.58% 6.53% 1:00 PN 141 139 280 117 116 233 1:00 PM 5.50% 5.46% 2:00 PM 6.33% 6.21% 3:00 PM 7.35% 7.45% 2:00 PN 161 161 322 136 129 265 3:00 PN 160 183 188 371 162 322 4:00 PN 157 157 314 155 163 318 4:00 PM 6.65% 6.85% 0 5:00 PN 129 156 5:00 PM 6.03% 6.10% 127 256 156 312 6:00 PN TOTAL 1763 1750 3513 1758 1752 3510 n 0 DISTRIBUTIO 50% Inbound Outbound Total WEEKDAY AVE 1751 Total 12-hour Trip 1760.5 3511.5 1761 1751 3512 DISTRIBUTION Adjust to 24-hour trips* 4682 2347 2335 50% 50% *(75% of daily traffic assu ned in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 322 163 159 DISTRIBUTION 51% 49% 8:15 AM PEAK HOUR 7:15 AM PM PEAK HOUR - ADJ. STREET 159 159 318 DISTRIBUTION 50% 50% PEAK HOUR 4:30 PM 5:30 PM AM PEAK HOUR - GENERATOR 168 172 340 DISTRIBUTION 49% 51% PEAK HOUR 12:15 PM 11:15 AM PM PEAK HOUR - GENERATOR 355 176 179 50% 50% PEAK HOUR 3:15 PM 4:15 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sun AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator . Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 41.8 44.7 46.7 0.0 0.0 42.4 Vehicle Fueling Positions (VFP) 16.1 15.9 17.0 17.8 0.0 0.0

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Monona Speedway (2500 Royal Ave) Site Information Site ID: SW-522 Municipality Monona WisDOT Region SW County Dane Location Freeway (Non-Tourist) Area Urban Highway USH 12/18 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 4500 Car Wash No. Driveway Entrances 3 No Non-Diesel Fueling (VFP) 10 Diesel Fueling (VFP) 3 No. of Gas Stations within 1/2 mile 1 **Count Information** 1st Day of Count Wednesday, April 6, 2022 Days Counted Wednesday - Thursday 00-000 **Hourly Volume Summary** werage Weekday Hourly Distributions Thursday Friday Saturday Total Total Total Total Inbound Outbound Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 32 30 62 35 37 72 6:00 AM 4.27% 3.90% 7:00 AN 56 110 47 53 100 7:00 AM 6.44% 6.35% 54 8:00 AN 37 46 83 48 51 99 8:00 AM 5.42% 5.65% 9:00 AN 44 39 47 86 9:00 AM 4.91% 38 82 5.30% 10:00 AM 5.42% 5.24% 11:00 AM 6.63% 6.58% 10:00 AN 46 49 95 39 41 80 11:00 AN 64 45 49 94 59 123 12:00 PN 50 63 113 41 51 92 12:00 PM 5.80% 6.64% 1:00 PM 1:00 PM 5.99% 6.64% 59 103 50 55 105 44 2:00 PM 7.46% 6.64% 3:00 PM 8.22% 7.63% 2:00 PN 97 69 65 134 40 49 3:00 PN 63 66 73 58 121 139 4:00 PN 61 126 61 69 130 4:00 PM 7.77% 7.80% 65 0 5:00 PN 55 5:00 PM 6.69% 6.64% 52 59 111 108 0 6:00 PN TOTAL 584 642 1226 593 646 1239 n 0 DISTRIBUTION Inbound Outbound Total WEEKDAY AVE 1232.5 Total 12-hour Trip 588.5 644 589 644 1233 DISTRIBUTION 48% Adjust to 24-hour trips* 859 1643 52% 785 *(75% of daily traffic assu ed in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 106 51 55 DISTRIBUTION 48% 52% PEAK HOUR 7:00 AM 8:00 AM PM PEAK HOUR - ADJ. STREET 61 67 128 DISTRIBUTION 48% 52% PEAK HOUR 4:00 PM 5:00 PM AM PEAK HOUR - GENERATOR 51 61 112 DISTRIBUTION 46% 54% PEAK HOUR 12:15 PM 11:15 AM PM PEAK HOUR - GENERATOR 140 68 72 49% 51% PEAK HOUR 3:15 PM 4:15 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sun AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 28.4 24.9 31.1 0.0 0.0 23.6 Vehicle Fueling Positions (VFP) 8.2 9.8 8.6 10.8 0.0 0.0

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Middleton Mobil (8613 University Green) Site Information Site ID: SW-523 Municipality Middleton WisDOT Region SW County Dane Location Non-Freeway (Non-Tourist) Area Urban Highway USH 14 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 4400 Car Wash No. Driveway Entrances 2 Yes 12 Diesel Fueling (VFP) Non-Diesel Fueling (VFP) 3 No. of Gas Stations within 1/2 mile 1 University Ave **Count Information** 1st Day of Count Tuesday, April 19, 2022 Days Counted Tuesday - Wednesday **Hourly Volume Summary** werage Weekday Hourly Distributions Friday Tuesday Wednesda Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 25 22 47 28 27 55 6:00 AM 3.07% 2.70% 7:00 AN 43 85 46 46 92 7:00 AM 5.10% 4.90% 42 8:00 AN 45 51 96 51 53 104 8:00 AM 5.56% 5.73% 9:00 AN 48 93 9:00 AM 52 53 105 5.62% 5.57% 10:00 AM 6.25% 6.12% 11:00 AM 5.68% 5.62% 10:00 AN 50 52 102 58 59 117 11:00 AN 53 47 45 55 100 100 12:00 PN 64 119 60 67 127 12:00 PM 6.66% 7.22% 1:00 PN 60 61 121 56 55 111 1:00 PM 6.72% 6.39% 2:00 PN 45 47 92 2:00 PM 6.08% 6.01% 60 62 122 3:00 PN 3:00 PM 7.36% 45 51 82 88 170 96 7.66% 4:00 PN 80 154 145 4:00 PM 8.63% 8.27% 74 75 70 0 5:00 PN 67 74 5:00 PM 8.28% 8.82% 76 86 162 141 6:00 PN TOTAL 659 712 1371 636 649 1285 n 0 DISTRIBUTIO Inbound Outbound Total WEEKDAY AVE 1328 Total 12-hour Trip 647.5 680.5 648 681 1328 DISTRIBUTION 49% Adjust to 24-hour trips* 863 907 1771 51% *(75% of daily traffic ass ed in 12-ho Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 114 56 58 DISTRIBUTION 49% 51% 8:45 AM PEAK HOUR 7:45 AM PM PEAK HOUR - ADJ. STREET 82 164 82 DISTRIBUTION 50% 50% PEAK HOUR 4:30 PM 5:30 PM AM PEAK HOUR - GENERATOR 55 62 117 DISTRIBUTION 47% 53% PEAK HOUR 10:30 AM 11:30 AM PM PEAK HOUR - GENERATOR 164 82 82 50% 50% PEAK HOUR 4:30 PM 5:30 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 37.3 0.0 0.0 25.9 37.3 26.6 Vehicle Fueling Positions (VFP) 7.6 10.9 7.8 10.9 0.0 0.0

Convenience Store/Gas Station Trip Generation Study WisDOT Bureau of Traffic Operations Site Summary Site Name: Kellys Market (33 Junction Ct) Site Information Site ID: SW-524 Municipality Madison WisDOT Region SW County Dane Location Freeway (Non-Tourist) Area Urban Highway USH 12/14 TE Land Use Code (10th Ed.) 960 Store Size (Sq Ft) 4500 Car Wash No. Driveway Entrances 2 Yes Non-Diesel Fueling (VFP) 12 Diesel Fueling (VFP) 0 No. of Gas Stations within 1/2 mile 0 **Count Information** 1st Day of Count Tuesday, April 19, 2022 Days Counted Tuesday - Wednesday **Hourly Volume Summary** Friday Average Weekday Hourly Distributions Tuesday Wednesda Saturday Total Total Total Inbound Outbound Total Inbound Outbound Inbound Outbo Inbound Outbound Hour % IN % OUT 6:00 AM 33 33 66 0 0 6:00 AM 3.71% 3.68% 0 7:00 AN 49 7:00 AM 5.96% 5.47% 53 0 8:00 AN 45 50 95 0 0 8:00 AM 5.06% 5.58% 0 9:00 AN 38 74 9:00 AM 4.05% 36 0 4.24% 0 10:00 AN 36 35 71 0 0 10:00 AM 4.05% 3.91% 0 11:00 AN 11:00 AM 6.30% 6.14% 56 55 111 0 0 0 12:00 PN 63 60 123 12:00 PM 7.08% 6,70% 0 1:00 PN 1:00 PM 6.41% 6.58% 59 116 0 2:00 PM 7.08% 7.59% 3:00 PM 9.22% 8.93% 2:00 PN 63 68 131 0 3:00 PN 82 80 162 0 0 4:00 PN 80 78 158 4:00 PM 9.00% 8.71% 0 0 0 5:00 PN 67 5:00 PM 7.08% 7.48% 63 130 0 0 6:00 PN TOTAL 667 672 1339 n 0 0 0 DISTRIBUTIO Inbound Outbound Total WEEKDAY AVE 333.5 Total 12-hour Trip 336 669.5 667 672 1339 DISTRIBUTION Adjust to 24-hour trips* 889 1785 50% *(75% of daily traffic ass ed in 12-hour p Peak Hour Summary Weekday (Average) Friday Saturda Inbound Outbound Total Inbound Outbound Total Inbound Outbound Tota AM PEAK HOUR - ADJ. STREET 30 60 30 DISTRIBUTION 50% 50% PEAK HOUR 7:30 AM 8:30 AM PM PEAK HOUR - ADJ. STREET 40 39 79 DISTRIBUTION 51% 49% PEAK HOUR 4:00 PN 5:00 PM AM PEAK HOUR - GENERATOR 64 31 33 DISTRIBUTION 48% 52% PEAK HOUR 11:30 AM 12:30 PM PM PEAK HOUR - GENERATOR 41 42 83 49% 51% PEAK HOUR 3:15 PM 4:15 PM PEAK HOUR GENERATOR DISTRIBUTION PEAK HOUR Note: Peak Hour is calculated from the four consecutive 15-minute time segments with the highest measured volume of traffic and may not align with the top of the hour (e.g., 8:15 instead of 8:00) as shown in the hourly volume sum AM Peak Hour - Adjacent Street PM Peak Hour - Adjacent Street Any hour between 7:00 AM - 9:00 AM Any hour between 4:00 PM - 6:00 PM AM Peak Hour - Generator Any hour in the AM PM Peak Hour - Generator Any hour in the PM Peak Hour Generator Any hour in the time period collected (applies to Friday and Saturday only) **Trip Rates** PEAK ADJ. TRAFFIC PEAK HOUR GENERATO Weekday Weekday Friday Saturday AM Rate PM Rate AM Rate PM Rate Independent Variable Rate Rate Gross Floor Area (GFA) 13.3 17.6 14.2 18.4 0.0 0.0 Vehicle Fueling Positions (VFP) 5.0 6.6 5.3 6.9 0.0 0.0

Appendix B Initial Regression Summaries

AM Regression Models

Variable: VFP

SUMMARY OUTPUT

Regression Statis	stics
Multiple R	0.6802
R Square	0.4626
Adjusted R Square	0.4562
Standard Error	81.4544
Observations	86

ANOVA

	df	SS	MS	F	Significance F
Regression	1	479761.564	479761.564	72.310	5.9E-13
Residual	84	557324.390	6634.814		
Total	85	1037085.953			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-29.963	26.099	-1.148	0.254	-81.864	21.937	-81.864	21.937
VFP	14.052	1.653	8.504	0.000	10.766	17.338	10.766	17.338

Variables: VFP + GFA

SUMMARY OUTPUT

Regression Stati	stics
Multiple R	0.7035
R Square	0.4949
Adjusted R Square	0.4827
Standard Error	79.4471
Observations	86

ANOVA					
	df	SS	MS	F	Significance F
Regression	2	513202.503	256601.252	40.654	4.91957E-13
Residual	83	523883.450	6311.849		
Total	85	1037085.953			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-49.207	26.794	-1.837	0.070	-102.499	4.084	-102.499	4.084
VFP	10.802	2.143	5.041	0.000	6.539	15.064	6.539	15.064
GFA per 1000sf	13.039	5.665	2.302	0.024	1.772	24.306	1.772	24.306

AM Regression Models

Variables:	VFP +	GFA +	Carwash
v ai rabiooi		01711	041 114011

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.7035					
R Square	0.4949					
Adjusted R Square	0.4765					
Standard Error	79.9229					
Observations	86					

ANOVA

	df	SS	MS	F	Significance F
Regression	3	513296.439	171098.813	26.786	3.56675E-12
Residual	82	523789.514	6387.677		
Total	85	1037085.953			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-47.873	29.115	-1.644	0.104	-105.791	10.046	-105.791	10.046
VFP	10.703	2.303	4.647	0.000	6.121	15.285	6.121	15.285
GFA per 1000sf	12.869	5.868	2.193	0.031	1.195	24.543	1.195	24.543
Carwash	2.711	22.360	0.121	0.904	-41.769	47.192	-41.769	47.192

Variables: VFP + Carwash

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0.6821							
R Square	0.4653							
Adjusted R Square	0.4524							
Standard Error	81.7362							
Observations	86							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	482578.565	241289.282	36.117	5.19807E-12			
Residual	83	554507.389	6680.812					
Total	85	1037085.953						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-24.199	27.653	-0.875	0.384	-79.199	30.801	-79.199	30.801
VFP	13.304	2.019	6.588	0.000	9.287	17.320	9.287	17.320
Carwash	14.419	22.206	0.649	0.518	-29.747	58.585	-29.747	58.585
AM Regression Models

Variable: GFA

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.5833					
R Square	0.3402					
Adjusted R Square	0.3324					
Standard Error	90.2543					
Observations	86					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	352835.042	352835.042	43.315	3.78573E-09
Residual	84	684250.911	8145.844		
Total	85	1037085.953			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	13.900	26.911	0.517	0.607	-39.616	67.415	-39.616	67.415
GFA per 1000sf	31.855	4.840	6.581	0.000	22.230	41.481	22.230	41.481

Variables: GFA + Carwash

SUMMARY OUTPUT								
Regression S	tatistics							
Multiple R	0.6016							
R Square	0.3619							
Adjusted R Square	0.3466							
Standard Error	89.2892							
Observations	86							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	375363.285	187681.642	23.541	7.97521E-09			
Residual	83	661722.669	7972.562					
Total	85	1037085.953						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	24.916	27.418	0.909	0.366	-29.617	79.449	-29.617	79.449
GFA per 1000sf	26.909	5.620	4.788	0.000	15.730	38.087	15.730	38.087

Variables:	VFP +	- GFA	Classifications	

1.681

0.097

-7.200

85.803

SUMMARY OUTPUT

Carwash

Regression Statistics						
Multiple R	0.7518					
R Square	0.5652					
Adjusted R Square	0.5547					
Standard Error	73.7068					
Observations	86					

39.301

ANOVA

	df	SS	MS	F	Significance F
Regression	2	586171.887	293085.944	53.948	9.74047E-16
Residual	83	450914.066	5432.700		
Total	85	1037085.953			

23.380

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-69.240	25.229	-2.744	0.007	-119.419	-19.061	-119.419	-19.061
VFP	8.568	1.942	4.412	0.000	4.705	12.430	4.705	12.430
GFA Categories	59.386	13.418	4.426	0.000	32.698	86.075	32.698	86.075

38.087 85.803

-7.200

PM Regression Models

Variable: VFP

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.6448						
R Square	0.4157						
Adjusted R Square	0.4088						
Standard Error	80.8144						
Observations	86						

ANOVA

	df	SS	MS	F	Significance F
Regression	1	390343.151	390343.151	59.768	2.09015E-11
Residual	84	548601.082	6530.965		
Total	85	938944.233			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	12.283	25.894	0.474	0.636	-39.210	63.776	-39.210	63.776
VFP	12.675	1.640	7.731	0.000	9.415	15.936	9.415	15.936

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.6753						
R Square	0.4561						
Adjusted R Square	0.4430						
Standard Error	78.4434						
Observations	86						

ANOVA F Significance F 34.795 1.06015E-11 df SS MS F Regression Residual 214107.446 2 428214.891 83 510729.341 6153.366 Total 85 938944.233

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-8.196	26.455	-0.310	0.757	-60.814	44.422	-60.814	44.422
VFP	9.216	2.116	4.356	0.000	5.008	13.424	5.008	13.424
GFA per 1000sf	13.876	5.593	2.481	0.015	2.751	25.000	2.751	25.000

Variables: VFP + GFA

PM Regression Models

Variables: VFP + GFA + Carwash

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.6773				
R Square	0.4587				
Adjusted R Square	0.4389				
Standard Error	78.7254				
Observations	86				

ANOVA

	df	SS	MS	F	Significance F
Regression	3	430733.904	143577.968	23.166	5.87626E-11
Residual	82	508210.328	6197.687		
Total	85	938944.233			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1.285	28.678	-0.045	0.964	-58.335	55.766	-58.335	55.766
VFP	8.707	2.269	3.838	0.000	4.193	13.220	4.193	13.220
GFA per 1000sf	12.996	5.780	2.248	0.027	1.497	24.495	1.497	24.495
Carwash	14.041	22.025	0.638	0.526	-29.773	57.855	-29.773	57.855

Variables: VFP + Carwash

SUMMARY OUTPUT

Regression St	atistics						
Multiple R	0.6522	•					
R Square	0.4254						
Adjusted R Square	0.4115						
Standard Error	80.6254						
Observations	86						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	399407.045	199703.523	30.722	1.03356E-10		
Residual	83	539537.187	6500.448				
Total	85	938944.233					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	22.623	27.277	0.829	0.409	-31.630	76.875	-31.630	76.875
VFP	11.333	1.992	5.689	0.000	7.371	15.295	7.371	15.295
Carwash	25.865	21.904	1.181	0.241	-17.701	69.430	-17.701	69.430

PM Regression Models

Variable: GFA

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.5760				
R Square	0.3317				
Adjusted R Square	0.3238				
Standard Error	86.4285				
Observations	86				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	311474.433	311474.433	41.697	6.55382E-09
Residual	84	627469.800	7469.879		
Total	85	938944.233			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	45.647	25.770	1.771	0.080	-5.600	96.894	-5.600	96.894
GFA per 1000sf	29.930	4.635	6.457	0.000	20.713	39.147	20.713	39.147

Variables: GFA + Carwash

SUMMARY OUTPUT								
Regression Sta	atistics							
Multiple R	0.6013							
R Square	0.3615							
Adjusted R Square	0.3462							
Standard Error	84.9863							
Observations	86							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	339462.374	169731.187	23.500	8.18756E-09			
Residual	83	599481.859	7222.673					
Total	85	938944.233						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	57.926	26.097	2.220	0.029	6.021	109.831	6.021	109.831
GFA per 1000sf	24.417	5.349	4.564	0.000	13.777	35.057	13.777	35.057
Carwash	43.806	22.253	1.969	0.052	-0.455	88.066	-0.455	88.066

	Variables:	VFP	+ GFA	Classifica	tions
--	------------	-----	-------	------------	-------

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.7315				
R Square	0.5350				
Adjusted R Square	0.5238				
Standard Error	72.5254				
Observations	86				

ANOVA

ANOVA					
	df	SS	MS	F	Significance F
Regression	2	502369.368	251184.684	47.754	1.5772E-14
Residual	83	436574.864	5259.938		
Total	85	938944.233			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-28.017	24.825	-1.129	0.262	-77.392	21.358	-77.392	21.358
VFP	7.048	1.911	3.688	0.000	3.247	10.849	3.247	10.849
GFA Classifications	60.933	13.203	4.615	0.000	34.672	87.194	34.672	87.194

Friday Regression Models

Variable: VFP

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.6021						
R Square	0.3625						
Adjusted R Square	0.3526						
Standard Error	97.3348						
Observations	66						

ANOVA

	df	SS	MS	F	Significance F
Regression	1	344848.043	344848.043	36.399	8.89132E-08
Residual	64	606340.397	9474.069		
Total	65	951188.439			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	17.034	37.717	0.452	0.653	-58.315	92.383	-58.315	92.383
VFP	14.681	2.433	6.033	0.000	9.820	19.543	9.820	19.543

			Variabic	S. VIT + OFA	
SUMMARY OUTPUT					
Regression S	Statistics	-			
Multiple R	0.6353	-			
R Square	0.4036				
Adjusted R Square	0.3847				
Standard Error	94.8892				
Observations	66				
ANOVA					
	df	SS	MS	F	Significance F
Regression	2	383938.377	191969.189	21.321	8.48207E-08
Residual	63	567250.062	9003.969		
Total	65	951188.439			
	0				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-8.832	38.809	-0.228	0.821	-86.385	68.721	-86.385	68.721
VFP	10.712	3.042	3.521	0.001	4.632	16.792	4.632	16.792
GFA per 1000sf	16.312	7.829	2.084	0.041	0.668	31.957	0.668	31.957

Variables: VFP + GFA

Friday Regression Models

Variables: VFP + GFA + Carwash

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.6354						
R Square	0.4037						
Adjusted R Square	0.3748						
Standard Error	95.6488						
Observations	66						

ANOVA

	df	SS	MS	F	Significance F
Regression	3	383969.974	127989.991	13.990	4.52951E-07
Residual	62	567218.466	9148.685		
Total	65	951188.439			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-9.809	42.507	-0.231	0.818	-94.780	75.162	-94.780	75.162
VFP	10.777	3.263	3.303	0.002	4.254	17.300	4.254	17.300
GFA per 1000sf	16.432	8.150	2.016	0.048	0.140	32.723	0.140	32.723
Carwash	-1.810	30.792	-0.059	0.953	-63.362	59.743	-63.362	59.743

Variables: VFP + Carwash

SUMMARY OUTPUT

Regression St	atistics						
Multiple R	0.6038						
R Square	0.3646						
Adjusted R Square	0.3444						
Standard Error	97.9479						
Observations	66						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	346779.972	173389.986	18.073	6.25915E-07		
Residual	63	604408.467	9593.785				
Total	65	951188.439					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 9

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	22.997	40.214	0.572	0.569	-57.364	103.358	-57.364	103.358
VFP	13.965	2.923	4.777	0.000	8.123	19.806	8.123	19.806
Carwash	13.701	30.532	0.449	0.655	-47.312	74.715	-47.312	74.715

Friday Regression Models

Variable: GFA

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0.5351							
R Square	0.2863							
Adjusted R Square	0.2752							
Standard Error	102.9913							
Observations	66							

ANOVA

	df	SS	MS	F	Significance F
Regression	1	272327.165	272327.165	25.674	3.682E-06
Residual	64	678861.274	10607.207		
Total	65	951188.439			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	59.514	36.474	1.632	0.108	-13.351	132.379	-13.351	132.379
GFA per 1000sf	33.571	6.625	5.067	0.000	20.335	46.807	20.335	46.807

Variables: GFA + Carwash

SUMMARY OUTPUT							
Regression Statis	tics						
Multiple R	0.5466						
R Square	0.2988						
Adjusted R Square	0.2765						
Standard Error	102.8957						
Observations	66						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	284174.518	142087.259	13.420	1.39589E-05		
Residual	63	667013.922	10587.523				
Total	65	951188.439					
	<i>(</i> , <i>)</i>					 05.00/	

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	69.693	37.689	1.849	0.069	-5.622	145.009	-5.622	145.009
GFA per 1000sf	29.472	7.670	3.843	0.000	14.145	44.799	14.145	44.799
Carwash	32.932	31.132	1.058	0.294	-29.280	95.145	-29.280	95.145

Variables		CEA	Classifications
variables.	VFF 1	FGFA	Classifications

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0.7096							
R Square	0.5035							
Adjusted R Square	0.4877							
Standard Error	86.5816							
Observations	66							

	df	SS	MS	F	Significance F
Regression	2	478916.851	239458.425	31.943	2.64025E-10
Residual	63	472271.588	7496.374		
Total	65	951188.439			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-29.056	35.276	-0.824	0.413	-99.550	41.438	-99.550	41.438
VFP	7.711	2.721	2.834	0.006	2.274	13.148	2.274	13.148
GFA Classifications	73.709	17.429	4.229	0.000	38.879	108.539	38.879	108.539

Saturday Regression Models

Variable: VFP

SUMMARY OUTPUT

De mare de la cherti	-41								
Regression Statistics									
Multiple R	0.5341								
R Square	0.2853								
Adjusted R Square	0.2741								
Standard Error	110.7503								
Observations	66								

ANOVA

	df	SS	MS	F	Significance F
Regression	1	313377.732	313377.732	25.549	3.85551E-06
Residual	64	785000.086	12265.626		
Total	65	1098377.818			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	28.493	42.916	0.664	0.509	-57.241	114.228	-57.241	114.228
VFP	13.995	2.769	5.055	0.000	8.464	19.527	8.464	19.527

Variables: VFP + GFA

SUMMARY OUTPUT

Regression Statistics									
Multiple R	0.5765								
R Square	0.3324								
Adjusted R Square	0.3112								
Standard Error	107.8895								
Observations	66								

ANOVA					
	df	SS	MS	F	Significance F
Regression	2	365049.229	182524.614	15.681	2.97321E-06
Residual	63	733328.589	11640.136		
Total	65	1098377.818			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1.245	44.126	-0.028	0.978	-89.423	86.933	-89.423	86.933
VFP	9.432	3.459	2.726	0.008	2.519	16.345	2.519	16.345
GFA per 1000sf	18.755	8.901	2.107	0.039	0.966	36.543	0.966	36.543

Variables:	VFP -	+ GFA	+ Carwash
v al rabiool			· our muon

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0.5767							
R Square	0.3326							
Adjusted R Square	0.3003							
Standard Error	108.7346							
Observations	66							

ANOVA

	df	SS	MS	F	Significance F
Regression	3	365338.912	121779.637	10.300	1.35824E-05
Residual	62	733038.906	11823.208		
Total	65	1098377.818			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1.715	48.323	0.035	0.972	-94.881	98.311	-94.881	98.311
VFP	9.233	3.710	2.489	0.016	1.818	16.649	1.818	16.649
GFA per 1000sf	18.392	9.265	1.985	0.052	-0.128	36.913	-0.128	36.913
Carwash	5.479	35.005	0.157	0.876	-64.494	75.453	-64.494	75.453

Variables: VFP + Carwash

SUMMARY OUTPUT

Regression St	atistics					
Multiple R	0.5387					
R Square	0.2902					
Adjusted R Square	0.2677					
Standard Error	111.2434					
Observations	66					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	318746.5718	159373.2859	12.8785	2.04565E-05	
Residual	63	779631.2464	12375.0991			
Total	65	1098377.8182				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	38.434	45.673	0.842	0.403	-52.835	129.703	-52.835	129.703
VFP	12.801	3.320	3.856	0.000	6.166	19.436	6.166	19.436
Carwash	22.840	34.677	0.659	0.513	-46.455	92.136	-46.455	92.136

Saturday Regression Models

Variable: GFA

SUMMARY OUTPUT

Regression Statistics									
Multiple R	0.5036								
R Square	0.2536								
Adjusted R Square	0.2419								
Standard Error	113.1824								
Observations	66								

ANOVA

	df	SS	MS	F	Significance F
Regression	1	278521.3981	278521.3981	21.7421	1.63317E-05
Residual	64	819856.4201	12810.2566		
Total	65	1098377.8182			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	58.933	40.083	1.470	0.146	-21.142	139.009	-21.142	139.009
GFA per 1000sf	33.950	7.281	4.663	0.000	19.405	48.496	19.405	48.496

Variables: GFA + Carwash

SUMMARY OUTPUT								
Regression St	tatistics							
Multiple R	0.5157							
R Square	0.2659							
Adjusted R Square	0.2426							
Standard Error	113.1292							
Observations	66							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	292090.1569	146045.0784	11.4114	5.89868E-05			
Residual	63	806287.6613	12798.2168					
Total	65	1098377.8182						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	69.827	41.438	1.685	0.097	-12.980	152.633	-12.980	152.633
GFA per 1000sf	29.564	8.433	3.506	0.001	12.713	46.416	12.713	46.416

0.307

-33.156

103.644

1.030

SUMMARY OUTPUT

Carwash

Regression Statistics								
Multiple R	0.6455							
R Square	0.4167							
Adjusted R Square	0.3982							
Standard Error	100.8423							
Observations	66							

35.244

ANOVA

7110 171					
	df	SS	MS	F	Significance F
Regression	2	457719.947	228859.974	22.505	4.21739E-08
Residual	63	640657.871	10169.173		
Total	65	1098377.818			

34.228

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-19.330	41.086	-0.470	0.640	-101.434	62.775	-101.434	62.775
VFP	6.763	3.169	2.134	0.037	0.430	13.095	0.430	13.095
GFA Classifications	76.481	20.300	3.768	0.000	35.915	117.048	35.915	117.048

-33.156

103.644

Appendix C Initial Regression Model Trip Generation Comparison

ſ	Equation/Rate:		14.05*V	FP-29.96	10.80*VFP+ 49	13.03*GFA- 21	8.57*VFP+59.39* GFA _{class} -69.24		
ľ	Site	Actual	VFP	% Diff	VFP + GFA	% Diff	VFP +	% Diff	
ł	NC-301	68	180 79	166%	184.46	171%	178.09	162%	
ł	NC-302	250	194.84	-22%	201.77	-19%	246.05	-2%	
I	NC-303	97	236.99	144%	271.96	180%	271.76	180%	
ŀ	NC-304	316	194.84	-38%	221.32	-30%	246.05	-22%	
ŀ	NC-305	30	110.54	268%	92.67	209%	75.85	153%	
ŀ	NC-307	214	279.14	456%	253.54	405%	236.06	267%	
ŀ	NC-308	311	194.84	-37%	221.32	-29%	246.05	-21%	
ľ	NC-309	68	96.49	42%	72.75	7%	67.28	-1%	
	NC-310	64	138.64	117%	126.00	97%	92.99	45%	
	NC-311	144	110.54	-23%	117.43	-18%	135.24	-6%	
ŀ	NC-312	165	202.10	-33%	127.85	-23%	135.24	-18%	
ŀ	NC-313	179	307.24	72%	285.56	60%	255.22	43%	
ľ	NE-201	318	194.84	-39%	220.01	-31%	246.05	-23%	
1	NE-202	143	82.44	-42%	90.61	-37%	118.1	-17%	
	NE-203	354	222.94	-37%	236.40	-33%	263.19	-26%	
	NE-204	171	138.64	-19%	136.42	-20%	152.38	-11%	
ŀ	NE-205	200	251.04	-24%	102.80	- 19%	220.94	-20%	
ŀ	NE-200	71	152.69	115%	128.98	82%	101.56	43%	
ľ	NE-208	69	82.44	19%	69.77	1%	58.71	-15%	
ļ	NE-209	44	82.44	87%	84.10	91%	58.71	33%	
ļ	NE-210	89	124.59	40%	107.38	21%	84.42	-5%	
ł	NE-211 NE-212	16/	222.94	33%	218.16	5%	203.8	22%	
ł	NE-212	201	152.69	-24%	156.34	-22%	160.95	-20%	
ł	NE-214	61	166.74	173%	173.66	185%	169.52	178%	
Ī	NE-215	78	124.59	60%	145.16	86%	143.81	84%	
ļ	NE-216	212	166.74	-21%	186.69	-12%	228.91	8%	
ŀ	NE-217	58 220	110.54	91%	163.03	181%	194.63	236%	
ŀ	NW-401	229	230.99	-20%	317.39	-15%	271.70	-10%	
ľ	NW-403	33	82.44	150%	76.28	131%	58.71	78%	
ľ	NW-404	42	138.64	230%	119.48	184%	92.99	121%	
	NW-405	90	110.54	23%	103.09	15%	75.85	-16%	
ŀ	NW-406	242	236.99	-2%	208.11	-14%	212.37	-12%	
ŀ	NW-407	278	279.14	3%	247.03	-11%	238.08	-14%	
ŀ	NW-409	234	194.84	-17%	200.47	-14%	186.66	-20%	
ľ	NW-410	217	180.79	-17%	202.70	-7%	237.48	9%	
	NW-411	247	279.14	13%	254.84	3%	238.08	-4%	
ŀ	NW-412	170	251.04	48%	260.61	53%	280.33	65%	
ŀ	SE-101 SE-102	263	251.04	-5%	271.03	145%	280.33	7%	
ŀ	SE-102	163	138.64	-15%	124.69	-24%	92.99	-43%	
	SE-104	153	110.54	-28%	112.21	-27%	135.24	-12%	
	SE-105	317	138.64	-56%	165.09	-48%	211.77	-33%	
ŀ	SE-107	138	110.54	-20%	105.70	-23%	75.85	-45%	
ŀ	SE-108 SE-109	331	194.84	-41% _9%	188.74	-43%	92.99	-44%	
ŀ	SE-110	79	138.64	75%	109.06	38%	92.99	18%	
	SE-111	45	138.64	208%	117.53	161%	92.99	107%	
	SE-112	181	138.64	-23%	118.18	-35%	92.99	-49%	
ļ	SE-113	188	110.54	-41%	113.52	-40%	135.24	-28%	
ł	SE-114 SE-115	343	251.04	-27%	239 76	-30%	220 94	-36%	
ł	SE-116	475	377.49	-21%	360.41	-24%	357.46	-25%	
t	SE-117	280	307.24	10%	295.99	6%	314.61	12%	
ļ	SE-119	308	194.84	-37%	227.83	-26%	246.05	-20%	
	SE-120	451	293.19	-35%	299.52	-34%	306.04	-32%	
ł	SE-121	424	447.74 194.84	0%	402.69 244 77	-5% 250%	400.31 246.05	-0% 252%	
ł	SW-502	40	82.44	106%	69.77	74%	58.71	47%	
t	SW-503	57	82.44	45%	94.52	66%	118.1	107%	
ļ	SW-504	238	236.99	0%	238.08	0%	271.76	14%	
	SW-505	245	293.19	20%	303.43	24%	306.04	25%	
ł	SW-506	229	82.44 138.64	-04% Q5%	89.31 123.30	-01% 74%	92.00	-48%	
ł	SW-508	130	152.69	17%	149.83	15%	160.95	24%	
ł	SW-509	296	251.04	-15%	244.97	-17%	280.33	-5%	
ļ	SW-510	362	236.99	-35%	231.56	-36%	212.37	-41%	
	SW-511	31	82.44	166%	69.77	125%	58.71	89%	
ł	SW-512 SW/_512	319 52	124.59 82 44	-01% 50%	124.32 50 3/	-01% 14%	143.81 58.71	-55% 13%	
ł	SW-514	166	82.44	-50%	67.16	-60%	58.71	-65%	
ł	<u>SW-5</u> 15	109	82.44	-24%	71.07	-35%	58.71	-46%	
Į	SW-516	31	110.54	257%	95.27	207%	75.85	145%	
ļ	SW-517	42	180.79	330%	189.67	352%	178.09	324%	
ł	SW-518	265	251.04	-48%	163.78	-38%	211.//	-20%	
ł	SW-519	207	194.84	-22%	197.86	-4%	186.66	-10%	
ł	SW-521	270	307.24	14%	350.71	30%	314.61	17%	
ľ	SW-522	106	152.69	44%	149.83	41%	160.95	52%	
	SW-523	114	180.79	59%	170.12	49%	178.09	56%	
	511/-524	60	138.64	131%	139.03	132%	15238	154%	

AM Trips

E 11 10 1				9.22*VFP+	13.88*GFA-	7.05*VFP+60.93*		
Equ	ation/Rate:	12.68*VI	P+12.28		20	GFA class	-28.02	
	Actual			÷		VED +		
Site	Trips	VFP	% Diff	VFP + GFA	% Diff	CEA	% Diff	
110.001	nips	000.10	1000/	00/ 11	4.070/	GFA Class.	1000/	
NC-301	87	202.48	133%	206.44	137%	199.59	129%	
NC-302	277	215.16	-22%	222.60	-20%	267.57	-3%	
NC-303	112	253.20	126%	290.51	159%	288.72	158%	
NC-304	347	215.16	-38%	243.42	-30%	267.57	-23%	
NC-305	40	139.08	248%	120.09	200%	103.41	159%	
NC-306	288	291.24	1%	264.04	-8%	248.94	-14%	
NC-307	52	189.80	265%	173.62	234%	131.61	153%	
NC-308	318	215.16	-32%	243.42	-23%	267.57	-16%	
NC-309	118	126.40	7%	101.15	-14%	96.36	-18%	
NC-310	111	164.44	48%	151.02	36%	117.51	6%	
NC-311	132	139.08	5%	146.46	11%	164.34	25%	
NC-312	201	139.08	-31%	157.56	-22%	164.34	-18%	
NC-313	357	303.92	-15%	310.74	-13%	316.92	-11%	
NC-314	201	316.60	58%	293 58	46%	263.04	31%	
NE-201	252	215 16	-15%	2/2.00	-1%	267.57	6%	
NE-202	137	113 72	-17%	122.03	-11%	150.24	10%	
NE 202	220	240.52	27%	254.02	220/	201.67	15%	
NE 204	201	240.32	-27/0	234.72	-23/0	170 //	-13/0	
NE-204	201	104.44	-10%	102.12	-19%	1/6.44	-1170	
NE-205	220	1/7.12	-19%	188.00	-15%	185.49	-10%	
NE-206	124	265.88	114%	246.99	99%	234.84	89%	
NE-207	97	1/7.12	83%	151.91	57%	124.56	28%	
NE-208	94	113.72	21%	100.26	7%	89.31	-5%	
NE-209	66	113.72	72%	115.53	75%	89.31	35%	
NE-210	131	151.76	16%	133.47	2%	110.46	-16%	
NE-211	195	240.52	23%	235.49	21%	220.74	13%	
NE-212	209	215.16	3%	201.78	-3%	206.64	-1%	
NE-213	262	177.12	-32%	181.06	-31%	185.49	-29%	
NE-214	96	189.80	98%	197.22	105%	192.54	101%	
NE-215	119	151.76	28%	173.72	46%	171.39	44%	
NE-216	258	189.80	-26%	211.10	-18%	253.47	-2%	
NE-217	89	139.08	56%	195.04	119%	225.27	153%	
NW-401	332	253.20	-24%	298.84	-10%	288.72	-13%	
NW-402	291	291.24	0%	332.05	14%	309.87	6%	
NW-403	92	113 72	24%	107.20	17%	89.31	-3%	
NW-403	98	164.44	87%	144.08	6/%	117.51	3/%	
NW-404	120	130 08	8%	131 10	2%	103 /1	-20%	
NW 406	275	252.20	0%	222.50	2.70	227.70	17%	
NW 407	275	201.24	-0 /0	222.30	-17/0	227.77	-17/0	
NWV-407	203	291.24	1170	200.70	-270	240.94	-370	
NVV-408	225	215.10	-4%	208.72	-1%	200.04	-8%	
NVV-409	254	215.16	-15%	221.21	-13%	206.64	-19%	
NW-410	294	202.48	-31%	225.87	-23%	260.52	-11%	
NW-411	261	291.24	12%	265.43	2%	248.94	-5%	
NVV-412	214	265.88	24%	276.14	29%	295.77	38%	
SE-101	88	177.12	101%	1/8.//	103%	185.49	111%	
SE-102	261	265.88	2%	287.24	10%	295.77	13%	
SE-103	179	164.44	-8%	149.63	-16%	117.51	-34%	
SE-104	200	139.08	-30%	140.91	-30%	164.34	-18%	
SE-105	322	164.44	-49%	192.66	-40%	239.37	-26%	
SE-107	171	139.08	-19%	133.97	-22%	103.41	-40%	
SE-108	299	215.16	-28%	208.72	-30%	206.64	-31%	
SE-109	150	164.44	10%	142.69	-5%	117.51	-22%	
SE-110	84	164.44	96%	132.98	58%	117.51	40%	
SE-111	81	164.44	103%	142.00	75%	117.51	45%	
SE-112	218	164.44	-25%	142.69	-35%	117.51	-46%	
SE-113	296	139.08	-53%	142.30	-52%	164.34	-44%	
SE-114	134	215.16	61%	200.39	50%	206.64	54%	
SE-115	381	265.88	-30%	253.93	-33%	234.84	-38%	
SE-116	363	380.00	5%	361.89	0%	359.22	-1%	
SE-117	350	316.60	-10%	304.69	-13%	323.97	-7%	
SE-119	389	215.16	-45%	250.36	-36%	267.57	-31%	
SE-120	442	303.92	-31%	310.74	-30%	316.92	-28%	
SE-121	427	443.40	4%	395.50	-7%	394.47	-8%	
SW-501	74	215.16	191%	268.40	263%	267.57	262%	
SW-502	47	113.72	142%	100.26	113%	89.31	90%	
SW-502	76	113 72	50%	126.63	67%	150.24	98%	
SW-503	320	252.20	.22%	25/ 12	-23%	288 72	.12%	
SW-304	2/0	203.20	2370	21/ 00	21%	216.02	22%	
SW-202	24U 107	112 70	_12%	101 00	_20%	150.72	-24%	
SIN/ E07	114	16/ //	/ 2%	1/10 0/	290/	117 51	-241/0	
SIN/ E00	100	104.44	4270	140.24	20%	10F 40	1 70 QE 0/	
SMC-046	100	1//.1Z	1170	174.1Z 2E0.40	/4%	100.49	00%	
SW-509	2/1	200.00	-2%	207.48	-4%	270.11	9%	
SVV-510	305	203.20	-1/%	247.48	-19%	221.19	-25%	
SW-511	42	113.72	1/1%	100.26	139%	δ9.31 171.00	113%	
SVV-512	34/	101.76	-56%	151.52	-56%	1/1.39	-51%	
SVV-513	85	113.72	34%	89.16	5%	89.31	5%	
SW-514	218	113.72	-48%	97.48	-55%	89.31	-59%	
SW-515	143	113.72	-20%	101.65	-29%	89.31	-38%	
SW-516	39	139.08	257%	122.86	215%	103.41	165%	
SW-517	71	202.48	185%	211.99	199%	199.59	181%	
SW-518	327	164.44	-50%	191.27	-42%	239.37	-27%	
SW-519	318	265.88	-16%	281.69	-11%	295.77	-7%	
SW-520	186	215.16	16%	218.44	17%	206.64	11%	
SW-521	292	316.60	8%	362.98	24%	323.97	11%	
SW-522	128	177.12	38%	174.12	36%	185.49	45%	
SW-523	164	202.48	23%	191.17	17%	199.59	22%	
SW-524	79	164 44	108%	164.90	109%	178 44	126%	

PM Trips

			THuu	10 71*VEP+	16 31*GFA.	7.71*VFP+73.71*		
Equation/Rate:		14.68*VFP+17.03		10.71 VFF+	10.31 GFA-	GFA ann -29.06		
				0.0	55	ULC Class	27.00	
Site	Actual	VFP	% Diff	VFP + GFA	% Diff	VFP+	% Diff	
	Trips					GFA class.		
NC-302	373	251.91	-32%	260.39	-30%	315.43	-15%	
NC-303	175	295.95	69%	339.82	94%	338.56	93%	
NC-304	330	251.91	-24%	284.86	-14%	315.43	-4%	
NC-305	61	163.83	169%	140.68	131%	121.75	100%	
NC-306	347	339.99	-2%	308.34	-11%	287.98	-17%	
NC-307	64	222.55	248%	203.09	217%	152.59	138%	
NC-308	327	251 91	-23%	284.86	-13%	315.43	-4%	
NC-310	122	193 19	58%	176 78	45%	137.17	12%	
NC-311	170	163.83	-8%	171.67	-1%	105.46	0%	
NC 212	220	163.03	-070	104 71	-4/0	105.40	110/	
NC 212	220	254.67	-20%	262.00	-10%	260.4	-11/0	
NC 214	270	240.25	-0/0	242.01	-070	202.4	-J /0 1 00/	
NC-314	270	309.33	3770	342.01	2170	303.4	12%	
NE-201	260	251.91	-3%	283.22	9%	315.43	21%	
NE-202	170	134.47	-21%	143.72	-15%	180.04	6%	
NE-203	377	281.27	-25%	298.12	-21%	330.85	-12%	
NE-204	235	193.19	-18%	189.82	-19%	210.88	-10%	
NE-205	321	207.87	-35%	220.11	-31%	218.59	-32%	
NE-206	146	310.63	113%	288.55	98%	272.56	87%	
NE-207	131	207.87	59%	177.70	36%	144.88	11%	
NE-208	94	134.47	43%	117.63	25%	106.33	13%	
NE-209	90	134.47	49%	135.57	51%	106.33	18%	
NE-210	151	178.51	18%	156.28	3%	129.46	-14%	
NF-211	197	281.27	43%	275.29	40%	257.14	31%	
NF-212	200	251 91	26%	235.93	18%	241 72	21%	
NE-213	323	207.87	-36%	211.95	-34%	218 59	-32%	
NE-214	117	207.07	00%	230.82	07%	210.07	03%	
NE 215	112	170 51	50%	200.02	9/1/0	220.3	90%	
NE 214	202	170.01	240/	203.30	140/	203.17	20/	
NE-210	293	222.00	-24%	247.13	-10%	300.01	270	
NE-217	91	163.83	80%	228.75	151%	269.17	196%	
NW-401	497	295.95	-40%	349.61	-30%	338.56	-32%	
NW-402	320	339.99	6%	388.26	21%	361.69	13%	
NW-403	93	134.47	45%	125.78	35%	106.33	14%	
NW-404	102	193.19	89%	168.62	65%	137.17	34%	
NW-405	146	163.83	12%	153.72	5%	121.75	-17%	
NW-406	331	295.95	-11%	259.90	-21%	264.85	-20%	
NW-407	302	339.99	13%	300.19	-1%	287.98	-5%	
NW-408	271	251.91	-7%	244.08	-10%	241.72	-11%	
NW-409	304	251.91	-17%	258.76	-15%	241.72	-20%	
NW-410	347	237.23	-32%	264.36	-24%	307.72	-11%	
NW-411	270	339.99	26%	309.97	15%	287.98	7%	
NW-412	273	310.63	39%	322.80	45%	346.27	55%	
SE-101	101	207.87	106%	200.26	107%	218 50	116%	
SE-101	211	310.63	0%	207.20	8%	346.07	11%	
SE-102	2///	162 02	_220/	165 14	_2.20%	105 //	_20%	
SE 10E	244	103.03	-33%	10J.14 22F 71	-32%	173.40	-20%	
SE-100	303	142.02	-4770	154.00	-30%	204.07	-22%	
SE-107	103	103.83	1%	100.99	-4%	121.75	-25%	
SE-108	335	251.91	-25%	244.08	-21%	241.72	-28%	
SE-110	119	193.19	62%	155.57	31%	137.17	15%	
SE-111	84	193.19	130%	166.17	98%	137.17	63%	
SE-112	227	193.19	-15%	166.99	-26%	137.17	-40%	
SE-113	337	163.83	-51%	166.77	-51%	195.46	-42%	
SE-115	393	310.63	-21%	296.71	-25%	272.56	-31%	
SE-116	478	442.75	-7%	422.45	-12%	415.66	-13%	
SE-117	375	369.35	-2%	355.86	-5%	377.11	1%	
SW-501	113	251.91	123%	314.21	178%	315.43	179%	
SW-502	65	134.47	107%	117.63	81%	106.33	64%	
SW-504	366	295.95	-19%	297.41	-19%	338.56	-7%	
SW-506	255	134.47	-47%	142.09	-44%	180.04	-29%	
SW-507	138	193.19	40%	173.51	26%	137.17	-1%	
SW-509	358	310.63	-13%	303.23	-15%	346.27	-3%	
SW-510	338	295.95	-12%	289.26	-14%	264.85	-22%	
SW-511	52	134 47	159%	117.63	126%	106.33	104%	
SW-512	515	178 51	-65%	177.48	-66%	203 17	-61%	
SW-512	128	134.47	5%	110.26	-7%	106.32	-17%	
SW-515	61	162.02	160%	1/2 0/	126%	100.33 101.7F	100%	
SVV-010	7/	103.03	0109%	143.74	130%	121.70	2000/	
200-21/	/0	231.23	21270	248.UD	220%	Z34.01	208%	

Friday Trips

	Equation/Rate:		14.00*VFP+28.49		9.43*VFP+18.76*		6.76*VFP+76.48*	
	7	Actual			GFA-	1.25	GFA _{Class}	_x -19.33
	Site	Trips	VFP	% Diff	VFP + GFA	% Diff	GFA Class.	% Diff
N	VC-302	426	252.49	-41%	262.19	-38%	318.27	-25%
Ν	VC-303	153	294.49	92%	344.88	125%	338.55	121%
Ν	VC-304	482	252.49	-48%	290.33	-40%	318.27	-34%
N	NC-305	69	168.49	144%	141.83	106%	124.75	81%
P	NC-306	420	336.49	-20%	300.01	-29%	282.35	-33%
- N	VC-308	375	252 49	-33%	202.00	-23%	318.27	-15%
N	VC-310	94	196.49	109%	177.57	89%	138.27	47%
Ν	NC-311	127	168.49	33%	177.47	40%	201.23	58%
Ν	VC-312	192	168.49	-12%	192.48	0%	201.23	5%
N	VC-313	474	350.49	-26%	360.09	-24%	365.59	-23%
	NC-314	319	364.49	61%	333.88	%C 8/1%	295.87	-7%
	VE-201	157	140.49	-8%	151 11	-1%	187 71	23%
Ň	VE-202	295	280.49	-5%	299.81	2%	331.79	12%
Ν	NE-204	303	196.49	-35%	192.58	-36%	214.75	-29%
Γ	NE-205	249	210.49	-15%	224.52	-10%	221.51	-11%
N	NE-206	108	308.49	186%	283.03	162%	268.83	149%
	NE-207	119	210.49	11%	1/5./4	48%	145.03	22%
	VE-200	144	140.49	-2%	141.09	-2%	111.23	-23%
Ň	VE-210	191	182.49	-4%	156.88	-18%	131.51	-31%
ſ	NE-211	183	280.49	53%	273.55	49%	255.31	40%
Ν	NE-212	285	252.49	-11%	234.05	-18%	241.79	-15%
Ν	VE-213	291	210.49	-28%	215.14	-26%	221.51	-24%
1	NE-214	126	224.49	78%	233.95	86%	228.27	81%
	VE-215	351	182.49	-36%	211.29	-28%	207.99	-13%
ľ	NE-210	134	168.49	26%	243.13	81%	277.71	107%
N	W-401	463	294.49	-36%	356.14	-23%	338.55	-27%
N	IW-402	349	336.49	-4%	391.93	12%	358.83	3%
N	IW-403	125	140.49	12%	130.47	4%	111.23	-11%
N	IW-404	9/	196.49	103%	168.19	73%	138.27	43%
N	IW-405	388	294.49	-24%	252.96	-35%	262.07	-32%
N	W-407	225	336.49	50%	290.63	29%	282.35	25%
N	IW-408	317	252.49	-20%	243.43	-23%	241.79	-24%
N	IW-409	408	252.49	-38%	260.31	-36%	241.79	-41%
IN N	IW-410	346 251	238.49	-31%	269.64	-22%	311.51	-10%
N	W-412	259	308.49	19%	322.42	24%	345.31	33%
5	SE-101	93	210.49	126%	212.04	128%	221.51	138%
5	SE-102	335	308.49	-8%	337.43	1%	345.31	3%
5	SE-104	246	168.49	-32%	169.97	-31%	201.23	-18%
	SE-105	30/	140.49	-46% 10%	233.85	-36%	291.23	-21%
	SE-107	333	252.49	-24%	243.43	-27%	241.79	-12%
	SE-110	83	196.49	137%	153.18	85%	138.27	67%
9	SE-111	77	196.49	155%	165.38	115%	138.27	80%
3	SE-112	221	196.49	-11%	166.31	-25%	138.27	-37%
	SE-113	286	168.49	-41%	171.84	-40%	201.23	-30%
	SE-115	418 308	308.49	-20% 41%	292.41 411.04	-30%	208.83	-30%
Ģ	SE-117	322	364.49	13%	348.89	8%	372.35	16%
S	W-501	89	252.49	184%	324.10	264%	318.27	258%
S	SW-502	65	140.49	116%	121.09	86%	111.23	71%
S	W-504	351	294.49	-16%	296.11	-16%	338.55	-4%
S	W-506	218	140.49	-36%	149.23	-32%	187.71	-14%
- S	W-507	154	308.49	28%	1/3.82	2%	3/5 31	-10%
5	SW-510	397	294.49	-26%	286.73	-28%	262.07	-34%
S	SW-511	68	140.49	107%	121.09	78%	111.23	64%
S	SW-512	535	182.49	-66%	181.27	-66%	207.99	-61%
S	W-515	123	140.49	14%	122.97	0%	111.23	-10%
S	W-516	52	168.49	224%	145.58	180%	124.75	140%
S	wv-517	62	238.49	285%	250.88	305%	235.03	279%

Saturday Trips

Appendix D Regression Summaries, Diesel versus Non-Diesel

Build Model - AM Regression Model

Variable: Diesel-VFP

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6184
R Square	0.3825
Adjusted R Square	0.3681
Standard Error	13.4469
Observations	45

	df		SS	MS	F	Significance F
Regression		1	4815.565714	4815.565714	26.6319082	5.97235E-06
Residual		43	7775.234286	180.819402		
Total		44	12590.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-6.954	5.306	-1.311	0.197	-17.655	3.747	-17.655	3.747
DieselFueling Positions	7.869	1.525	5.161	0.000	4.794	10.943	4.794	10.943

Variables: Diesel-VFP + GFA SUMMARY OUTPUT Regression Statistics Multiple R 0.6477 R Square 0.4195
SUMMARY OUTPUT Regression Statistics Multiple R 0.6477 R Square 0.4195
Regression StatisticsMultiple R0.6477R Square0.4195
Regression Statistics Multiple R 0.6477 R Square 0.4195
Multiple R 0.6477 R Square 0.4195
R Square 0.4195
Adjusted R Square 0.3919
Standard Error 13.1916
Observations 45
ANOVA
df SS MS F Significa

	.,		-		- 5)
Regression	2	5282.071191	2641.035596	15.1768519	1.09537E-05
Residual	42	7308.728809	174.0173526		
Total	44	12590.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-14.590	6.989	-2.088	0.043	-28.694	-0.486	-28.694	-0.486
DieselFueling Positions	7.133	1.562	4.567	0.000	3.981	10.285	3.981	10.285
GFA per 1000sf	1.773	1.083	1.637	0.109	-0.412	3.959	-0.412	3.959

Build Model - AM Regression Model

Trial 3

Variables: Diesel-VFP + Metro Area Populations

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6316
R Square	0.3989
Adjusted R Square	0.3703
Standard Error	13.4235
Observations	45

ANOVA

nitern						
	df		SS	MS	F	Significance F
Regression		2	5022.754421	2511.377211	13.9372632	2.27792E-05
Residual		42	7568.045579	180.1915614		
Total		44	12590.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-6.695	5.303	-1.263	0.214	-17.396	4.006	-17.396	4.006
DieselFueling Positions	6.977	1.734	4.023	0.000	3.477	10.477	3.477	10.477
Metro Area Population	1.384	1.291	1.072	0.290	-1.221	3.989	-1.221	3.989

<u>Trial 4</u> Variable: GFA

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.3623				
R Square	0.1312				
Adjusted R Square	0.1110				
Standard Error	15.9493				
Observations	45				

	df	SS	MS	F	Significance F
Regression	1	1652.467982	1652.467982	6.49606568	0.014463315
Residual	43	10938.33202	254.3798144		
Total	44	12590.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.364	7.465	0.049	0.961	-14.692	15.419	-14.692	15.419
GFA per 1000sf	3.196	1.254	2.549	0.014	0.667	5.725	0.667	5.725

Build Model - AM Regression Model

Trial 5

Variables: GFA + Metro Area Populations

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.5174
R Square	0.2677
Adjusted R Square	0.2328
Standard Error	14.8168
Observations	45

	df		SS	MS	F	Significance F
Regression		2	3370.160467	1685.080234	7.67553807	0.001441658
Residual		42	9220.639533	219.5390365		
Total		44	12590.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-4.128	7.119	-0.580	0.565	-18.494	10.238	-18.494	10.238
GFA per 1000sf	2.814	1.173	2.399	0.021	0.446	5.181	0.446	5.181
Metro Area Population	3.521	1.259	2.797	0.008	0.981	6.062	0.981	6.062

Build Model - PM Regression Model

Variable: Diesel-VFP

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6589
R Square	0.4341
Adjusted R Square	0.4192
Standard Error	6.9841
Observations	40

ANOVA

	df		SS	MS	F	Significance F
Regression		1	1422.066506	1422.066506	29.1543301	3.7902E-06
Residual		38	1853.533494	48.7771972		
Total		39	3275.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-4.598	2.938	-1.565	0.126	-10.545	1.349	-10.545	1.349
DieselFueling Positions	4.420	0.819	5.399	0.000	2.763	6.078	2.763	6.078

	Trial 2
Variables:	Diesel-VFP + GFA

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6760
R Square	0.4570
Adjusted R Square	0.4276
Standard Error	6.9336
Observations	40

	df	SS	MS	F	Significance F
Regression	2	1496.815941	748.4079707	15.5674292	1.24279E-05
Residual	37	1778.784059	48.07524483		
Total	39	3275.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-8.365	4.199	-1.992	0.054	-16.872	0.143	-16.872	0.143
DieselFueling Positions	4.201	0.832	5.051	0.000	2.516	5.886	2.516	5.886
GFA per 1000sf	0.762	0.611	1.247	0.220	-0.476	2.001	-0.476	2.001

Build Model - PM Regression Model

Trial 3

Variables: Diesel-VFP + Metro Area Populations

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.6603				
R Square	0.4359				
Adjusted R Square	0.4055				
Standard Error	7.0665				
Observations	40				

ANOVA

/mon/						
	df		SS	MS	F	Significance F
Regression		2	1427.983509	713.9917547	14.2982567	2.50864E-05
Residual		37	1847.616491	49.93558083		
Total		39	3275.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-4.521	2.981	-1.517	0.138	-10.560	1.519	-10.560	1.519
DieselFueling Positions	4.252	0.962	4.419	0.000	2.302	6.202	2.302	6.202
Metro Area Population	0.258	0.748	0.344	0.733	-1.258	1.773	-1.258	1.773

<u>Trial 4</u> Variable: GFA

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.2873					
R Square	0.0825					
Adjusted R Square	0.0584					
Standard Error	8.8930					
Observations	40					

	df	SS	MS	F	Significance F
Regression	1	270.3619437	270.3619437	3.41861565	0.072256274
Residual	38	3005.238056	79.08521201		
Total	39	3275.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1.741	4.735	0.368	0.715	-7.844	11.326	-7.844	11.326
GFA per 1000sf	1.417	0.766	1.849	0.072	-0.134	2.968	-0.134	2.968

Build Model - PM Regression Model

Trial 5

Variables: GFA + Metro Area Populations

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.4458						
R Square	0.1987						
Adjusted R Square	0.1554						
Standard Error	8.4225						
Observations	40						

ANOVA						
	df		SS	MS	F	Significance F
Regression		2	650.8839287	325.4419643	4.58767819	0.016601302
Residual		37	2624.716071	70.9382722		
Total		39	3275.6			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.458	4.584	-0.100	0.921	-9.745	8.830	-9.745	8.830
GFA per 1000sf	1.220	0.731	1.670	0.103	-0.260	2.701	-0.260	2.701
Metro Area Population	1.790	0.773	2.316	0.026	0.224	3.356	0.224	3.356

Appendix E Final Regression Summaries VFP + GFA Classifications (See Appendix B)

GFA	Class.	+	Metro	100.000
~	0.000.			100/000

SUMMARY OUTPUT

Regression Stati	istics
Multiple R	0.7051
R Square	0.4972
Adjusted R Square	0.4851
Standard Error	79.2647
Observations	86

AN	10	/A
----	----	----

	df	SS	MS	F	Significance F
Regression	2	515605.691	257802.845	41.032	4.06499E-13
Residual	83	521480.263	6282.895		
Total	85	1037085.953			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-30.526	24.684	-1.237	0.220	-79.621	18.569	-79.621	18.569
GFA Class.	96.252	11.117	8.658	0.000	74.141	118.364	74.141	118.364
Metro Area +/- 100k	43.595	18.428	2.366	0.020	6.942	80.248	6.942	80.248

GFA Class. + Metro 300,000								
SUMMARY OUTPUT								
Regression Sta	atistics							
Multiple R	0.7052				88.2			
R Square	0.4974				8	11.025		
Adjusted R Square	0.4852					5.92		
Standard Error	79.2497					0.536961451		
Observations	86							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	515803.4	257901.7	41.064	4.00151E-13			
Residual	83	521282.5	6280.5					
Total	85	1037086.0						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95 0%	l Inner 95 0%
Intercent	-25 385	24 331	-1 043	0.300	-73 777	23 008	-73 777	23.008
GFA Class	95.680	11 126	8 600	0.000	73 551	117 810	73 551	117 810
Metro Area +/- 300k	52.189	21.995	2.373	0.020	8.442	95.936	8.442	95.936

VFP + GFA Class. + Metro 300,000

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.7585						
R Square	0.5753						
Adjusted R Square	0.5598						
Standard Error	73.2878						
Observations	86						

ANOVA

	df	SS	MS	F	Significance F			
Regression	3	596655.2	198885.1	37.029	3.14116E-15			
Residual	82	440430.8	5371.1					
Total	85	1037086.0						

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-68.471	25.092	-2.729	0.008	-118.386	-18.556	-118.386	-18.556
GFA Class.	61.959	13.469	4.600	0.000	35.166	88.753	35.166	88.753
Metro Area +/- 300k	29.562	21.160	1.397	0.166	-12.532	71.655	-12.532	71.655
VFP	7.794	2.009	3.880	0.000	3.798	11.790	3.798	11.790

VFP + GFA Class. (< Metro 300,000)

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.7016
R Square	0.4922
Adjusted R Square	0.4770
Standard Error	72.2870
Observations	70

	df	SS	MS	F	Significance F			
Regression	2	339323.7	169661.9	32.469	1.38417E-10			
Residual	67	350102.0	5225.4					
Total	69	689425.8						

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-44.79	28.511	-1.571	0.121	-101.694	12.121	-101.694	12.121
GFA Class.	63.51	14.250	4.456	0.000	35.062	91.950	35.062	91.950
VFP	5.91	2.273	2.601	0.011	1.375	10.449	1.375	10.449

VFP + GFA Class. (≥ Metro 300,000)

SUMMARY OUTPUT

Regression Stat	tistics	
Multiple R	0.8670	
R Square	0.7516	
Adjusted R Square	0.7134	
Standard Error	75.2431	
Observations	16	
ANOVA		
	df	SS
Regression	2	222727.9
Residual	13	73599.9
Total	15	296327.8

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-108.66	57.515	-1.889	0.081	-232.913	15.592	-232.913	15.592
GFA Class.	54.28	38.244	1.419	0.179	-28.338	136.905	-28.338	136.905
VFP	12.68	4.614	2.747	0.017	2.708	22.646	2.708	22.646

F

 F
 Significance F

 19.670
 0.000116998

MS 111363.9

5661.5

VFP + GFA Classifications (See Appendix B)

GFA Class. + Metro 100,000

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6931
R Square	0.4804
Adjusted R Square	0.4678
Standard Error	76.6718
Observations	86

Δ	N	\cap	v	Δ
	1 1	U	v	~

лиот					
	df	SS	MS	F	Significance F
Regression	2	451023.1	225511.5	38.362	1.59206E-12
Residual	83	487921.2	5878.6		
Total	85	938944.2			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-28.445	32.564	-0.874	0.385	-93.214	36.324	-93.214	36.324
GFA Class.	91.318	10.754	8.492	0.000	69.930	112.707	69.930	112.707
Metro Area +/- 100k	33.041	17.825	1.854	0.067	-2.413	68.495	-2.413	68.495

GFA Class. + Metro 300,000

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.6872				
R Square	0.4723				
Adjusted R Square	0.4596				
Standard Error	77.2653				
Observations	86				

	df	SS	MS	F	Significance F
Regression	2	443440.4	221720.2	37.140	3.01925E-12
Residual	83	495503.8	5969.9		
Total	85	938944.2			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-21.604	33.773	-0.640	0.524	-88.777	45.570	-88.777	45.570
GFA Class.	91.122	10.847	8.400	0.000	69.547	112.697	69.547	112.697
Metro Area +/- 300k	31.172	21.444	1.454	0.150	-11.479	73.824	-11.479	73.824

VFP + GFA Class. + Metro 300,000

SUMMARY OUTPUT

Regression Statistic	CS
Multiple R	0.7326
R Square	0.5368
Adjusted R Square	0.5198
Standard Error	72.8315
Observations	86

ANOVA

	df	SS	MS	F	Significance F
Regression	3	503981.4	167993.8	31.670	1.07245E-13
Residual	82	434962.9	5304.4		
Total	85	938944.2			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-27.715	24.935	-1.111	0.270	-77.320	21.889	-77.320	21.889
GFA Class.	61.942	13.385	4.628	0.000	35.316	88.569	35.316	88.569
Metro Area +/- 300k	11.592	21.028	0.551	0.583	-30.239	53.423	-30.239	53.423
VFP	6.744	1.996	3.378	0.001	2.773	10.716	2.773	10.716

VFP + GFA Class. (< Metro 300,000)

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6804
R Square	0.4630
Adjusted R Square	0.4469
Standard Error	73.9351
Observations	70

	df	SS	MS	F	Significance F
Regression	2	315731.9	157866	28.879	9.01872E-10
Residual	67	366249.2	5466		
Total	69	681981.1			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-12.15	29.161	-0.417	0.678	-70.353	46.056	-70.353	46.056
GFA Class.	60.09	14.575	4.123	0.000	31.002	89.187	31.002	89.187
VFP	5.91	2.325	2.543	0.013	1.272	10.553	1.272	10.553

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.8572				
R Square	0.7348				
Adjusted R Square	0.6940				
Standard Error	69.2134				
Observations	16				

	df	SS	MS	F	Significance F
Regression	2	172515.4	86257.7	18.006	0.000179334
Residual	13	62276.4	4790.5		
Total	15	234791.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-65.54	52.906	-1.239	0.237	-179.835	48.756	-179.835	48.756
GFA Class.	75.75	35.179	2.153	0.051	-0.250	151.751	-0.250	151.751
VFP	7.88	4.245	1.857	0.086	-1.286	17.053	-1.286	17.053

Friday Regression Models with Metro Variables

VFP + GFA Classifications (See Appendix B)

GFA	Class.	+	Metro	100	,000
-----	--------	---	-------	-----	------

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.6720				
R Square	0.4515				
Adjusted R Square	0.4341				
Standard Error	90.9986				
Observations	66				

ANOVA

	df	SS	MS	F	Significance F
Regression	2	429501.3	214750.7	25.934	6.06767E-09
Residual	63	521687.1	8280.7		
Total	65	951188.4			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-15.493	46.714	-0.332	0.741	-108.843	77.857	-108.843	77.857
GFA Class.	104.597	14.599	7.165	0.000	75.424	133.770	75.424	133.770
Metro Area +/- 100,000	30.569	26.773	1.142	0.258	-22.933	84.071	-22.933	84.071

GFA Class. + Metro 300,000

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6765
R Square	0.4576
Adjusted R Square	0.4404
Standard Error	90.4920
Observations	66

	df	SS	MS	F	Significance F
Regression	2	435294.5	217647.2	26.579	4.26833E-09
Residual	63	515894.0	8188.8		
Total	65	951188.4			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-50.436	60.905	-0.828	0.411	-172.145	71.274	-172.145	71.274
GFA Class.	105.450	14.549	7.248	0.000	76.376	134.524	76.376	134.524
Metro Area +/- 300,000	66.699	46.863	1.423	0.160	-26.949	160.348	-26.949	160.348

Friday Regression Models with Metro Variables

VFP + GFA Class. + Metro 300,000

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.7136
R Square	0.5092
Adjusted R Square	0.4854
Standard Error	86.7749
Observations	66

ANOVA

	df	SS	MS	F	Significance F
Regression	3	484335.3	161445.1	21.441	1.20643E-09
Residual	62	466853.2	7529.9		
Total	65	951188.4			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-68.968	58.853	-1.172	0.246	-186.614	48.678	-186.614	48.678
GFA Class.	76.928	17.876	4.303	0.000	41.195	112.662	41.195	112.662
Metro Area +/- 300,000	39.201	46.212	0.848	0.400	-53.175	131.577	-53.175	131.577
VFP	7.156	2.804	2.552	0.013	1.551	12.761	1.551	12.761

VFP + GFA Class. (< Metro 300,000)

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.6828
R Square	0.4662
Adjusted R Square	0.4481
Standard Error	88.1221
Observations	62

	df	SS	MS	F	Significance F
Regression	2	400208.7	200104	25.768	9.05079E-09
Residual	59	458164.5	7766		
Total	61	858373.2			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-20.65	38.112	-0.542	0.590	-96.909	55.614	-96.909	55.614
GFA Buckets	74.93	18.257	4.104	0.000	38.399	111.463	38.399	111.463
VFP	6.81	2.949	2.309	0.024	0.907	12.708	0.907	12.708

Friday Regression Models with Metro Variables

VFP + GFA Class. (≥ Metro 300,000)

SUMMARY OUTPUT

Regression Sta	atistics							
Multiple R	0.9990							
R Square	0.9979							
Adjusted R Square	0.9938							
Standard Error	13.4350							
Observations	4							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	87508.5	43754	242.406	0.045369714			
Residual	1	180.5	181					
Total	3	87689.0						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-21.56	19.059	-1.131	0.461	-263.717	220.606	-263.717	220.606
GFA Buckets	234.72	29.461	7.967	0.079	-139.617	609.062	-139.617	609.062
VFP	-7.06	3.501	-2.015	0.293	-51.538	37.427	-51.538	37.427

Saturday Regression Models with Metro Variables

VFP + GFA Classifications (See Appendix B)

GFA Class. + Metro 100,000

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.6142					
R Square	0.3772					
Adjusted R Square	0.3574					
Standard Error	104.2041					
Observations	66					

ANOVA					
	df	SS	MS	F	Significance F
Regression	2	414293.1	207146.5	19.077	3.32875E-07
Residual	63	684084.7	10858.5		
Total	65	1098377.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	47.578	53.493	0.889	0.377	-59.319	154.474	-59.319	154.474
GFA Class.	102.230	16.717	6.115	0.000	68.823	135.636	68.823	135.636
Metro Area +/- 100,000	-15.811	30.659	-0.516	0.608	-77.077	45.455	-77.077	45.455

```
GFA Class. + Metro 300,000
```

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.6125					
R Square	0.3752					
Adjusted R Square	0.3553					
Standard Error	104.3724					
Observations	66					

	df	SS	MS	F	Significance F
Regression	2	412081.7	206040.9	18.914	3.68496E-07
Residual	63	686296.1	10893.6		
Total	65	1098377.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	12.145	70.247	0.173	0.863	-128.233	152.524	-128.233	152.524
GFA Class.	103.094	16.781	6.144	0.000	69.560	136.628	69.560	136.628
Metro Area +/- 300,000	13.470	54.051	0.249	0.804	-94.543	121.483	-94.543	121.483

Saturday Regression Models with Metro Variables

VFP + GFA Class. + Metro 300,000

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.6460					
R Square	0.4173					
Adjusted R Square	0.3891					
Standard Error	101.6033					
Observations	66					

ANOVA

	df	SS	MS	F	Significance F
Regression	3	458337.7	152779.2	14.800	2.24832E-07
Residual	62	640040.1	10323.2		
Total	65	1098377.8			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-5.853	68.910	-0.085	0.933	-143.603	131.897	-143.603	131.897
GFA Class.	75.394	20.931	3.602	0.001	33.555	117.234	33.555	117.234
Metro Area +/- 300,000	-13.236	54.109	-0.245	0.808	-121.398	94.925	-121.398	94.925
VFP	6.950	3.283	2.117	0.038	0.387	13.513	0.387	13.513

VFP + GFA Class. (< Metro 300,000)

SUMMARY OUTPUT

Regression Statisti	cs
Multiple R	0.6429
R Square	0.4134
Adjusted R Square	0.3935
Standard Error	102.3617
Observations	62

	df	SS	MS	F	Significance F
Regression	2	435625.7	217813	20.788	1.46758E-07
Residual	59	618197.2	10478		
Total	61	1053823.0)		

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-29.55	44.270	-0.667	0.507	-118.130	59.039	-118.130	59.039
GFA Class.	74.05	21.207	3.492	0.001	31.618	116.487	31.618	116.487
VFP	7.86	3.425	2.294	0.025	1.003	14.711	1.003	14.711

Saturday Regression Models with Metro Variables

VFP + GFA Class. (≥ Metro 300,000)

SUMMARY OUTPUT

Regression S	tatistics	1						
Multiple R	0.9707							
R Square	0.9422							
Adjusted R Square	0.8267							
Standard Error	50.2046							
Observations	4	1						
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	41116.5	20558.3	8.156	0.240334384			
Residual	1	2520.5	2520.5					
Total	3	43637.0						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	116.89	71.219	1.641	0.348	-788.032	1021.810	-788.032	1021.810
GFA Class.	320.94	110.092	2.915	0.210	-1077.903	1719.792	-1077.903	1719.792
VFP	-26.61	13.082	-2.034	0.291	-192.837	139.615	-192.837	139.615

Appendix F Final Regression Model Trip Generation Comparison
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 7.79^{*}VFP + \\ 52.96^{*}GFA_{Class} + \\ 56^{*}Metro_{300} - 68.47 \\ FP + \\ Class. + \\ Petro \\ 0.000 \\ \hline \\ 72.30 \\ 15.3\% \\ 12.05 \\ 55.42 \\ 174\% \\ 12.05 \\ -23\% \\ 1.39 \\ 138\% \\ \end{array}$	5.91*VFP + 63 - 44 12.68*VFP + 5- - 100 VFP + GFA Class. ≥ < Metro 300,000 170.88	8.51*GFA _{Class} < .79 4.28*GFA _{Class} ≥ 1 8.66 % Diff
Equation/Rate:22.0512.47 $GFA (e5.5 ks) Midnest: 22.33 GFA (c1.55 + 0.69) AII Sites: 31.60$ $GFA (c1.55 + 0.69) AII AII AII AII AII AII AII AII AII AI$	\$2,96*GFA_class + \$6*Metro_{300} - 68.47 FP + Class. + % Diff 0,000 12.30 153% 12.05 -3% 15,42 174% 12.05 -23% 1.39	12.68*VFP + 5: - 102 VFP + GFA Class. ≥ < Metro 300,000 170.88	4.28*GFA _{class} ≥ . 8.66 ≥ . % Diff
Site Actual Trips TGM 10 LUC 960 TGM 10 LUC 945 TGM 11 LUC 945 % Diff VFP + GFA Class. % Diff GFA Class. + Metro 100,000 % Diff GFA Class. + Metro 300,000 % Diff %	FP + Class. + letro % Diff 22.30 153% 12.05 -3% 55.42 174% 12.05 -23% 1.39 138%	- 100 VFP + GFA Class. ≥ < Metro 300,000 170.88	8.66 ≥ % Diff
Site Actual Trips TGM 10 LUC 960 TGM 11 LUC 945 TGM 11 LUC 945 % Diff VFP + GFA Class. % Diff GFA Class. + % Diff % Diff GFA Class. + Metro 100,000 GFA Class. + % Diff % Diff	FP + IcIros % Diff 0,000 153% 12.05 3% 15.542 174% 12.05 23% 1.39 138%	VFP + GFA Class. ≥ < Metro 300,000 170.88	% Diff
NC-301 68 330.75 187.05 342.45 404% 178.09 162% 161.97 138% 165.97 144% 17 NC-302 250 352.80 199.52 505.60 102% 246.05 -2% 258.22 3% 261.65 5% 2 NC-303 97 418.95 236.93 600.40 519% 271.76 180% 258.22 166% 261.65 170% 26 NC-304 316 352.80 199.52 505.60 60% 244.05 -22% 258.22 18% 261.65 170% 26 NC-305 30 220.50 124.70 143.00 377% 75.85 153% 65.72 119% 70.29 134% 7 NC-306 214 485.10 274.34 502.26 135% 238.08 11% 161.97 24% 165.97 22% 22 12% 12% 165.97 12% 165.97 134% 10 10%	72.30 153% 12.05 -3% 55.42 174% 12.05 -23% 1.39 138%	170.88	
NC-302 250 352.80 199.52 505.60 102% 246.05 -2% 258.22 3% 261.65 5% 24 NC-303 97 418.95 236.93 600.40 519% 271.76 180% 258.22 166% 261.65 170% 22 NC-304 316 352.80 199.52 505.60 60% 244.05 -22% 258.22 116% 261.65 177% 22 NC-305 30 220.50 124.70 143.00 377% 75.85 153% 65.72 119% 70.29 134% 7 NC-306 214 485.10 274.34 502.26 135% 280.88 11% 161.97 -24% 165.97 -22% 22 NC-306 311 352.80 199.52 505.60 63% 246.05 -21% 258.22 -17% 261.65 16% 24 NC-307 30 308.70 174.58 200.20 567% 110.	12.05 -3% 55.42 174% 12.05 -23% 1.39 138%		151%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.05 -23% 1.39 138%	240.30	-4%
NC-305 30 220.50 124.70 143.00 377% 75.85 153% 65.72 119% 70.29 134% 7 NC-306 214 485.10 274.34 502.26 135% 288.08 11% 161.97 -24% 165.97 -22% 22 12 NC-307 30 308.70 174.58 200.20 567% 110.13 267% 65.72 119% 70.29 134% 12 NC-308 311 352.80 199.52 505.60 63% 246.05 -21% 258.22 -17% 261.65 16% 24 NC-309 68 198.45 112.23 128.70 89% 67.28 -1% 65.72 -3% 70.29 13% 6 NC-310 64 264.60 149.64 171.60 168% 92.99 45% 65.72 3% 70.29 10% 8 NC-311 144 220.50 124.70 228.30 38% <t< td=""><td>1.39 138%</td><td>240.30</td><td>-24%</td></t<>	1.39 138%	240.30	-24%
NC-306 214 485.10 274.34 502.26 135% 238.08 11% 161.97 -24% 165.97 -22% 22 NC-307 30 308.70 174.58 200.20 567% 110.13 267% 65.72 119% 70.29 134% 16 NC-308 311 352.80 199.52 505.60 63% 246.05 -21% 258.22 -17% 261.65 16% 24 NC-309 68 198.45 112.23 128.70 89% 67.28 -1% 65.72 -3% 70.29 13% 6 NC-310 64 264.60 149.64 171.60 168% 92.99 45% 65.72 3% 70.29 10% 8 NC-311 144 220.50 124.70 228.30 59% 135.24 -6% 161.97 12% 165.97 1% 13 NC-313 284 507.15 286.81 726.80 156% 306.04		77.82	159%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26.83 6% 12.55 242%	212.25	-1%
NC-309 68 198.45 112.23 128.70 89% 67.28 -1% 65.72 -3% 70.29 3% 6 NC-310 64 264.60 149.64 171.60 168% 92.99 45% 65.72 3% 70.29 10% 8 NC-311 144 220.50 124.70 228.30 59% 135.24 -6% 161.97 12% 165.97 15% 15 NC-313 284 507.15 286.81 726.80 156% 306.04 8% 258.22 -9% 261.65 -8% 29 NC-314 179 529.20 299.28 758.40 324% 255.22 43% 161.97 -10% 165.97 -7% 24 NE-201 318 352.80 199.52 505.60 59% 246.55 -23% 301.82 -5% 261.65 18% 24 NE-202 143 176.40 99.76 182.64 28% 118.10 <t< td=""><td>12.05 -22%</td><td>240.30</td><td>-23%</td></t<>	12.05 -22%	240.30	-23%
NC-310 64 264.00 149.64 171.60 168% 92.99 45% 65.72 3% 70.29 10% 8 NC-311 144 220.50 124.70 228.30 59% 135.24 -6% 161.97 12% 165.97 15% 15 NC-312 165 220.50 124.70 228.30 38% 135.24 -18% 161.97 -2% 165.97 1% 15 NC-313 284 507.15 286.81 726.80 156% 306.04 8% 258.22 -9% 261.65 -8% 25 NC-314 179 529.20 299.28 758.40 324% 255.22 43% 161.97 -10% 165.97 -7% 24 NE-201 318 352.80 199.52 505.60 59% 246.05 -23% 301.82 -5% 261.65 18% 24 NE-202 143 176.40 99.76 182.64 28% 118.10	3.60 -6%	71.91	6%
NC-312 165 220.50 124.70 220.30 37% 132.74 16% 11.77 12.76 165.97 165.97 17% 12.76 165.97 1% 15 NC-312 165 220.50 124.70 228.30 38% 135.24 -18% 161.97 -2% 165.97 1% 15 NC-313 284 507.15 286.81 726.80 156% 306.04 8% 258.22 -9% 261.65 -8% 25 NC-314 179 529.20 299.28 758.40 324% 255.22 43% 161.97 -10% 165.97 -7% 24 NE-201 318 352.80 199.52 505.60 59% 246.05 -23% 301.82 -5% 261.65 18% 24 NE-202 143 176.40 99.76 182.64 28% 118.10 -17% 205.57 44% 165.97 16% 11	6.97 <u>36%</u>	89.64 141.33	-2%
NC-313 284 507.15 286.81 726.80 156% 306.04 8% 258.22 -9% 261.65 -8% 25 NC-314 179 529.20 299.28 758.40 324% 255.22 43% 161.97 -10% 165.97 -7% 24 NE-201 318 352.80 199.52 505.60 59% 246.05 -23% 301.82 -5% 261.65 18% 24 NE-202 143 176.40 99.76 182.64 28% 118.10 -17% 205.57 44% 165.97 16% 11	33.35 -19%	141.33	-14%
NC-314 179 529.20 299.28 758.40 324% 255.22 43% 161.97 -10% 165.97 -7% 22 NE-201 318 352.80 199.52 505.60 59% 246.05 -23% 301.82 -5% 261.65 -18% 24 NE-202 143 176.40 99.76 182.64 28% 118.10 -17% 205.57 44% 165.97 16% 11	96.58 4%	281.67	-1%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.41 <u>35%</u>	224.07	-24%
	7.77 -18%	129.51	-24%
NE-203 354 396.90 224.46 568.80 61% 263.19 -26% 258.22 -27% 261.65 -26% 25	57.63 <u>-27%</u>	252.12	-29%
NE-204 171 264.60 149.64 273.96 60% 152.38 -11% 205.57 20% 165.97 -3% 14	18.93 -13%	153.15	-10%
NE-206 129 441.00 249.40 456.60 254% 220.94 71% 205.57 59% 165.97 29% 21	1.25 64%	200.43	55%
NE-207 71 286.65 162.11 185.90 162% 101.56 43% 65.72 -7% 70.29 -1% 9	4.76 33%	95.55	35%
INE-2U8 69 176.40 997.6 114.40 66% 58.71 -15% 65.72 -5% 70.29 2% 53 INE-209 44 176.40 997.6 114.40 160% 58.71 23% 65.72 40% 70.29 2% 55	5.81 -19% 5.81 -27%	66.00 66.00	-4%
NE-210 89 242.55 137.17 157.30 77% 84.42 -5% 65.72 -26% 70.29 -21% 7 ⁷	9.18 -11%	83.73	-6%
NE-211 167 396.90 224.46 568.80 241% 203.80 22% 161.97 -3% 165.97 -1% 19	95.67 17%	188.61	13%
NE-212 174 352.80 199.52 365.28 110% 186.66 7% 161.97 -7% 165.97 -5% 18 NE-213 201 286.65 162.11 296.79 48% 160.95 -20% 161.97 -10% 165.97 -7% 16	30.09 4% 56.72 22%	176.79	-21%
NE-213 201 200.03 102.11 270.79 4070 100.93 -2070 101.97 -1970 103.97 -1770 15 NE-214 61 308.70 174.58 319.62 424% 169.52 178% 161.97 166% 165.97 172% 16	64.51 170%	164.97	170%
NE-215 78 242.55 137.17 347.60 346% 143.81 84% 161.97 108% 165.97 113% 14	11.14 81%	147.24	89%
NE-216 212 308.70 174.58 442.40 109% 228.91 8% 258.22 22% 261.65 23% 22 NE-217 58 220.50 124.70 316.00 445% 104.63 236% 259.22 245% 241.45 251% 41 41.45 251% 41.45 <	26.47 7% 25.31 227%	228.48	25.2%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.42 -20%	258.03	-22%
NW-402 229 485.10 274.34 695.20 204% 297.47 30% 258.22 13% 261.65 14% 28	38.79 26%	275.76	20%
NW-403 33 176.40 99.76 114.40 247% 558.71 78% 65.72 99% 70.29 113% 55 NW-404 42 247% 558.71 78% 65.72 99% 70.29 113% 55	5.81 69%	66.00	100%
1919-1919 42 224.00 147.04 171.00 307% 92.97 121% 03.72 30% 70.27 07% 00 1910 1910 1910 1910 1910 1910 1910	1.39 -21%	77.82	-14%
NW-406 242 418.95 236.93 271.70 12% 212.37 -12% 161.97 -33% 165.97 -31% 20	03.46 -16%	194.52	-20%
NW-407 278 485.10 274.34 502.26 81% 238.08 -14% 205.57 -26% 165.97 -40% 22	26.83 -18%	212.25	-24%
WW-400 170 332.80 197.52 305.26 72% 100.00 -2% 101.77 -13% 105.77 -29% 18.000 -2% 101.77 -13% 165.97 -29% 18	30.09 -23%	176.79	-24%
NW-410 217 330.75 187.05 474.00 118% 237.48 9% 258.22 19% 261.65 21% 23	84.26 8%	234.39	8%
NW-411 247 485.10 274.34 502.26 103% 238.08 -4% 101.97 -34% 165.97 -33% 22	26.83 -8%	212.25	-14%
WW-412 170 441.00 249.40 032.00 272% 200.33 03% 230.22 32% 201.03 34% 27 §E-101 63 286.65 162.11 296.79 371% 160.95 155% 161.97 157% 165.97 163% 15	56.72 149%	159.06	152%
SE-102 263 441.00 249.40 632.00 140% 280.33 7% 258.22 -2% 261.65 -1% 27	4%	263.94	0%
SE-103 163 264.60 149.64 171.60 5% 92.99 -43% 109.32 -33% 122.48 -25% 11	6.53 -29%	97.78	-40%
$\frac{32}{104} - \frac{133}{137} - \frac{220.30}{264.60} - \frac{124.70}{49.20} - \frac{226.30}{29.00} - \frac{477}{4770} - \frac{133.24}{133.24} - \frac{1270}{161.97} - \frac{103.97}{0.70} - \frac{103.97}{0.70} - \frac{30}{103.77} - \frac{1270}{20.100} - \frac{103.97}{100.77} - \frac{30}{20.100} - \frac{1270}{100.100} - \frac{103.97}{100.100} - \frac{103.97}{100.100$	0.89 -33%	216.66	-32%
SE-107 138 220.50 124.70 143.00 4% 75.85 -45% 65.72 -52% 70.29 -49% 7	1.39 -48%	77.82	-44%
SE-108 331 352.80 199.52 365.28 10% 186.66 -44% 205.57 -38% 218.16 -34% 20 SE-108 351 352.80 199.52 365.28 10% 186.66 -44% 205.57 -38% 218.16 -34% 20 10 10% 11 10% <td>)9.65 <u>-37%</u></td> <td>202.78</td> <td>-39%</td>)9.65 <u>-37%</u>	202.78	-39%
52-107 152 264.00 149.04 171.00 13% 92.99 -37% 109.32 -26% 122.48 -19% 11 52-10 79 264.60 149.64 171.60 117% 92.99 18% 109.32 38% 122.48 55% 11	6.53 -23%	97.78	24%
SE-111 45 264.60 149.64 171.60 281% 92.99 107% 109.32 143% 70.29 56% 8	6.97 93%	89.64	99%
SE-112 181 264.60 149.64 171.60 -5% 92.99 -49% 109.32 -40% 70.29 -61% 88 SE-112 189 230.50 124.70 239.20 21% 135.24 30% 305.57 0% 415.07 410% 417.07	6.97 -52%	89.64	-50%
SE-113 100 220.30 124.70 220.30 2170 133.24 -2070 203.57 976 103.97 -12% 13 SE-114 149 352.80 199.52 365.28 145% 186.66 25% 205.57 38% 218.16 46% 20	09.65 <u>41%</u>	202.78	36%
SE-115 343 441.00 249.40 632.00 84% 220.94 -36% 161.97 -53% 165.97 -52% 21	1.25 -38%	200.43	-42%
SE-116 475 639.45 361.63 916.40 93% 357.46 -25% 301.82 -36% 313.84 -34% 37 SE-117 280 530.20 200.29 750.40 1.74% 244.41 1.29% 201.02 <td>2.88 -21%</td> <td>421.90</td> <td>-11%</td>	2.88 -21%	421.90	-11%
SE-119 308 352.80 199.52 505.60 64% 246.05 -20% 301.82 8% 261.65 -7% 30	71.61 -12%	287.08	-17%
SE-120 451 507.15 286.81 726.80 61% 306.04 -32% 301.82 -33% 313.84 -30% 32	26.14 -28%	345.82	-23%
SE-121 424 749.70 423.98 1074.40 153% 400.31 -6% 301.82 -29% 313.84 -26% 41 SW-501 70 352.80 190.52 505.60 439% 246.05 253% 260.92 240% 241.45 27.4% 241.45	1.83 -3%	485.30	14%
SW-301 70 332.00 177.32 303.00 02270 240.03 23270 238.22 2070 201.03 2/4% 24 SW-502 40 176.40 99.76 114.40 186% 58.71 47% 65.72 64% 70.29 76% 5	5.81 <u>40%</u>	66.00	65%
SW-503 57 176.40 99.76 182.64 220% 118.10 107% 161.97 184% 165.97 191% 11	7.77 107%	129.51	127%
SW-504 238 418.95 236.93 600.40 152% 271.76 14% 301.82 27% 261.65 10% 26 SW-504 245 507.15 296.91 776.90 107% 306.04 35% 507.15 10% 26 27% 261.65 10% 26 26 27% 261.65 10% 26 27% 261.65 10% 26 27% 261.65 10% 26 27% 261.65 10% 26 27% 261.65 10% 26 26 27% 261.65 10% 26 27% 261.65 10% 26 26 27% 261.65 10% 26 27% 261.65 10% 26 26 27% 261.65 10% 26 26 27% 261.65 10% 26 27% 261.65 10% 27% 26 27% 26 26 26 27% 27% 26 27% 27% 27% 27%	5.42 12%	258.03	8%
SW-505 245 507.15 200.01 720.80 197% 300.04 25% 258.22 5% 201.05 7% 29 SW-506 229 176.40 99.76 114.40 -50% 118.10 -48% 161.97 -29% 165.97 -28% 11	70.30 21%	281.07 129.51	-43%
SW-507 71 264.60 149.64 171.60 142% 92.99 31% 109.32 54% 122.48 73% 11	6.53 64%	97.78	38%
SW-508 130 286.65 162.11 296.79 128% 160.95 24% 161.97 25% 165.97 28% 15 SW-508	66.72 21%	159.06	22%
SVV-500 249.40 052.00 114% 280.33 -5% 258.22 -13% 261.65 -12% 27 SW-510 362 418.95 236.93 600.40 66% 212.37 -41% 161.97 -55% 165.97 -54% 27	-8% 03.46 -44%	263.94 194.52	-11%
SW-511 31 176.40 99.76 114.40 269% 58.71 89% 65.72 112% 70.29 127% 5	5.81 80%	66.00	113%
SW-512 319 242.55 137.17 251.13 -21% 143.81 -55% 161.97 -49% 165.97 -48% 14	1.14 -56%	147.24	-54%
svv-sis 52 170.40 99.76 114.40 120% 58.71 13% 65.72 26% 70.29 35% 53 SW-514 166 176.40 99.76 114.40 -31% 58.71 -65% 65.72 -60% 70.29 -58% 5	5.81 -66%	66.00	-60%
SW-515 109 176.40 99.76 114.40 5% 58.71 -46% 65.72 -40% 70.29 -36% 5	5.81 -49%	66.00	-39%
SW-516 31 220.50 124.70 143.00 361% 75.85 145% 65.72 112% 70.29 127% 7	1.39 130%	77.82	151%
svv-si/ 42 330.75 187.05 474.00 1029% 178.09 324% 161.97 286% 165.97 295% 17 SW-518 265 264.60 149.64 379.20 43% 211.77 -20% 258.22 -3% 261.65 -1% 21	0.89 -20%	216.66	-18%
SW-519 322 441.00 249.40 632.00 96% 280.33 -13% 301.82 -6% 313.84 -3% 30	02.77 -6%	307.78	-4%
SW-520 207 352.80 199.52 505.60 144% 186.66 -10% 205.57 -1% 218.16 5% 20	09.65 1%	202.78	-2%
ISVE-5Z1 Z/U 529.20 299.28 /58.40 181% 314.61 17% 301.82 12% 313.84 16% 33 ISVE-5Z2 106 286.65 162.11 296.79 180% 160.95 52% 205.57 0.4% 218.16 10.6% 150	33.93 24% 36.28 76%	358.50	<u>33%</u> 55%
SW-523 114 330.75 187.05 342.45 200% 178.09 56% 205.57 80% 218.16 91% 20	01.86 77%	190.10	67%
SW-524 60 264.60 149.64 273.96 357% 152.38 154% 205.57 243% 218.16 264% 17	78.49 197%	152.06	153%
Overestimate by 100 59 10 58 7 7 10	8	6	
Underestimate by 100 0 13 1 9 8 9	9	7	
Miscalculated by > 100 (+/-) 59 23 59 16 15 19	17	13	

							P	PM Trips							
				GFA (2-4k sf), I	Midwest: 15.38	7.05*\/ED + 60.02* 01.32*CEA +			91 12*0	FΔ +	6.74*VFP+		5.91*VFP+6	0.09*GFA _{Class}	
	Equation/Rate:	17.56	13.99	GFA (4-5.5k sf) GFA (5.5-10k sf	Midwest: 17.87 All Sites: 26.90	GFA _{Class}	s 28.02	33.04*Metr	r A _{Class} + 10 ₁₀₀ - 28.45	31.17*Metr	r A _{Class} + ro ₃₀₀ - 21.60	61.94*0	GFA _{Class} -	- 1. 7.88*VFP + 7	5.75*GFA _{Class}
	-				-		r					11.59 Well	0 300 - 27.72	- 65	5.54
		701440				1/50		GFA Class. +		GFA Class. +		VFP +		VFP +	
Site	Actual Trips	TGM 10 TUC 960	1GM 10 1UC 945	TGM 11 LUC 945	% Diff	VFP + GFA Class.	% Diff	Metro	% Diff	Metro	% Diff	GFA Class. + Metro	% Diff	GFA Class. > < Metro	% Diff
		200 /00	200710	200710		Criticitass.		100,000		300,000		300,000		300,000	
NC-301	87	263.40	209.85	268.05	208%	199.59	129%	154.19	77%	160.64	85%	197.26	127%	196.68	126%
NC-302	277	280.96	223.84	430.40	55%	267.57	-3%	245.51	-11%	251.76	-9%	265.94	-4%	262.68	-5%
NC-303 NC-304	347	280.96	203.81	430.40	24%	267.57	-23%	245.51	-29%	251.76	-27%	265.94	-23%	262.68	-24%
VC-305	40	175.60	139.90	153.80	285%	103.41	159%	62.87	57%	69.52	74%	101.62	154%	107.04	168%
NC-306	288	386.32 245.84	307.78	393.14 215.32	37%	248.94	-14%	154.19 62.87	-46% 21%	160.64	-44%	244.44	-15% 147%	238.05	-17%
VC-308	318	280.96	223.84	430.40	35%	267.57	-16%	245.51	-23%	251.76	-21%	265.94	-16%	262.68	-17%
IC-309	118	158.04	125.91	138.42	17%	96.36	-18%	62.87	-47%	69.52	-41%	94.88	-20%	101.13	-14%
IC-310 IC-311	132	175.60	167.88	184.56	35%	164.34	6% 25%	62.87	-43% 17%	69.52	-37%	163.56	4%	167.13	27%
IC-312	201	175.60	139.90	178.70	-11%	164.34	-18%	154.19	-23%	160.64	-20%	163.56	-19%	167.13	-17%
IC-313	357	403.88	321.77	618.70	73%	316.92	-11%	245.51	-31%	251.76	-29%	313.12	-12%	304.05	-15%
IE-201	252	280.96	223.84	430.40	71%	267.57	6%	278.55	11%	251.76	0%	265.94	6%	262.68	4%
IE-202	137	140.48	111.92	142.96	4%	150.24	10%	187.23	37%	160.64	17%	150.08	10%	155.31	13%
IE-203 IF-204	201	210.72	251.82	484.20	47%	281.67	-15%	245.51	-26%	251.76	-24%	279.42	-15%	274.50	-17%
IE-205	220	228.28	181.87	232.31	6%	185.49	-16%	154.19	-30%	160.64	-27%	183.78	-16%	184.86	-16%
IE-206	124	351.20	279.80	357.40	188%	234.84	89%	187.23	51%	160.64	30%	230.96	86%	226.23	82%
IE-208	97	140.48	111.92	123.04	31%	89.31	-5%	62.87	-33%	69.52	-26%	88.14	-6%	95.22	1%
IE-209	66	140.48	111.92	123.04	86%	89.31	35%	62.87	-5%	69.52	5%	88.14	34%	95.22	44%
IE-210 IE-211	131	193.16 316.08	153.89 251.82	169.18	29% 148%	110.46 220.74	-16%	62.87 154 10	-52%	69.52	-47%	108.36 217.49	-17% 12%	214 41	-14%
NE-212	209	280.96	223.84	285.92	37%	206.64	-1%	154.19	-26%	160.64	-23%	204.00	-2%	202.59	-3%
IE-213	262	228.28	181.87	232.31	-11%	185.49	-29%	154.19	-41%	160.64	-39%	183.78	-30%	184.86	-29%
IE-214 IE-215	96 119	245.84 193.16	195.86	250.18 295.90	161%	192.54	44%	154.19	61% 30%	160.64	67% 35%	170.52	43%	173.04	99% 45%
E-216	258	245.84	195.86	376.60	46%	253.47	-2%	245.51	-5%	251.76	-2%	252.46	-2%	250.86	-3%
IE-217	89	175.60	139.90	269.00	202%	225.27	153%	245.51	176%	251.76	183%	225.50	153%	227.22	155%
W-401 W-402	291	386.32	307.78	591.80	103%	309.87	-13%	245.51	-20%	251.76	-24%	306.38	-14%	298.14	-10%
W-403	92	140.48	111.92	123.04	34%	89.31	-3%	62.87	-32%	69.52	-24%	88.14	-4%	95.22	4%
W-404	88	210.72	167.88	184.56	110%	117.51	-20%	62.87 95.91	-29%	69.52	-21%	115.10	31% -21%	118.86	-17%
W-405	275	333.64	265.81	292.22	6%	227.79	-17%	154.19	-44%	160.64	-42%	224.22	-18%	220.32	-20%
W-407	263	386.32	307.78	393.14	49%	248.94	-5%	187.23	-29%	160.64	-39%	244.44	-7%	238.05	-9%
IW-408 IW-409	225	280.96	223.84	285.92 430.40	69%	206.64	-8%	154.19	-31%	160.64	-29%	204.00	-9%	202.59	-10%
IW-410	294	263.40	209.85	403.50	37%	260.52	-11%	245.51	-16%	251.76	-14%	259.20	-12%	256.77	-13%
IW-411	261	386.32	307.78	393.14	51%	248.94	-5%	245.51	-41%	160.64	-38%	244.44	-6%	238.05	-9%
E-101	88	228.28	181.87	232.31	164%	185.49	111%	154.19	75%	160.64	83%	183.78	109%	184.86	110%
E-102	261	351.20	279.80	538.00	106%	295.77	13%	245.51	-6%	251.76	-4%	292.90	12%	286.32	10%
E-103 E-104	200	210.72	167.88	184.56 178.70	-11%	117.51	-34%	95.91 154 19	-46%	100.69	-44%	126.69	-29% -18%	104.77	-41%
E-105	322	210.72	167.88	322.80	0%	239.37	-26%	245.51	-24%	251.76	-22%	238.98	-26%	239.04	-26%
E-107	171	175.60	139.90	153.80	-10%	103.41	-40%	62.87	-63%	69.52	-59%	101.62	-41%	107.04	-37%
E-108 E-109	150	280.96	167.88	285.92	-4%	206.64	-31%	95.91	-37%	191.81	-30%	126.69	-28%	104.77	-29%
E-110	84	210.72	167.88	184.56	120%	117.51	40%	95.91	14%	100.69	20%	126.69	51%	104.77	25%
E-111 E-112	81	210.72	167.88	184.56	-15%	117.51	45%	95.91 95.01	-56%	69.52	-14%	115.10	42%	118.86	47%
E-112 E-113	296	175.60	139.90	178.70	-40%	164.34	-40%	187.23	-37%	160.64	-46%	163.56	-47%	167.13	-44%
E-114	134	280.96	223.84	285.92	113%	206.64	54%	187.23	40%	191.81	43%	215.59	61%	212.04	58%
E-115 F-116	381	351.20 509.24	279.80	538.00 780.10	41%	234.84 359.22	-38%	154.19 278.55	-60%	282.93	-58%	230.96	-39% 1%	226.23	-41%
E-117	350	421.44	335.76	645.60	84%	323.97	-7%	278.55	-20%	251.76	-28%	319.86	-9%	309.96	-11%
E-119	389	280.96	223.84	430.40	11%	267.57	-31%	278.55	-28%	282.93	-27%	277.53	-29%	287.79	-26%
E-120	442	597.04	475.66	914.60	114%	394.47	-20%	278.55	-37%	282.93	-30%	398.85	-21%	429.63	-22%
W-501	74	280.96	223.84	430.40	482%	267.57	262%	245.51	232%	251.76	240%	265.94	259%	262.68	255%
N-502 N-503	47	140.48	111.92 111.02	123.04	162% 88%	89.31 150.24	90% 98%	62.87 154 10	34% 103%	69.52	48%	88.14	88% 97%	95.22	103%
W-504	329	333.64	265.81	511.10	55%	288.72	-12%	278.55	-15%	251.76	-23%	286.16	-13%	280.41	-15%
N-505	240	403.88	321.77	618.70	158%	316.92	32%	245.51	2%	251.76	5%	313.12	30%	304.05	27%
N-506 N-507	197	140.48 210.72	111.92	123.04 184.56	- <u>38%</u> 59%	150.24 117.51	-24% 1%	154.19 95.91	-22%	160.64	-18%	150.08	-24% 9%	155.31	-21%
W-508	100	228.28	181.87	232.31	132%	185.49	85%	154.19	54%	160.64	61%	183.78	84%	184.86	85%
W-509	271	351.20	279.80	538.00	99%	295.77	9%	245.51	-9%	251.76	-7%	292.90	8%	286.32	6%
W-510 W-511	42	140.48	111.92	123.04	193%	89.31	-25%	62.87	-49%	69.52	-47%	88.14	-20% 110%	95.22	127%
N-512	347	193.16	153.89	196.57	-43%	171.39	-51%	154.19	-56%	160.64	-54%	170.30	-51%	173.04	-50%
N-513	85	140.48	111.92	123.04	45%	89.31 80.21	-50%	62.87	-26%	69.52	-18%	88.14 88.14	4%	95.22	12%
N-515	143	140.48	<u>1</u> 11.92	123.04	-14%	89.31	-38%	62.87	-56%	69.52	-51%	88.14	-38%	95.22	-33%
N-516	39	175.60	139.90	153.80	294%	103.41	165%	62.87	61%	69.52	78%	101.62	161%	107.04	174%
W-517	71 227	263.40	209.85	403.50	468%	199.59 220.27	181%	245 51	-25%	160.64 251.74	126%	197.26	178%	196.68	177%
W-519	318	<u>3</u> 51.20	279.80	538.00	69%	237.37 295.77	-7%	243.51	-12%	282.93	-11%	304.49	-4%	319.31	0%
W-520	186	280.96	223.84	430.40	131%	206.64	11%	187.23	1%	191.81	3%	215.59	16%	212.04	14%
W-521 W-522	292	421.44	335.76 181.87	645.60 232.31	121% 81%	323.97 185.49	11%	278.55	-5%	282.93	-3%	331.45	14%	350.83	20%
W-523	164	263.40	209.85	268.05	63%	199.59	22%	187.23	14%	191.81	17%	208.85	27%	204.16	24%
W-524	79	210.72	167.88	214.44	171%	178.44	126%	187.23	137%	191.81	143%	188.63	139%	180.52	129%
)verestimate	e by 100	27	8	49		6		4		4		7		7	
nderestima	te by 100	5	9	2		7		17		17		7		5	
/liscalculate	d by > 100 (+/-)	32	17	51		13		21		21		14		12	

_	Friday Trips															
				GFA (2-4k sf), I	A (2-4k st), Midwest: 15.95		9⊥73 71*	104 60*	GEA	105 45*	GEA	7.16*	VFP +	6.81*VFP + 7	4.93*GFA _{Class}	< 300k
	Equation/Rate:	21.36	15.87	GFA (4-5.5k sf) GFA (5.5-10k sf)	Midwest: 19.10 All Sites: 28.03	GFA _{Class}	-29.06	30.57*Met	ro ₁₀₀ - 15.49	66.70*Met	ro ₃₀₀ - 50.44	76.93*G	FA _{Class} +	-7.06*VFP + 2	34.72*GFA _{Class}	> 2004
					1							39.20" Wetr	0300 - 68.97	- 2	1.56	≥ 300k
								GFA Class.		GFA Class.		VEP + GEA Class		VFP +		
Site	Actual Trips	TGM 10	TGM 10	TGM 11	% Diff	VFP + GFA	% Diff	+ Motro	% Diff	+ Motro	% Diff	+	% Diff	GFA Class.	% Diff	
		LUC 900	LUC 945	LUC 945		Class.		100,000		300,000		Metro		≥ < Nietro 300,000		
NC-302	373	341 76	253.92	448 48	20%	315.43	-15%	298 31	-20%	265.91	-29%	276.38	-26%	313 10	-16%	-
NC-303	175	405.84	301.53	532.57	204%	338.56	93%	298.31	70%	265.91	52%	297.86	70%	333.53	91%	
NC-304	330	341.76	253.92	448.48	36%	315.43	-4%	298.31	-10%	265.91	-19%	276.38	-16%	313.10	-5%	
NC-305	61	213.60	158.70	280.30	360%	121.75	100%	89.11	46%	55.01	-10%	79.56	30%	122.38	101%	_
NC-306 NC-307	347	469.92 299.04	349.14	616.66 392.42	/8% 513%	287.98	-17%	193.71	-44%	160.46 55.01	-54%	242.41	-30%	2/9.03	-20%	-
NC-308	327	341.76	253.92	448.48	37%	315.43	-4%	298.31	-9%	265.91	-19%	276.38	-15%	313.10	-4%	
NC-310	122	256.32	190.44	336.36	176%	137.17	12%	89.11	-27%	55.01	-55%	93.88	-23%	136.00	11%	
NC-311	179	213.60	158.70	280.30	57%	195.46	9%	193.71	8%	160.46	-10%	156.49	-13%	197.31	10%	_
NC-312 NC-313	220	213.60 491.28	158.70 365.01	280.30	27%	195.46 369.4	-11%	298.31	-12%	160.46 265.91	-27%	326.5	-29%	360.77	-10%	-
NC-314	270	512.64	380.88	672.72	149%	303.4	12%	193.71	-28%	160.46	-41%	256.73	-5%	292.65	8%	
NE-201	260	341.76	253.92	448.48	72%	315.43	21%	328.88	26%	265.91	2%	276.38	6%	313.10	20%	
NE-202	170	170.88	126.96	224.24	32%	180.04	6%	224.28	32%	160.46	-6%	142.17	-16%	183.69	8%	-
INC-203 NF-204	235	256 32	280.00	336 36	34% 43%	210.85	-12%	296.31	-21%	200.91	-29%	290.7	-23%	210.93	-13%	1
NE-205	321	277.68	206.31	364.39	14%	218.59	-32%	193.71	-40%	160.46	-50%	177.97	-45%	217.74	-32%	1
NE-206	146	427.20	317.40	560.60	284%	272.56	87%	224.28	54%	160.46	10%	228.09	56%	265.41	82%	1
NE-207	131	277.68	206.31	364.39	178%	144.88	11%	89.11	-32%	55.01	-58%	101.04	-23%	142.81	9%	4
INE-208 NF-209	94	170.88	126.96	224.24	139%	106.33	13%	89.11	-5%	55.01 55.01	-41%	65.24 65.24	-31%	108.76	16%	-
NE-210	151	234.96	174.57	308.33	104%	129.46	-14%	89.11	-41%	55.01	-64%	86.72	-43%	129.19	-14%	1
NE-211	197	384.48	285.66	504.54	156%	257.14	31%	193.71	-2%	160.46	-19%	213.77	9%	251.79	28%	i i
NE-212	200	341.76	253.92	448.48	124%	241.72	21%	193.71	-3%	160.46	-20%	199.45	0%	238.17	19%	
NE-213 NE-214	323	277.68	206.31	364.39	13%	218.59	-32%	193.71	-40%	160.46	-50%	1/7.97	-45%	217.74	-33%	-
NE-215	113	234.96	174.57	308.33	173%	203.17	80%	193.71	71%	160.46	42%	163.65	45%	204.12	81%	-
NE-216	293	299.04	222.18	392.42	34%	300.01	2%	298.31	2%	265.91	-9%	262.06	-11%	299.48	2%	
NE-217	91	213.60	158.70	280.30	208%	269.17	196%	298.31	228%	265.91	192%	233.42	157%	272.24	199%	-
NW-401 NW-402	497 320	405.84	301.53	532.57	93%	338.56	-32%	298.31	-40%	265.91	-46%	297.86	-40%	353.53	-33%	-
NW-402 NW-403	93	170.88	126.96	224.24	141%	106.33	14%	89.11	-4%	55.01	-41%	65.24	-30%	108.76	17%	
NW-404	102	256.32	190.44	336.36	230%	137.17	34%	89.11	-13%	55.01	-46%	93.88	-8%	136.00	33%	
NW-405	146	213.60	158.70	280.30	92%	121.75	-17%	119.68	-18%	55.01	-62%	79.56	-46%	122.38	-16%	-
NW-406	302	405.84	301.53	532.57 616.66	104%	204.85	-20%	224.28	-41%	160.46	-32%	220.93	-33%	258.60	-22%	-
NW-408	271	341.76	253.92	448.48	65%	241.72	-11%	193.71	-29%	160.46	-41%	199.45	-26%	238.17	-12%	
NW-409	304	341.76	253.92	448.48	48%	241.72	-20%	193.71	-36%	160.46	-47%	199.45	-34%	238.17	-22%	
NW-410	347	320.40	238.05	420.45	21%	307.72	-11%	298.31	-14%	265.91	-23%	269.22	-22%	306.29	-12%	-
NW-411 NW-412	270	409.92	349.14	560.60	128%	346.27	55%	298.31	-28%	265.91	-41%	305.02	-10%	219.03	53%	-
SE-101	101	277.68	206.31	364.39	261%	218.59	116%	193.71	92%	160.46	59%	177.97	76%	217.74	116%	-
SE-102	311	427.20	317.40	560.60	80%	346.27	11%	298.31	-4%	265.91	-14%	305.02	-2%	340.34	9%	
SE-104	244	213.60	158.70	280.30	15%	195.46	-20%	193.71	-21%	160.46 265.01	-34%	156.49	-36%	197.31 285.94	-19%	-
SE-103	303 163	213.60	158.70	280.30	-7%	121.75	-22%	290.31	-18%	203.91	-21%	79.56	-52%	122.38	-21%	1
SE-108	335	341.76	253.92	448.48	34%	241.72	-28%	224.28	-33%	227.16	-32%	238.65	-29%	334.92	0%	
SE-110	119	256.32	190.44	336.36	183%	137.17	15%	119.68	1%	121.71	2%	133.08	12%	128.44	8%	
SE-111 SE-112	84	256.32	190.44	336.36	300%	137.17	63%	119.68	42%	55.01 55.01	-35%	93.88	12%	136.00	62%	-
SE-112	337	213.60	158.70	280.30	-17%	195.46	-40%	224.28	-33%	160.46	-52%	156.49	-54%	197.31	-41%	1
SE-115	393	427.20	317.40	560.60	43%	272.56	-31%	193.71	-51%	160.46	-59%	228.09	-42%	265.41	-32%	
SE-116	478	619.44	460.23	812.87	70%	415.66	-13%	328.88	-31%	332.61	-30%	408.66	-15%	477.86	0%	4
SE-117 SW-501	375	512.64 341.76	380.88	6/2.72	/9% 207%	377.11	1%	328.88	-12%	265.91	-29% 135%	333.66	-11%	367.58	-2%	1
SW-502	65	170.88	126.96	224.24	245%	106.33	64%	89.11	37%	55.01	-15%	65.24	0%	108.76	67%	1
SW-504	366	405.84	301.53	532.57	46%	338.56	-7%	328.88	-10%	265.91	-27%	297.86	-19%	333.53	-9%	1
SW-506	255	170.88	126.96	224.24	-12%	180.04	-29%	193.71	-24%	160.46	-37%	142.17	-44%	183.69	-28%	4
SW-507	138	256.32	190.44	336.36	144% 57%	137.17	-1%	119.68	-13%	121.71	-12%	133.08 30F.02	-4%	128.44	-7%	-
SW-510	338	405.84	301.53	532.57	58%	264.85	-22%	193.71	-43%	160.46	-20%	220.93	-35%	258.60	-23%	1
SW-511	52	170.88	126.96	224.24	331%	106.33	104%	89.11	71%	55.01	6%	65.24	25%	108.76	109%	1
SW-512	515	234.96	174.57	308.33	-40%	203.17	-61%	193.71	-62%	160.46	-69%	163.65	-68%	204.12	-60%]
SW-515	128	170.88	126.96	224.24	75%	106.33	-17%	89.11	-30%	55.01	-57%	65.24	-49%	108.76	-15%	4
SW-510	01 76	213.60	238.05	200.30 420.45	300%	234.01	208%	193 71	40%	55.01 160.46	-10%	192.50	30%	231 36	204%	-
																-
Overestimate	by 100	31	9	52		8		4		2		4		8		1
Underestimate Miscalculated	e by 100 by > 100 (+/-)	3	9 18	1		6 14		13		23		13 17		6		-

	Equation (Boto)	17 11	10.20	GFA (2-4k sf),	Midwest: 15.59	6.76*VFF	P + 76.48*	102.23*(GFA _{Class} -	103.09*0	GFA _{Class} +	6.95* 75.20*0	VFP +	7.86*VFP + 7 - 2	4.05*GFA _{Class} 9.55
	Equation/Rate:	17.11	19.20	GFA (4-5.5k st) GFA (5.5-10k st	All Sites: 29.77	GFA _{Clas}	_{s.} -19.33	15.81*Metr	0 ₁₀₀ + 47.58	13.47*Metr	o 300 + 12.15	13.24*Met	ro ₃₀₀ - 5.85	-26.61*VFP + 3 + 11	20.94*GFA _{Class}
Site	Actual Trips	TGM 10 LUC 960	TGM 10 LUC 945	TGM 11 LUC 945	% Diff	VFP + GFA Class.	% Diff	GFA Class. + Metro 100,000	% Diff	GFA Class. + Metro 300,000	% Diff	VFP + GFA Class. + Metro 300,000	% Diff	VFP + GFA Class. ≥ < Metro 300,000	% Diff
NC-302	426	273.76	308.48	476.32	12%	318.27	-25%	354.27	-17%	321.42	-25%	331.52	-22%	318.36	-25%
NC-303 NC-304	482	273.76	308.48	476.32	-1%	338.55	-34%	354.27	-27%	321.42	-33%	352.37	-31%	341.94	-34%
NC-305	69	171.10	192.80	155.90	126%	124.75	81%	149.81	117%	115.24	67%	139.04	102%	123.1	78%
NC-306	420	376.42	424.16	396.66	-6%	282.35	-33%	252.04	-40%	218.33	-48%	297.83	-29%	291.47	-31%
NC-307	375	273.76	308.48	476.32	270%	318.27	-15%	354.27	-6%	321.42	-14%	331.52	-12%	318.36	-15%
NC-310	94	205.32	231.36	187.08	99%	138.27	47%	149.81	59%	115.24	23%	152.94	63%	138.82	48%
NC-311	127	171.10	192.80	180.30	42%	201.23	58%	252.04	98%	218.33	72%	214.43	69%	197.15	55%
NC-312 NC-313	474	393.53	443.44	684.71	-0%	365.59	-23%	354.27	-25%	321.42	-32%	380.17	-20%	373.38	-21%
NC-314	319	410.64	462.72	714.48	124%	295.87	-7%	252.04	-21%	218.33	-32%	311.73	-2%	307.19	-4%
NE-201	157	273.76	308.48	476.32	203%	318.27	103%	338.46	116%	321.42	105%	331.52	111%	318.36	103%
NE-202 NE-203	295	307.98	347.04	535.86	-0%	331.79	12%	354.27	20%	321.42	43% 9%	345.42	17%	334.08	19%
NE-204	303	205.32	231.36	216.36	-29%	214.75	-29%	236.23	-22%	218.33	-28%	228.33	-25%	212.87	-30%
NE-205	249	222.43	250.64	234.39	-6%	221.51	-11%	252.04	1%	218.33	-12%	235.28	-6%	220.73	-11%
NE-206	108	342.20	385.60 250.64	360.60	234%	208.83 145.03	22%	236.23	26%	∠18.33 115.24	-3%	283.93 159.89	163% 34%	275.75 146.68	23%
NE-208	86	136.88	154.24	124.72	45%	111.23	29%	149.81	74%	115.24	34%	125.14	46%	107.38	25%
NE-209	144	136.88	154.24	124.72	-13%	111.23	-23%	149.81	4%	115.24	-20%	125.14	-13%	107.38	-25%
NE-210	191	188.21	212.08	171.49 535.86	-10%	131.51 255.31	-31%	149.81	-22%	218.22	-40%	145.99	-24%	130.96	-31%
NE-211 NE-212	285	273.76	308.48	288.48	193 %	241.79	-15%	252.04	-12%	218.33	-23%	256.13	-10%	244.31	-14%
NE-213	291	222.43	250.64	234.39	-19%	221.51	-24%	252.04	-13%	218.33	-25%	235.28	-19%	220.73	-24%
NE-214	126	239.54	269.92	252.42	100%	228.27	81%	252.04	100%	218.33	73%	242.23	92%	228.59	81%
NE-215 NF-216	351	239.54	212.08	327.47	19%	207.99	-13%	252.04	147%	218.33	-8%	221.38	-10%	205.01	-14%
NE-217	134	171.10	192.80	297.70	122%	277.71	107%	354.27	164%	321.42	140%	289.82	116%	271.2	102%
NW-401	463	325.09	366.32	565.63	22%	338.55	-27%	354.27	-23%	321.42	-31%	352.37	-24%	341.94	-26%
NW-402	349	376.42	424.16	654.94	88%	358.83	3%	354.27	2%	321.42	-8%	373.22	7%	365.52	5%
NW-403	97	205.32	231.36	124.72	93%	138.27	43%	149.81	20%	115.24	-8%	125.14	58%	138.82	-14%
NW-405	123	171.10	192.80	155.90	27%	124.75	1%	134	9%	115.24	-6%	139.04	13%	123.1	0%
NW-406	388	325.09	366.32	296.21	-24%	262.07	-32%	252.04	-35%	218.33	-44%	276.98	-29%	267.89	-31%
NW-407 NW-408	225	376.42	424.16	396.66	-9%	282.35	-24%	236.23	-20%	218.33	-3%	297.83	-19%	291.47	-23%
NW-409	408	273.76	308.48	476.32	17%	241.79	-41%	252.04	-38%	218.33	-46%	256.13	-37%	244.31	-40%
NW-410	346	256.65	289.20	446.55	29%	311.51	-10%	354.27	2%	321.42	-7%	324.57	-6%	310.5	-10%
NW-411 NW-412	251	3/6.42	424.16	396.66	58% 130%	282.35	12%	252.04	0%	218.33	-13%	297.83	19%	291.47	16% 35%
SE-101	93	222.43	250.64	234.39	152%	221.51	138%	252.04	171%	218.33	135%	235.28	153%	220.73	137%
SE-102	335	342.20	385.60	595.40	78%	345.31	3%	354.27	6%	321.42	-4%	359.32	7%	349.8	4%
SE-104	246	171.10	192.80	180.30	-27%	201.23	-18%	252.04	2%	218.33	-11%	214.43	-13%	197.15	-20%
SE-103	141	171.10	192.80	155.90	-3 %	124.75	-12%	149.81	6%	115.24	-18%	139.04	-1%	123.1	-13%
SE-108	333	273.76	308.48	288.48	-13%	241.79	-27%	236.23	-29%	231.8	-30%	242.89	-27%	333.01	0%
SE-110	83	205.32	231.36	187.08	125%	138.27	67%	134	61%	128.71	55%	139.7	68%	118.51	43%
SE-111	221	205.32	231.36	187.08	-15%	138.27	-37%	134	-39%	115.24	-48%	152.94	-31%	138.82	-37%
SE-113	286	171.10	192.80	180.30	-37%	201.23	-30%	236.23	-17%	218.33	-24%	214.43	-25%	197.15	-31%
SE-115	418	342.20	385.60	595.40	42%	268.83	-36%	252.04	-40%	218.33	-48%	283.93	-32%	275.75	-34%
SE-116 SE-117	308	496.19	559.12 462.72	863.33	180%	406.15	32%	338.46	10%	334.89	9%	408.63	33%	308.02	0%
SW-501	89	273.76	308.48	476.32	435%	318.27	258%	354.27	298%	321.42	261%	331.52	272%	318.36	258%
SW-502	65	136.88	154.24	124.72	92%	111.23	71%	149.81	130%	115.24	77%	125.14	93%	107.38	65%
5W-504	351	325.09 136.99	366.32	565.63	61%	338.55 187 71	-4%	338.46	-4%	321.42	-8%	352.37	0%	341.94	-3%
SW-507	154	205.32	231.36	187.08	21%	138.27	-10%	134	-13%	128.71	-16%	139.7	-9%	118.51	-23%
SW-509	294	342.20	385.60	595.40	103%	345.31	17%	354.27	21%	321.42	9%	359.32	22%	349.8	19%
SW-510	397	325.09	366.32	565.63	42%	262.07	-34%	252.04	-37%	218.33	-45%	276.98	-30%	267.89	-33%
SW-511 SW-512	68 535	136.88	212.08	124.72	63%	207.99	-61%	252.04	-53%	218.33	-59%	125.14	84% -59%	205.01	58% -62%
SW-515	123	136.88	154.24	124.72	1%	111.23	-10%	149.81	22%	115.24	-6%	125.14	2%	107.38	-13%
SW-516	52	171.10	192.80	155.90	200%	124.75	140%	149.81	188%	115.24	122%	139.04	167%	123.1	137%
sW-517	62	256.65	289.20	446.55	620%	235.03	279%	252.04	307%	218.33	252%	249.18	302%	236.45	281%
Overestimate	by 100	19	23	31		9		10		8		12		9	
Jnderestimat	e by 100	9	4	2		10		9		13		8		10	
Miscalculated	DV > 100 (+/-)	28		.33		19	1	19		21		20	1	19	

Appendix G Weekday Final Regression Summaries VFP + GFA Class. (< Metro 300,000)

SUMMARY OUTPUT

Regression Sta	atistics							
Multiple R	0.6843							
R Square	0.4683							
Adjusted R Square	0.4520							
Standard Error	1050.0698							
Observations	68							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	63132662.112	31566331.056	28.628	1.21186E-09			
Residual	65	71672023.947	1102646.522					
Total	67	134804686.059						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-354.831	426.243	-0.832	0.408	-1206.097	496.435	-1206.097	496.435
VFP	80.610	33.226	2.426	0.018	14.252	146.967	14.252	146.967
GFA Class.	898.299	211.141	4.254	0.000	476.621	1319.977	476.621	1319.977
			VFP + GFA Class	(≥ Metro 300	,000)			
SUMMARY OUTPUT								

Regression Statistics									
Multiple R	0.8703								
R Square	0.7575								
Adjusted R Square	0.7202								
Standard Error	938.5882								
Observations	16								

ANOVA

	df	SS	MS	F	Significance F
Regression	2	35768138.769	17884069.385	20.301	0.000100222
Residual	13	11452321.231	880947.787		
Total	15	47220460.000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1035.888	717.441	-1.444	0.172	-2585.825	514.049	-2585.825	514.049
VFP	144.001	57.560	2.502	0.027	19.651	268.351	19.651	268.351
GFA Class.	834.764	477.059	1.750	0.104	-195.860	1865.387	-195.860	1865.387