NOTICE TO ALL CONTRACTORS:

Proposal \#34: 1198-00-78, WISC 2018256
Minong - Superior
CTH L Intersection
USH 53
Douglas County

Division of Transportation Systems Development
Bureau of Project Development 4822 Madison Yards Way, $4^{\text {th }}$ Floor South Madison, WI 53705

Telephone: (608) 266-1631
Facsimile (FAX): (608) 266-8459

1198-02-82, WISC 2018257
Solon Springs - Superior
WI Central LTD RR To Kent Road (NB)
USH 53
Douglas County

1198-02-83, WISC 2018258
Solon Springs - Superior
WI Central LTD RR To
Kent Road (SB)
USH 53
Douglas County
Letting of May 8, 2018
This is Addendum No. 01, which provides for the following:

Special Provisions:

Added Special Provisions	
Article No.	Description
21	Asphaltic Surface, Item 465.0105
22	HMA Pavement Percent Within Limits (PWL) QMP
23	HMA Percent Within Limits (PWL) Test Strip Volumetrics, Item SPV.0060.01; HMA Percent Within Limits (PWL) Test Strip Density Item SPV.0060.02

Schedule of Items:

Revised Bid Item Quantities					
Bid Item	Item Description	Unit	Old Quantity	Revised Quantity	Proposal Total
205.0100	Excavation Common	CY	10,080	$-1,530$	8,555
460.2000	Incentive Density HMA Pavement	DOL	22,280	4,630	26,910
460.8644	HMA Pavement 4 SMA 58-34 V	TON	35,648	-636	35,012
465.0105	Asphaltic Surface	TON	16,402	$-7,006$	9,396

Added Bid Item Quantities					
Bid Item	Item Description	Unit	Old Quantity	Revised Quantity	Proposal Total
460.2005	Incentive Density PWL HMA Pavement	DOL	0	19,350	19,350
460.2010	Incentive Air Voids HMA Pavement	DOL	0	20,580	20,580
460.6444	HMA Pavement 4 MT 58-34 H	TON	0	7,874	7,874
SPV.0060.01	HMA Percent Within Limits (PWL) Test Strip Volumetrics, Item SPV.0060.01.	EACH	0	1	1
SPV.0060.02	HMA Percent Within Limits (PWL) Test Strip Density Item SPV.0060.02.	EACH	0	1	1

Deleted Bid Item Quantities					
Bid Item	Item Description	Unit	Old Quantity	Revised Quantity	Proposal Total
465.0110	Asphaltic Surface Patching	TON	300	-300	0

Plan Sheets:

1198-00-78

Revised Plan Sheets	
Plan Sheet	Plan Sheet Title (brief description of changes to sheet)
6	Typical Section Sheet - Revised HMA Pavement Type Upper Layer : 4 MT 58-34 H
7	Typical Section Sheet - Revised HMA Pavement Type Upper Layer : 4 MT 58-34 H
25	MQ Sheet - Revised HMA Pavement Column for revised pavement 4 MT 58-34 H

1198-02-82

Revised Plan Sheets	
Plan Sheet	Plan Sheet Title (brief description of changes to sheet)
4	Typical Section Sheet - Revised HMA Pavement Type Upper Layer : 4 MT 58-34 H
6	Construction Detail Sheet - Revised Pavement Types on Detail
59	MQ Sheet - Revised Table - 3 columns revised with new pavement types
61	MQ Sheet - Revised Table - Excavation Common for information only

1198-02-83

Revised Plan Sheets	
Plan Sheet	Plan Sheet Title (brief description of changes to sheet)
4	Typical Section Sheet - Revised HMA Pavement Type Upper Layer : 4 MT 58-34 H
9	Construction Detail Sheet - Revised Pavement Types on Detail
59	MQ Sheet - Revised HMA Pavement Test Strip Table, Excavation for information only
60	MQ Sheet - Revised Table - 3 columns revised with new pavement types
66	MQ Sheet - Added PWL Mixture Use Table

The responsibility for notifying potential subcontractors and suppliers of these changes remains with the prime contractor.

Sincerely,

Mike Coleman

Proposal Development Specialist
Proposal Management Section

ADDENDUM NO. 01

1198-00-78, 1198-02-82, 1198-02-83

April 30, 2018

Special Provisions

21. Asphaltic Surface, Item 465.0105 .

Replace standard spec 465.2 (1) with the following:

Under the Asphaltic Surface bid item submit a mix design. Furnish asphaltic mixture meeting the requirements specified for HMA Pavement 4 LT 58-34 S under 460.2; except the engineer will not require the contractor to conform to the quality management program specified under 460.2.8.

22. HMA Pavement Percent Within Limits (PWL) QMP.

A Description

This special provision describes percent within limits (PWL) pay determination, providing and maintaining a contractor Quality Control (QC) Program, department Quality Verification (QV) Program, required sampling and testing, dispute resolution, corrective action, pavement density, and payment for HMA pavements. Pay is determined by statistical analysis performed on contractor and department test results conducted according to the Quality Management Program (QMP) as specified in standard spec 460, except as required below.

B Materials

Conform to the requirements of standard specs 450,455 , and 460 except where superseded by this special provision. The department will allow only one mix design for each HMA mixture type per layer required for the project, unless approved by the engineer. The use of more than one mix design for each HMA pavement layer will require the contractor to construct a new test strip in accordance with HMA Pavement Percent Within Limits (PWL) QMP Test Strip Volumetrics and HMA Pavement Percent Within Limits (PWL) QMP Test Strip Density articles at no additional cost to the Department.

Replace standard spec 460.2.8.2.1.3.1 for contracts with 5000 Tons of Mixture or Greater with the following:

460.2.8.2.1.3.1 Contracts under Percent within Limits

${ }^{(1)}$ Furnish and maintain a laboratory at the plant site fully equipped for performing contractor QC testing. Have the laboratory on-site and operational before beginning mixture production.
${ }^{(2)}$ Obtain random samples and perform tests according to Appendix A Test Methods \& Sampling for HMA Pavement PWL QMP. Obtain HMA mixture samples from trucks at the plant. For the sublot in which a QV sample is collected, the QC sample shall be discarded, and the QC team shall test a split of the QV sample.
${ }^{(3)}$ Sample size must be adequate to run the appropriate required tests in addition to one set of duplicate tests that may be required for dispute resolution (i.e., retained). This requires sample sizes which yield three splits for all random sampling per sublot. All QC samples shall provide the following: QC, QV, and Retained. The contractor shall take possession and test the QC portions. The department will observe the splitting and take possession of the samples intended for QV testing (i.e., QV portion from each sample) and the Retained portions. Additional sampling details are found in Appendix A. Samples shall be labeled in accordance with Appendix A. Additional handling instructions for retained samples are found in CMM 8-36.
${ }^{(4)}$ Use the test methods identified below to perform the following tests at a frequency greater than or equal to that indicated:

- Blended aggregate gradations in accordance with AASHTO T 30
- Asphalt content (AC) in percent according to AASHTO T 308 (ignition oven) or AASHTO T 164 (chemical extraction)
- Bulk specific gravity (Gmb) of the compacted mixture according to AASHTO T 166.
- Maximum specific gravity (Gmm) according to AASHTO T 209.
- Air voids $\left(\mathrm{V}_{\mathrm{a}}\right)$ by calculation according to AASHTO T 269.
- Voids in Mineral Aggregate (VMA) by calculation according to AASHTO R35.
${ }^{(5)}$ Lot size shall consist of 3750 tons with sublots of 750 tons. Test each design mixture at a frequency of 1 test per 750 tons of mixture type produced and placed on the project. Add a random sample for any fraction of 750 tons at the end of a project. Partial lots with less than three sublot tests will be included into the previous lot for data analysis/acceptance and pay. Volumetric lots will include all tonnage of mixture type under specified bid item unless otherwise specified in the plan.
${ }^{(6)}$ Conduct field tensile strength ratio tests according to AASHTO T283, without freeze-thaw conditioning cycles, on each qualifying mixture in accordance with CMM 8-36.6.14. Test each full 50,000 ton production increment, or fraction of an increment, after the first 5,000 tons of production. Perform required increment testing in the first week of production of that increment. If field tensile strength ratio values are below the spec limit, notify the engineer. The engineer and contractor will jointly determine a corrective action.

Delete standard spec 460.2.8.2.1.5 and 460.2.8.2.1.6
Replace standard spec 460.2.8.2.1.7 Corrective Action with the following:

460.2.8.2.1.7 Corrective Action

${ }^{(1)}$ Material must conform to the following action and conformance limits based on individual QC and QV test results (tolerances relative to JMF):

ITEM
Percent passing given sieve:

$37.5-\mathrm{mm}$	$+/-8.0$
$25.0-\mathrm{mm}$	$+/-8.0$
$19.0-\mathrm{mm}$	$+/-7.5$
$12.5-\mathrm{mm}$	$+/-7.5$
$9.5-\mathrm{mm}$	$+/-7.5$
$2.36-\mathrm{mm}$	$+/-7.0$
$75-\mu \mathrm{m}$	$+/-3.0$
AC in percent	-0.5
\quad Va	
VMA in percent ${ }^{[1]}$	-0.5

$$
+/-7.5
$$

$$
+/-7.5
$$

$$
\text { +/- } 7.5
$$

$$
\text { +/- } 7.0
$$

$$
+/-3.0
$$

$$
-0.5
$$

$$
-1.5 \&+2.0
$$

$$
-0.5
$$

$$
-1.0
$$

${ }^{[1]}$ VMA limits based on minimum requirement for mix design nominal maximum aggregate size in table 460-1.
${ }^{(2)}$ QV samples will be tested for air voids, VMA, Gmm, Gmb, and AC.
${ }^{(3)}$ Notify the engineer if any individual test result falls outside the action limits, investigate the cause and take corrective action to return to within action limits. If two consecutive test results fall outside the action limits, stop production. Production may not resume until approved by the engineer. Additional QV samples may be collected upon resuming production, at the discretion of the engineer. Additional QV tests must meet action limits or be subject to production stop and/or remove and replace.
${ }^{(4)}$ For any additional tests outside the random number testing conducted for volumetrics, the data collected will not be entered into PWL calculations. However, additional QV testing shall meet the tolerances for material acceptance as specified in the Standard Specification and this document.
${ }^{(5)}$ Remove and replace nonconforming material at no additional expense to the department. The engineer may allow nonconforming material to remain in place with a price reduction. The department will pay for the nonconforming HMA Pavement allowed to remain in place at 50 percent of the contract unit price.
Nonconforming material is defined as any individual QC or QV tests results outside the conformance limits or a PWL value <50.

Replace standard spec 460.2.8.3.1.2 Personnel Requirements with the following:

460.2.8.3.1.2 Personnel Requirements

${ }^{(1)}$ The department will provide at least one HTCP-certified HMA technician, certified at a level appropriate for sampling and mixture production control testing, to observe QV sampling of project mixtures.
${ }^{(2)}$ Under departmental observation, a contractor HMA technician certified at a level appropriate for sampling and mixture production control testing will collect and split samples.
${ }^{(3)} \underline{A}$ department HMA technician certified at a level appropriate for sampling and mixture production control testing will ensure that all sampling is performed correctly and conduct testing, analyze test results, and report resulting data.
${ }^{(4)}$ The department will provide an organizational chart to the contractor before mixture production begins. The organizational chart will include names, telephone numbers, and current certifications of all QV testing personnel. The department will update the chart with appropriate changes, as they become effective.

Replace standard spec 460.2.8.3.1.4 Department Verification Testing Requirements with the following:

460.2.8.3.1.4 Department Verification Testing Requirements

${ }^{(1)}$ HTCP-certified department personnel will obtain QV random samples by directly supervising HTCPcertified contractor personnel sampling from trucks at the plant. Sample size must be adequate to run the appropriate required tests in addition to one set of duplicate tests that may be required for dispute resolution (i.e., retained). This requires sample sizes which yield three splits for all random sampling per sublot. All QV samples shall provide the following: QC, QV, and Retained. The department will observe the splitting and take possession of the samples intended for QV testing (i.e., QV portion from each sample) and the Retained portions. The department will take possession of retained samples accumulated to date each day QV samples are collected. Retention of samples will be provided until surpassing the analysis window of up to 5 lots, as defined in 460.2.8.3.1.7(2) of this document. Additional sampling details are found in Appendix A.
${ }^{(2)}$ The department will verify product quality using the test methods specified here in $460 \cdot 2 \cdot 8 \cdot 3.1 .4(3)$. The department will identify test methods before construction starts and use only those methods during production of that material unless the engineer and contractor mutually agree otherwise.
${ }^{(3)}$ The department will perform all testing conforming to the following standards:

- Bulk specific gravity (Gmb) of the compacted mixture according to AASHTO T 166.
- Maximum specific gravity (Gmm) according to AASHTO T 209.
- Air voids (Va) by calculation according to AASHTO T 269.
- Voids in Mineral Aggregate (VMA) by calculation according to AASHTO R 35.
- Asphalt Content (AC) in percent by ignition oven according to AASHTO T 308 or by chemical extraction according to AASHTO T 164
${ }^{(4)}$ The department will randomly test each design mixture at the minimum frequency of one test for each lot.

Delete standard spec 460.2.8.3.1.6
Replace standard spec 460.2.8.3.1.7 Dispute Resolution with the following:

460.2.8.3.1.7 Data Acceptance for Volumetrics

${ }^{(1)}$ Acceptance of test data for pay determination will be contingent upon QC and QV test results. Statistical analysis will be conducted on Gmm and Gmb test results for calculation of Va. If either Gmm or Gmb analysis results in non-comparable data as described in 460.2.8.3.1.7(2), subsequent testing will be performed for both parameters as detailed in the following paragraph.
${ }^{(2)}$ The engineer, upon completion of the first 3 lots, will compare the variances (F-test) and the means (t-test) of the QV test results with the QC test results. Additional comparisons incorporating the first 3 lots of data will be performed following completion of the $4^{\text {th }}$ and $5^{\text {th }}$ lots (i.e., lots 1-3, 1-4, and 1-5). A rolling window of 5 lots will be used to conduct F \& t comparison for the remainder of the project (i.e., lots 2-6, then lots $3-7$, etc.), reporting comparison results for each individual lot. Analysis will use a set alpha value of 0.025 . If the F - and t-tests report comparable data, the QC and QV data sets are determined to be statistically similar and QC data will be used to calculate the Va used in PWL and pay adjustment calculations. If the F- and t-tests result in non-comparable data, proceed to the dispute resolution steps found below. Dispute resolution via further investigation is as follows:
${ }^{[1]}$ The Retained portion of the split from the most recent lot in the analysis window (specifically the sublot identifying that variances or means do not compare) shall be referee tested by the bureau's AASHTO accredited laboratory and certified personnel. If the noncomparison occurs following Lot 3,4 , or 5 , all previous lots are subject to referee testing. Referee test results will replace the QV data of the sublot(s).
${ }^{[2]}$ Statistical analysis will be conducted with referee test results replacing QV results.
i. If the F - and t-tests indicate variances and means compare, no further testing is required for the lot and QC data will be used for PWL and pay factor/adjustment calculations.
ii. If the F - and t -tests indicate non-comparable variances or means, the QV portion of the random QC sample will be tested by the department's regional lab for the remaining 4 sublots of the lot which the F - and t - tests report not comparing. The department's region lab and the referee test results will be used for PWL and pay factor/adjustment calculations.
${ }^{[3]}$ The contractor may choose to dispute the regional test results on a lot basis. In this event, the retained portion of each sublot will be referee tested by the department's AASHTO accredited laboratory and certified personnel. The referee Gmm and Gmb test results will supersede the regional lab results for the disputed lot.
i. If referee testing results in an increased calculated pay factor, the department will absorb the cost of the additional referee testing.
ii. If referee testing of a disputed lot results in an equal or lower calculated pay factor, the contractor pays for the additional referee testing at $\$ 2,000 /$ lot.
${ }^{(3)}$ The department will notify the contractor of the referee test results within 3 working days after receipt of the samples by the department's AASHTO accredited laboratory. The intent is to provide referee test results within 7 calendar days from completion of the lot.
${ }^{(4)}$ The department will determine mixture conformance and acceptability by analyzing referee test results, reviewing mixture project data, and inspecting the completed pavement according to Standard Spec, this special provision, and accompanying Appendix A.
${ }^{(5)}$ Nonconforming mix (i.e., resulting in a PWL value less than 50 or not meeting the requirements of 460.2.8.2.1.7 as modified here within) may be subject to remove and replace, at the discretion of the engineer. Replacement may be conducted on a sublot basis. If an entire PWL sublot is removed and replaced, the test results of the newly placed material shall replace the original data for the sublot. Any remove and replace shall be performed at no additional cost to the department. Testing of replaced material must include a minimum of one QV result. [Note: If the removed and replaced material does not result in replacement of original QV data, an additional QV test will be conducted and under such circumstances will be entered into the data analysis and pay determination.] If the engineer approves the nonconforming material to remain in place, it will be paid at 50% of the HMA Pavement contract unit price. The extent of nonconforming mix shall be determined by following the dispute resolution process detailed in
460.2.8.3.1.7(2) of this document. The quantity of material paid at 50% the contract unit price will be deducted from PWL pay adjustments, along with accompanying data of this nonconforming material. Delete standard spec 460.2.8.3.1.8 Corrective Action.

C Construction

Replace standard spec 460.3.3.2 Pavement Density Determination with the following:

460.3.3.2 Pavement Density Determination

${ }^{(1)}$ The engineer will determine the target maximum density using department procedures described in CMM $8-15$. The engineer will determine density as soon as practicable after compaction and before placement of subsequent layers or before opening to traffic.
${ }^{(2)}$ Do not re-roll compacted mixtures with deficient density test results. Do not operate continuously below the specified minimum density. Stop production, identify the source of the problem, and make corrections to produce work meeting the specification requirements.
${ }^{(3)}$ A lot is defined as 7500 lane feet with sublots of 1500 lane feet (excluding shoulder, even if paved integrally) and placed within a single layer for each location and target maximum density category indicated in table 460-3. The contractor is required to complete 3 tests randomly per sublot and the department will randomly conduct one (1) QV test per sublot. A partial quantity less than 1500 lane feet will be included with the previous sublot. Partial lots with less than three sublots will be included into the previous lot for data analysis/acceptance and pay, by the engineer. If density lots/sublots are determined prior to construction of the test strip, any random locations within the test strip shall be omitted. Exclusions such as shoulders and appurtenances shall be tested in accordance with CMM 8-15. However, all acceptance testing of shoulders and appurtenances will be conducted by the department, and average lot (daily) densities must conform to Table 460-3.
${ }^{(4)}$ The three QC locations per sublot will represent the outside, middle, and inside of the paving lane. Each location will be measured with two one-minute gauge readings oriented 180 degrees from one another, in the same footprint as detailed in Appendix A. Each location will be the average of the two readings. If the two readings exceed $1.0 \mathrm{lb} / \mathrm{ft}^{3}$ of one another, a third reading shall be conducted in the same orientation as the first reading. In this event, all three readings shall be averaged, the initial of the three readings which falls farthest from the average value discarded, and the remaining two values averaged to represent the location for the gauge. Multiple locations are not to be averaged together.
${ }^{(5)}$ QV nuclear testing will consist of a randomly selected location per sublot. The QV is also comprised of two one-minute readings, averaged as described in 460.3.3.2(4) above.
${ }^{(6)}$ A certified nuclear density technician shall identify random locations and perform the testing. The responsible certified technician shall ensure that sample location and testing is performed correctly, analyze test results, and provide density results to the contractor weekly, or at the completion of each lot.
${ }^{(7)}$ For any additional tests outside the random number testing conducted for density, the data collected will not be entered into PWL calculations. However, additional QV testing must meet the tolerances for material acceptance as specified in the Standard Specification and this document. If additional density data identifies nonconforming material, proceed in accordance with CMM 8-15.11.

Replace standard spec 460.3.3.3 Waiving Density Testing with Acceptance of Density Data with the following:

460.3.3.3 Acceptance of Density Data

${ }^{(1)}$ Acceptance of test data for pay determination will be contingent upon test results from both the contractor (QC) and the department (QV).
${ }^{(2)}$ As random density locations are paved, the data shall be recorded in the PWL spreadsheet for analysis in chronological order. The engineer, upon completion of the analysis lot, will compare the variances (F-test) and the means (t-test) of the QV test results with the QC test results. Analysis will use a set alpha value of 0.025 .
i. If the F - and t -tests indicate variances and means compare, the QC and QV data sets are determined to be statistically similar and QC data will be used for PWL and pay adjustment calculations.
ii. If the F - and t -tests indicate variances or means do not compare, the QV data will be used for subsequent calculations.
${ }^{(3)}$ The department will determine mixture density conformance and acceptability by analyzing test results, reviewing mixture project data, and inspecting the completed pavement according to Standard Spec, this document, and accompanying Appendix.
${ }^{(4)}$ Density resulting in a PWL value less than 50 or not meeting the requirements of 460.3.3.1 is nonconforming and may be subject to remove and replace at no additional cost to the department, at the discretion of the engineer.
i. Replacement may be conducted on a sublot basis. If an entire PWL sublot is removed and replaced, the test results of the newly placed material shall replace the original data for the sublot.
ii. Testing of replaced material must include a minimum of one QV result. [Note: If the removed and replaced material does not result in replacement of original QV data, an additional QV test must be conducted and under such circumstances will be entered into the data analysis and pay determination.]
iii. If the engineer approves the nonconforming material to remain in place, it will be paid for at 50% of the HMA Pavement contract unit price. The extent of nonconforming density is addressed in accordance with CMM 8-15.11. The quantity of material paid at 50% the contract unit price will be deducted from PWL pay adjustments, along with accompanying data of this nonconforming material.

D Measurement

The department will measure the HMA Pavement bid items acceptably completed by the ton as specified in standard spec 450.4 and as follows in standard spec 460.5 as modified here within.

E Payment

Replace standard spec 460.5.2 HMA Pavement with the following:

460.5.2 HMA Pavement

460.5.2.1 General

${ }^{(1)}$ Payment for HMA Pavement Type LT, MT, and HT mixes is full compensation for providing HMA mixture designs; for preparing foundation; for furnishing, preparing, hauling, mixing, placing, and compacting mixture; for HMA PWL QMP testing and aggregate source testing; for warm mix asphalt additives or processes; for stabilizer, hydrated lime and liquid antistripping agent, if required; and for all materials including asphaltic materials.
${ }^{(2)}$ If provided for in the plan quantities, the department will pay for a leveling layer, placed to correct irregularities in an existing paved surface before overlaying, under the pertinent paving bid item. Absent a plan quantity, the department will pay for a leveling layer as extra work.

460.5.2.2 Calculation of Pay Adjustment for HMA Pavement using PWL

${ }^{(1)}$ Pay adjustments will be calculated using 65 dollars per ton of HMA pavement. The analysis template, including data, will be provided to the contractor by the department as soon as practicable upon completion of each lot. The department will pay for measured quantities of mix based on this price multiplied by the following pay adjustment calculated in accordance with the Calculations worksheet of the WisDOT PWL Analysis Template:

PAY FACTOR FOR HMA PAVEMENT AIR VOIDS \& DENSITY
PERCENT WITHIN LIMITS
(PWL)
>90 to 100
≥ 50 to 90
<50
PAYMENT FACTOR, PF
(percent of \$65/ton)
$P F=((P W L-90) * 0.4)+100$
(PWL * 0.5) +55
$50 \%{ }^{[1]}$

where PF is calculated per air voids and density, denoted $P F_{\text {air voids }} \& P F_{\text {density }}$
${ }^{[1]}$ Any material resulting in PWL value of 50 or less shall be removed and replaced unless the engineer allows for such material to remain in place. In the event the material remains in place, it will be paid at 50% of the contract unit price of HMA pavement.

For air voids, PWL values will be calculated using lower and upper specification limits of 2.0 and 4.3 percent, respectively. Lower specification limits for density shall be in accordance with Table 460-3. Pay adjustment will be determined on a lot basis and will be computed as shown in the following equation.

Pay Adjustment $=($ PF-100 $) / 100 \times(\mathrm{WP}) \times($ tonnage $) \times(\$ 65 / \text { ton })^{*}$
*Note: If Pay Factor <50, the contract unit price will be used in lieu of \$65/ton
The following weighted percentage (WP) values will be used for the corresponding parameter:

$\underline{\text { Parameter }}$		$\underline{W P}$
Air Voids		0.5
Density		0.5

Individual Pay Factors for each air voids ($\mathrm{PF}_{\text {air voids }}$) and density ($\mathrm{PF}_{\text {density }}$) will be determined. PF air voids will be multiplied by the total tonnage placed (i.e., from truck tickets), and $P F_{\text {density }}$ will be multiplied by the calculated tonnage used to pave the mainline only (i.e., travel lane) as determined in accordance with CMM 8-15.

The department will pay incentive for air voids and density under the following bid items:
ITEM NUMBER DESCRIPTION UNIT
460.2005 Incentive Density PWL HMA Pavement DOL
460.2010 Incentive Air Voids HMA Pavement DOL

The department will administer disincentives under the Disincentive Density HMA Pavement and the Disincentive Air Voids HMA Pavement administrative items.

Note: PWL value determination is further detailed in the Calculations worksheet of the WisDOT PWL Analysis Template.
bts-HMA PWL QMP (20171002)

23. HMA Percent Within Limits (PWL) Test Strip Volumetrics, Item SPV.0060.01; HMA Percent

 Within Limits (PWL) Test Strip Density Item SPV.0060.02.
A Description

This special provision describes the Hot Mix Asphalt (HMA) density and volumetric testing tolerances required for an HMA test strip. An HMA test strip is required for projects constructed under HMA Percent Within Limits (PWL) QMP. A test strip is required for each pavement layer placed over a specific, uniform underlying material, unless specified otherwise in the plans. Each project is restricted to a single mix design for each mix type required (e.g., upper layer and lower layer may have different mix type specified).

Perform work according to standard spec 460 and as hereinafter modified.

B Materials

Use materials conforming to HMA Pavement Percent Within Limits (PWL) QMP special provision.

C Construction

C. 1 Test Strip

Notify the department at least 5 calendar days in advance of construction of the test strip. On the first day of production for a test strip, produce approximately 750 tons of HMA._(Note: tonnage shall be adjusted to accommodate natural break points in the project.) Test strips shall be located in a section of the roadway to allow a representative rolling pattern (i.e. not a ramp or shoulder, etc.).

C.1.1 Sampling and Testing Intervals

C.1.1.1 Volumetrics

Laboratory testing will be conducted from a split sample yielding three components, with portions designated for QC (quality control), QV (quality verification), and retained.

During production for the test strip, HMA mixture samples shall be obtained from trucks prior to departure from the plant. Three split samples shall be collected during the production of test strip material. Sampling and splitting shall be in accordance with Appendix A: Sampling for WisDOT PWL QMP. These three samples will be randomly selected by the engineer from each third of the test strip tonnage (T), excluding the first 50 tons:

Sample Number

1
$\underline{2}$
3

Production Interval (tons)

$$
50 \text { to } \frac{T}{3}
$$

$$
\frac{T}{3} \text { to } \frac{2 T}{3}
$$

$$
\frac{2 T}{3} \text { to } T
$$

C.1.1.2 Density

Required field tests include contractor QC and department QV nuclear density gauge tests and pavement coring.

The engineer will identify two zones in which gauge/core correlation is to be performed. These two zones will be randomly selected within each half of the test strip length. (Note: Density zones shall not overlap and must have a minimum of 100 feet between the two zones; therefore random numbers may be shifted (evenly) in order to meet these criteria.) Each zone shall consist of five locations across the mat as identified in Appendix A. The following shall be determined at each of the five locations within both zones:

- two one-minute nuclear density gauge readings for QC team*
- two one-minute nuclear density gauge readings for QV team*
- pavement core sample
*If the two readings exceed $1.0 \mathrm{lb} / \mathrm{ft}^{3}$ of one another, a third reading shall be conducted in the same orientation as the first reading. [In this event, the engineer will average all three readings, discard the initial of the three readings which falls farthest from the average value and then average the remaining two values to represent the location for the gauge.]

Both QV and QC teams shall have two nuclear density gauges present for correlation at the time the test strip is constructed. The above testing shall be conducted in accordance with Appendix A: Test Methods \& Sampling for PWL QMP HMA Pavements.

All test reports shall be submitted to the department upon completion, and approved before paving resumes.

C.1.2 Field Tests

C.1.2.1 Density

Daily standardization of gauges on reference blocks and a project reference site shall be performed in accordance with CMM 8-15. A standard count shall be performed for each gauge on the material placed for the test strip, prior to any additional data collection. Nuclear gauge readings and pavement cores shall be used to determine nuclear gauge correlation in accordance with Appendix A. The two to three readings for the five locations across the mat for each of two zones shall be provided to the engineer. The engineer will analyze the readings of each gauge relative to the densities of the cores taken at each location. The engineer will determine the average difference between the nuclear gauge density readings and the measured core densities to be used as a constant offset value. This offset will be used to adjust raw density readings of the specific gauge for the remainder of the project and shall appear on the density data sheet along with gauge and project identification. An offset is specific to the mix and layer, therefore a separate value shall be determined for each layer of each mix placed over a differing underlying material for the project. This constitutes correlation of that individual gauge for the given layer. Two gauges per team are not required to be onsite daily after completion of the test strip. Any data collected without a correlated gauge will not be accepted.

The contractor is responsible for coring the pavement from the footprint of the density tests. Coring and filling of pavement core holes must be approved by the engineer. The QV team is responsible for the labeling and safe transport of the cores from the field to the QC laboratory. Testing of cores shall be conducted by the contractor and witnessed by department personnel. The contractor is responsible for drying the cores following testing. The department will take possession of cores following laboratory testing and will be responsible for any verification testing at the discretion of the engineer.

Each core 150 mm (6 inches) in diameter shall be taken at locations identified in Section C.1.1.2 Each random core shall be full thickness of the layer placed. Core densities shall be determined in accordance with AASHTO T 166. Thoroughly dry pavement cores in accordance with ASTM D 7227. The target maximum density to be used in determining core density is the average of the three volumetric/mix Gmm values from the test strip multiplied by $62.24 \mathrm{lb} / \mathrm{ft}^{3}$. (In the event mix and density portions of the test strip procedure are separated, the mix portion must be conducted prior to density determination. The target maximum density to determine core densities shall then be the Gmm four-test running average from the end of the previous day's production multiplied by $62.24 \mathrm{lb} / \mathrm{ft}^{3}$.)

Fill all core holes with non-shrink rapid-hardening grout, mortar or concrete, or with HMA. When using grout, mortar or concrete, remove all water from the core holes prior to filling. Mix the mortar or concrete in a separate container prior to placement in the hole. If HMA is used, fill all core holes with hot-mix matching the same day's production mix type at same day compaction temperature $+/-20 \mathrm{~F}$. The core holes shall be dry and coated with tack before filling, filled with a top layer no thicker than 2.25 inches, lower layers not to exceed 4 inches, and compacted with a Marshall hammer or similar tamping device using approximately 50 blows per layer. The finished surface shall be flush with the pavement surface. Any deviation in the surface
of the filled core holes greater than $1 / 4$ inch at the time of final inspection will require removal of the fill material to the depth of the layer thickness and replacement.

All applicable laboratory and field testing associated with a test strip shall be completed prior to any additional mainline placement of the mix for the associated test strip. All test reports shall be submitted to the department upon completion, and approved before paving resumes. The department will notify the contractor within 24 hours from start of test strip regarding approval to proceed with paving, unless an alternate time frame is agreed upon in writing with the department.
[Exclusions such as shoulders and appurtenances shall be tested in accordance with CMM 8-15. However, all acceptance testing of shoulders and appurtenances will be conducted by the department, and average lot (daily) densities must conform to Table 460-3.]

C.1.3 Laboratory Tests

C.1.3.1 Volumetrics

Obtain random samples according to Appendix A. Obtain HMA mixture samples from trucks at the plant. Perform tests the same day as taking the sample.
Bulk specific gravities shall be determined for cores in accordance with AASHTO T 166. The bulk specific gravity values determined from field cores shall be used to calculate a correction factor (i.e., offset) for each QC and QV nuclear density gauge. The correction factor will be used throughout the remainder of the layer. QC and QV teams may wish to scan with additional gauges at the locations detailed in C.1.1 above, as only gauges used during the test strip correlation phase will be allowed on the remainder of the project.

C. 2 Acceptance

C.2.1 Volumetrics

Conform to the following limits based on individual QC and QV test results (tolerances based on initial JMF/mix design):

ITEM

Percent passing given sieve:

$37.5-\mathrm{mm}$	$+/-8.0$
$25.0-\mathrm{mm}$	$+/-8.0$
$19.0-\mathrm{mm}$	$+/-7.5$
$12.5-\mathrm{mm}$	$+/-7.5$
$9.5-\mathrm{mm}$	$+/-7.5$
$2.36-\mathrm{mm}$	$+/-7.0$
$75-\mu \mathrm{m}$	$+/-3.0$
c content in percent	-0.5

Air Voids
VMA in percent ${ }^{[1]}$
Maximum specific gravity
CONFORMANCE LIMITS
-1.5 \& +2.0

- 1.0
+/- 0.024
${ }^{[1]}$ VMA limits based on minimum requirement for mix design nominal maximum aggregate size in table 460-1.

QV test results will be determined for air voids and VMA, Gmm, and Gmb, and AC.

Calculation of air voids shall use either the QC, QV, or retained split sample test results, as identified by conducting the paired t-test with the WisDOT PWL Analysis Template.

If QC and QV test results do not correlate as determined by the paired t-test, the retained split sample will be tested by the department's AASHTO accredited laboratory and HTCP certified personnel as a referee test. Additional investigation shall be conducted to identify the source of the difference between QC and QV data. Referee data will be used to determine material acceptance and pay.

C.2.2 Density

Compact all layers of test strip HMA mixture to the applicable density shown in the following table:

TABLE 460-3 MINIMUM REQUIRED DENSITY ${ }^{[1]}$
 MIXTURE TYPE

LAYER	LT \& MT	HT
LOWER	$93.0^{[2]}$	$93.0^{[3]}$
UPPER	93.0	93.0

${ }^{[1]}$ If any individual core density test result falls more than 3.0 percent below the minimum required target maximum density, the engineer may investigate the acceptability of that material per CMM 8-15.11.
${ }^{[2]}$ Minimum reduced by 2.0 percent for a lower layer constructed directly on crushed aggregate or recycled base courses.
${ }^{[3]}$ Minimum reduced by 1.0 percent for lower layer constructed directly on crushed aggregate or recycled base courses.

Nuclear density gauges are acceptable for use on the project only if correlation is completed for that gauge during the time of the test strip and the department issues documentation of acceptance stating the correlation offset value specific to the gauge and mix design. The offset is not to be entered into any nuclear density gauge as it will be applied by the department-provided Field Density Worksheet.

C.2.3 Test Strip Acceptance

The department will evaluate material acceptance and make pay adjustments based on the PWL value of air voids and density for the test strip. The QC core densities and QC and QV mix results will be used to determine the PWL values as calculated in accordance with Appendix A.

The PWL values for air voids and density shall be calculated after determining core densities. An acceptable test strip is defined as the individual PWL value for air voids and density both above 75, and an acceptable gauge-to-core correlation.

If either PWL value for the test strip is below 50, the material is nonconforming and the test strip is unacceptable. Material allowed to remain in place requires another test strip prior to additional paving. If material is removed, a new test strip shall replace the previous one at no additional cost to the department. For simultaneously conducted density and volumetric test strip components, the following must be achieved:
i. Passing/Resolution of Split Sample Comparison
ii. Volumetrics/mix PWL value > 75
iii. Density PWL value > 75
iv. Acceptable correlation

If not conducted simultaneously, the mix portion of a test strip must accomplish (i) \& (ii), while density must accomplish (iii) \& (iv). If any applicable criteria are not achieved for a given test strip, the engineer, with authorization from the Department's Bureau of Technical Services, will direct an additional test strip (or alternate plan approved by the Department) be conducted to prove the criteria can be met prior to additional
paving of that mix. For a density-only test strip, mix acceptance will be according to main production, i.e., HMA Pavement Percent Within Limits (PWL) QMP special provision.

D Measurement

The department will measure HMA Percent Within Limits (PWL) Test Strip as each unit of work, acceptably completed as passing the required air void, VMA, asphalt content, gradation, and density correlation for a Test Strip. Material quantities shall be determined in accordance with standard spec 450.4 and detailed here within.

E Payment

The department will pay for measured quantities at the contract unit price under the following bid item:

ITEM NUMBER	DESCRIPTION	
SPV.0060.01	HMA Percent Within Limits (PWL) Test Strip Volumetrics	EACH
SPV.0060.02	HMA Percent Within Limits (PWL) Test Strip Density	EACH

These items are intended to compensate the contractor for the construction of the test strip for projects paved under the HMA Pavement Percent Within Limits QMP article.

Payment for HMA Percent Within Limits (PWL) Test Strip Volumetrics is full compensation for volumetric sampling, splitting, and testing; for proper labeling, handling, and retention of split samples.

Payment for HMA Percent Within Limits (PWL) Test Strip Density is full compensation for collecting and measuring of pavement cores, acceptably filling core holes, providing of nuclear gauges and operator(s), and all other work associated with completion of a core-to-gauge correlation, as directed by the engineer.

Acceptable HMA mixture placed on the project as part of a volumetric or density test strip will be compensated by the appropriate HMA Pavement bid item with any applicable pay adjustments.

Pay adjustment will be calculated using 65 dollars per ton of HMA pavement. The department will pay for measured quantities of mix based on $\$ 65 /$ ton multiplied by the following pay adjustment calculated in accordance with Appendix A.

The department will adjust pay for each test strip as follows:

PAY ADJUSTMENT FOR HMA PAVEMENT AIR VOIDS \& DENSITY

PERCENT WITHIN	
	(PWL)
$>$	90 to 100
\geq	50 to 90
<50	

PAYMENT FACTOR, PF
(percent of \$65/ton)
$P F=((P W L-90) * 0.4)+100$
(PWL * 0.5) + 55
$50 \%{ }^{[1]}$
where,
PF is calculated per air voids and density, denoted $\mathrm{PF}_{\text {air voids }} \& \mathrm{PF}_{\text {density }}$
${ }^{[1]}$ Material resulting in PWL value of 50 or less shall be removed and replaced, unless the engineer allows for such material to remain in place. In the event the material remains in place, it will be paid at 50% of the contract unit price of HMA pavement.

For air voids, PWL values will be calculated using lower and upper specification limits of 2.0 and 4.3 percent, respectively. Lower specification limits for density will be in accordance with Table 460-3 as modified here within. Pay adjustment will be determined for an acceptably completed test strip and will be computed as shown in the following equation.

$$
\text { Pay Adjustment }=(\text { PF-100 }) / 100 \times(\text { WP }) \times(\text { tonnage }) \times(\$ 65 / \text { ton })^{*}
$$

*Note: If Pay Factor <50, the contract unit price will be used in lieu of $\$ 65 /$ ton
The following weighted percentage (WP) values will be used for the corresponding parameter:

$\frac{\text { Parameter }}{\text { Air Voids }}$	$\frac{\text { WP }}{0.5}$
Density	0.5

Individual Pay Factors for each air voids (PFair voids) and density (PF density) will be determined. PFair voids will be multiplied by the total tonnage produced (i.e., from truck tickets), and $P F_{\text {density }}$ will be multiplied by the calculated tonnage used to pave the mainline only (i.e., excluding shoulder) as determined in accordance with CMM 8-15.

The department will pay incentive for air voids under the following bid item:

ITEM NUMBER	DESCRIPTION	UNIT
460.2005	Incentive Density PWL HMA Pavement	DOL
460.2010	Incentive Air Voids HMA Pavement	DOL

The department will administer disincentives under the Disincentive Density HMA Pavement and the Disincentive Air Voids HMA Pavement administrative items.
bts-PWL Test Strip (20171002)

Schedule of Items

Attached, dated April 30, 2018, are the revised Schedule of Items Pages 1 - 10.

Plan Sheets

The following $81 / 2 \times 11$-inch sheets are attached and made part of the plans for this proposal: Revised:
1198-00-78: Revised: 6, 7 and 25.
1198-02-82: Revised: 4, 6, 59 and 61.
1198-02-83: Revised: 4, 9, 59, 60 and 66.

Addendum No. 01
ID 1198-02-83
Revised Sheet 59
April 30, 2018

Addendum No. 01 ID 1198-02-83 Revised Sheet 60 April 30, 2018

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256
SECTION: 0001 ROADWAY CONSTRUCTION: SAFETY
Alt Set ID: Alt Mbr ID:

Proposal Line Number	Item ID Description	Approximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256
SECTION: 0001 ROADWAY CONSTRUCTION: SAFETY
Alt Set ID:
Alt Mbr ID:

Proposal Line	Item ID Dumber	Approximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256
SECTION: 0001 ROADWAY CONSTRUCTION: SAFETY
Alt Set ID: Alt Mbr ID:

Proposal Line Number	Item ID Description	Approximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256

SECTION: 0001
Alt Set ID:

ROADWAY CONSTRUCTION: SAFETY
Alt Mbr ID:

Proposal Line	Item ID Dumber	Approximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256

SECTION: 0001
Alt Set ID:

ROADWAY CONSTRUCTION: SAFETY
Alt Mbr ID:

Proposal Line	Item ID Number	Approximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256
SECTION: 0001 ROADWAY CONSTRUCTION: SAFETY
Alt Set ID: Alt Mbr ID:

Proposal Line	Item ID Dumber	Approximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256
SECTION: 0001 ROADWAY CONSTRUCTION: SAFETY
Alt Set ID: Alt Mbr ID:

Proposal Line	Item ID Number	Apspoximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83 Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256

SECTION: 0001 ROADWAY CONSTRUCTION: SAFETY
Alt Set ID: Alt Mbr ID:

Propal Line Number	Item ID Description	Approximate Quantity and Units	Unit Price

Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256

SECTION: 0001
Alt Set ID:

ROADWAY CONSTRUCTION: SAFETY
Alt Mbr ID:

Proposal Line Number	Item ID Description	Approximate Quantity and Units	Unit Price	Bid Amount
0252	657.0255	8.000		
	Transformer Bases Breakaway 11 1/2Inch Bolt Circle	EACH		
0254	657.0327	8.000		
	Poles Type 6-Aluminum	EACH		
0256	657.0715	8.000		
	Luminaire Arms Truss Type 4 1/2-Inch Clamp 15-FT	EACH		.
0258	659.1120	8.000		
	Luminaires Utility LED B	EACH		
0260	659.2124	1.000		
	Lighting Control Cabinets 120/240 24Inch	EACH		.
0262	690.0150	4,890.000		
	Sawing Asphalt	LF		
0264	ASP.1T0A	2,400.000		
	On-the-Job Training Apprentice at \$5.00/HR	HRS	5.00000	12,000.00
0266	ASP.1T0G	1,900.000		
	On-the-Job Training Graduate at \$5.00/HR	HRS	5.00000	9,500.00
0268	SPV. 0090	346.000		
	Special 01. Cure and Seal Treatment Curb \& Gutter	LF	- -	-
0270	SPV. 0090	3,300.000		
	Special 02. Ditch Cleaning	LF		
0272	SPV. 0105			
	Special 01. Material Transfer Vehicle, Project 1198-02-82	LS	LUMP SUM	.
0274	SPV. 0105			
	Special 02. Material Transfer Vehicle, Project 1198-02-83	LS	LUMP SUM	-
0276	460.2005	19,350.000		
	Incentive Density PWL HMA Pavement	DOL	1.00000	19,350.00
0278	460.2010	20,580.000		
	Incentive Air Voids HMA Pavement	DOL	1.00000	20,580.00
0280	460.6444	7,874.000		
	HMA Pavement 4 MT 58-34 H	TON		-

Proposal Schedule of Items
Page 10 of 10
Proposal ID: 20180508034 Project(s): 1198-00-78, 1198-02-82, 1198-02-83
Federal ID(s): WISC 2018257, WISC 2018258, WISC 2018256
SECTION: 0001 ROADWAY CONSTRUCTION: SAFETY
Alt Set ID: Alt Mbr ID:

Proposal Line Number	Item ID Description	Approximate Quantity and Units	Unit Price	Bid Amount
0282	SPV. 0060	1.000		
	Special 01. HMA Percent Within Limits (PWL) Test Strip Volumetrics	EACH		
0284	SPV. 0060	1.000		
	Special 02. HMA Percent Within Limits (PWL) Test Strip Density	EACH		
	Section: 0001		Total:	

Total Bid: \qquad

