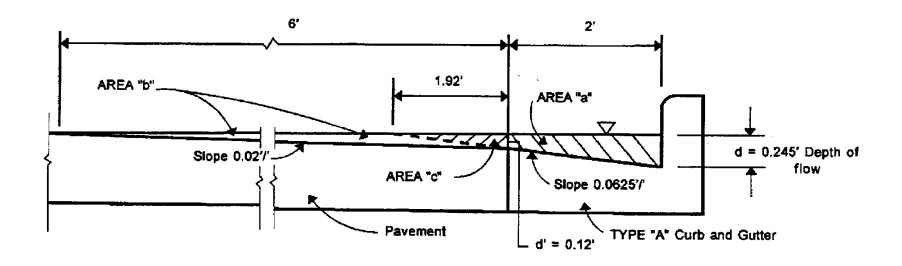
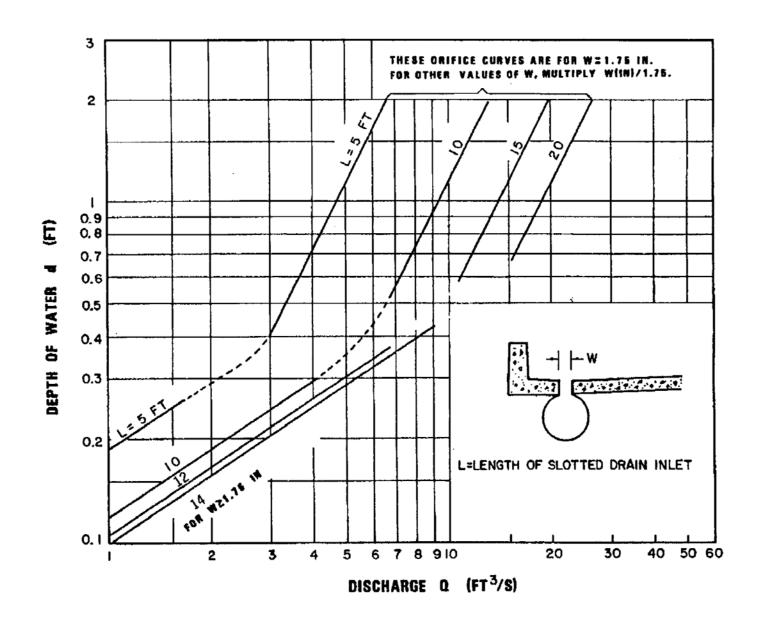


Storm Sewer Flow Chart



Storm Sewer Flow Chart


Example Problem Gutter Design

REDUCTION FACTORS TO APPLY TO INLETS

Condition	Inlet Type	Percentage of Theoretical Capacity Allowed
Sump	Curb Opening	80%
Sump	Grated	50%
Sump	Combination	65%
Continuous Grade	Curb opening	80%
Continuous Grade	Deflector	75%
Continuous Grade	Longitudinal Bar Grated	60%
Continuous Grade	Transverse Bar Grate or Longitudinal Bar Grate incorporating transverse bars	50%
Continuous Grade	Combination	110% of that listed for type of grate utilized

Source: Denver Regional Council of Governments, <u>Urban Storm Drainage-Criteria Manual</u>, Volume 1.

Table 1.--Manning roughness coefficients, n 1

			Manning's	IV	'. Н	igh way channels and awales with maintained vegetation *1 (values shown are for velocities of 2 and 6 f.p.s.):	
¥	Cl-	oged canduits:	n range ?		٨.	Depth of flow up to 0.7 loot:	Manning's
٠.	A	Concrete nine	0.011-0.013			1 Bermudaerass Kentucky bluegrass, buffalograss:	n range 2
	TR:	Corrugated-metal hine or hine-stch:				a. Mowed to 2 inches	0.07~0.045
		1. 235 by 32-in corrugation (riveted pipe): 1 a. Plain or fully coated	0.001			b. Length 4-6 inches	D. 09-0. 05
		a. Plain or fully conted.	0.024			2. Good stand, any grass: a. Length about 12 inches	0.18-0.09
		b. Paved invert (range values are for 25 and 50 percent of circumference paved):				b. Length about 24 inches	0. 30-0. 15
		(1) Flour full danth	0, 021-0, 018			3 Fair stand any grass:	
		(2) Flow 0.8 depth	0. 021-0. 016			a. Length about 12 inches	0. 14-0. 08
		(3) Flore (1.6 denth	U. UL9=U. UL3		_	b. Length about 24 inches	0. 25-0. 13
		7 6 hr 2-in corrupation (field bolted)	0.03		В.	Depth of flow 0.7-1.5 feet:	
	~	Vitrified clay Ditte	0.012-0.014			i. Bermudagrass, Kentucky bluegrass, buffalograss: a. Mowed to 2 inches.	0.05-0.035
	D.	Cast-iron pipe, uncoated. Steel pipe	0,013			b. Length 4 to 6 inches	0.06-0.04
	E.	Brick	0.003-0.013			2 Good stand any grass.	
	73	Afamalithia agraecte:				a Length shout 12 inches	0. 12-0.07
		1 Wand forms rough	0, 015-0, 017			b. Length about 24 inches.	0. 20-0, 10
		0 Wasd forme emanth	0 012-0 014			3 Fair stand any grass	
		3. Steel forms	0. 012-0. 013			a. Length about 12 inches. b. Length about 24 inches.	0, 10-0, 00
	Ħ.	Computed subble maganry Walls:				o. Length about 24 inches	0. 11-0.08
		1. Concrete floor and top.	0,017-0.023	v	Q4	reet and express way guitters:	
		Laminated treated wood	0.015-0.020	٠.	. S.	. Concrete gutter, troweled finish	0,012
	Į.	Vitrified clay liner plates	0.015		В.	. Asphalt pavement:	
	J.	vitrined cias times praces			-	1. Smooth texture	0, 013
					_	2. Rough texture	0.016
11.	Op	en channels, lined 4 (straight alinement): 1			C.	. Concrete gutter with asphalt pavement:	0, 013
	A.	Compand with anylange as indicated.				1. Smooth.	0.015
		1. Formed, no finish	0.013-0.017		13	Concepts nevement:	0.010
		2. Trowel finish 3. Float finish	0.012-0.014		.,	1. Float finish	0.014
		4. Float finish, some gravel on bottom	0.015-0.017			2. Broom finish	0.016
		& Qualte and section	0.016-0.019		E.	For gutters with small slope, where sediment may accu-	
		6 Aumits ward section .	0.018-0.022			mulate, increase above values of n by	0.002
	В.	Concerte bottom float finished, sides as indicated:					
		I Drogged stone in morth	0.015-0.017	VI	I. Ņ	atural stream channels:3 . Minor streams ! (surface width at flood stage less than 100	
		2 Rendam stone in mortar	0.017-0.020		Λ.		
		3. Cement rubble masonry	0.020-0.023			ft.): 1. Fairly regular section:	
		Cement rubble masonry, plastered Dry rubble (riprap)	0.010-0.020			a. Some grass and weeds, little or no brush	0.030-0.035
	_	Gravel bottom, sides as indicated:	0.020 0.000			b. Dense growth of weeds, depth of now materially	
	٠.	1. Formed concrete	0.017-0.020			exactes then weed height	0.035-0.05
		9 Dandam stane in morter	U. (C20)-U. (C23			c. Some weeds, light brush on banks	0,035-0.05
		2 Devembble (cinran)	0. 023-0. 033			d. Some weeds, heavy brush on banks	0.08-0.08
	D.	Brick	0.014-0.017			e. Some weeds, dense willows on banks	0.00-0.06
	E.	Asphalt:	0.013			at high stage, increase all above values by	0.01-0.02
		1. Smooth	0.013			2. Irregular sections, with pools, slight channel meander;	
	177	2. Rough Wood, planed, clean	0.011-0.013			increase values given in la-e about	0.01-0.02
	r.	Cancrete-lined excavated rock:	0.01, 0,010			3. Mountain streams, no vegetation in channel, banks	
	٠.	1 Condigation	0, 017-0.020			usually steep, trees and brush along banks sub-	
		2. Irregular section	0. 022-0. 027			merged at high stage:	0.04.0.05
						a. Bottom of gravel, cobbles, and few boulders	0. 04 -0. 05 0. 05 -0 . 07
			1		u	b. Bottom of cobbles, with large boulders	0.00-0.01
Ш.	Οį	pen channels, excavated (straight alinement, natura			13	1. Pasture, no brush:	
		lining):				a Short grass	0.030-0.035
	Λ.	Earth, uniform section: 1. Clean, recently completed	0.016-0.018			b. High grass	0. 035-0. 05
		? Clear after westhering	0.018-0.020			2. Cultivated areas:	
		3 With short grass few weeds	0, 022-0, 027			a. No crop	0.03-0.04
		4. In gravelly soil, uniform section, clean	0, 022-0, 025			h. Mature row crops	0.000~0.040
	Ħ.	Farth fairly uniform section:				Mature neid crops Heavy weeds, scattered brush	0.04-0.03
		1. No vegetation.	0, 022-0, 025 0 028-0 020			4 Tight brush and trees: 10	
		2. Grass, some weeds	บ. บ∡อ≔บ. 030 ก ก3∧⊾∧ ถ่วะ			a. Winter	0. 05-0. 06
		Dense weeds or aquatic plants in deep channels Sides clean, gravel bottom	0.000-0.000			b. Summer	0.06-0.08
		5. Sides clean, cobble bottom	0.030-0.040			5. Medium to dense brush: 10	•
	c	Drawline executed at dredged:				a Winter	0. 07 -0. 11
	٠.	1 No vometation	0.028 - 0.033			h Summer	0, 10-0, 16
		2. Light brush on banks	0.035-0.050			6. Dense willows, summer, not bent over by current.	0, 15-0, 20
	D.	Trair.				7. Cleared land with tree stumps, 100-150 per acre: a. No sprouts	0.04-0.05
		1. Based on design section.	0, 035			a, No sprouts	0.06-0.08
						 b. With heavy growth of sprouts. 8. Heavy stand of timber, a few down trees, little under- 	
		B. Smooth and union section.	0,000-0,040			growth:	
	P	b. Jagged and irregular Channels not maintained, weeds and brush uncut:	U. UTU-U. UTI			a. Flood depth below branches	0.10-0.12
	r.	1. Dense weeds, high as flow depth	0, 08-0, 12			h Flood depth reaches branches	0.12-0.16
		2 Clean bottom, brush on sides	U. U3–U. U8		C	' Major streams (surface width at flood stage more than	
		3. Clean bottom, brush on sides, highest stage of now	0.07-0.11		-	100 ft.): Roughness coefficient is usually less than for	
		4. Dense brush, high stage	0.10-0.14			minor streams of similar description on account of less	
						effective resistance offered by irregular hanks or vege-	
						tation on banks. Values of n may be somewhat reduced. Follow recommendation in publication cited s	
						if possible. The value of n for larger streams of most	
						regular section. With no houselets of hitists. May DC II) List	
						range of	0.028-0.033

from Hydraulic Design Series No. 3, "Design Charts for Open-Channel Flow"

Footnotes to Table 1 appear on page 2 of this figure

Footnotes to Table 1

1 Estimates are by Bureau of Public Roads unless otherwise noted.
2 Ranges indicated for closed conduits and for open channels, lined or excavated, are for good to fair construction (unless otherwise stated). For poor quality construction, use larger values of a.
3 Friction Factors in Corrugated Metal Pipe, by M. J. Webster and L. R. Metoslf. Corps of Engineers, Department of the Army; published in Journal of the Hydraulies Division, Proceedings of the American Society of Civil Engineers, vol. 85, No. HYS, Sept. 1959, Paper No. 2148, pp. 35-67.
4 For important work and where accurate determination of water profiles is necessary, the designer is urged to consult the following references and to select a by comparison of the specific conditions with the channels steated: Flow of Water in Irrigation and Similar Channels, by F. C. Scobey, Division of Irrigation, Soil Conservation Service, U.S. Department of Agriculture, Tech. Bull. No. 522, Feb. 1969, and Flow of Water in Irrigation and Public Roads, U.S. Department of Agriculture, Tech. Bull. No. 129, Nov. 1929.
3 With channel of an alimement other than straight, loss of head by resistance forces will be increased. A small increase in value of n may be made, to allow for the additional loss of energy.
4 Handbook of Channel Design for Soil and Water Conservation, prepared by the Stillwater Outdoor Hydraulic Laboratory in cooperation with the Oklahoma Agricultural Experiment Station; published by the Soil Conservation Service, U.S. Department of Agriculture, Publ. No. SCS-TP-61, Mar. 1947, rev. June 1954.

¹ Flow of Water in Channels Protected by Vegetative Linings, by W. O. Ree and V. J. Palmer, Division of Drainage and Water Control, Research, Soil Conservation Service, U.S. Department of Agriculture, Tech. Bull. No. 967, 2021.

and V. J. Palmer, Division of Drainage and water Control, Research, Soil Conservation Service, U.S. Department of Agriculture, Tech. Bull. No. 967, Feb. 1949.

*For calculation of stage or discharge in natural stream channels, it is recommended that the designer consult the local District Office of the Surface Water Branch of the U.S. Geological Survey, to obtain data regarding values of n applicable to streams of any specific locality. Where this procedure is not followed, the table may be used as a guide. The values of n tabulated have been derived from data reported by C. E. Ramser (see footnote 4) and from other incomplete data.

*The tentative values of n cited are principally derived from measurements made on fairly short but straight reaches of natural streams. Where slopes calculated from flood elevations along a considerable length of channel, involving meanders and bends, are to be used in velocity calculations by the Manning formula, the value of n must be increased to provide for the additional loss of energy caused by bends. The increase may be in the range of perhaps 3 to 15 percent.

*The presence of foliage on trees and brush under flood stage will materially increase the value of n. Therefore, roughness coefficients for vegetation in leaf will be larger than for bare branches. For trees in channel or on banks, and for brush on banks where submergence of branches increases with depth of flow, n will increase with rising stage.

Table 2 .- Permissible velocities for channels with erodible linings, based on uniform flow in continuously wet, aged channels 1

Soil type or lining (earth; no vegetation)	Maximum permissible velocities for—								
COLITY OF THE CO	Clear water	Water carrying fine slits	Water carrying sand and gravel						
Fine sand (noncolloidal)	F.p.s. 1.5 1.7 2.0 2.5 2.5		F.p.s. 1, 5 2, 0 2, 0 2, 2 2, 2						
Fine grave! Stiff clay (very colloidal) Graded, loam to cobbles (noncolloidal) Graded, sit to cobbles (colloidal) Alluvial sitts (noncolloidal).	2.5 3.7 3.7 4.0 2.0	5. 0 5. 0 5. 0 5. 5 3. 5	3. 7 3. 0 5. 0 5. 0 2. 0						
Alluvial sitts (colloidal). Coarse gravel (noncolloidal). Cobbles and shingles. Shales and hard pana.	5.0	5. 0 6. 0 5. 5 6. 0	3, 0 6, 5 6, 5 5, 0						

¹ As recommended by Special Committee on Irrigation Research, American Society of Civil Engineers, 1926.

Table 3.—Permissible velocities for channels lined with uniform stands of various grass covers, well maintained 1 2

		Perm velocit	issible y on—
Cover .	Slope range	Erosion resist- ant soils	Easily eroded soils
Bermudagrass	Percent 0-5 5-10 Over 10	F.p.s. 8 7 6	F.p.s. 6 5 4
Buffalograss Kentucky bluegrass Smooth brome Blue grama	5-10	7 6 5	5 4 3
Grass mixture	{ 0−5 5−10	5	4 3
Lespedeta sericea. Weeping lovegrass. Yellow biuestem. Kudau. Alfalia. Crabgrass.		3.5	2, 5
Common lespedeza i	} + 0-5	3. 5	2, 5

¹ From Handbook of Channel Design for Soil and Water Conservation (see footnote 6, table 1, above).

² Use velocities over 5 f.p.s. only where good covers and proper maintenance can be obtained.

Table 4.-Factors for adjustment of discharge to allow for increased resistance caused by friction against the top of a closed rectangular conduit.

D/B	Factor
1.00	1.21
.80	1.24
. 75	1. 25
. 667	1.27
. 60	1.28
. 50	1.31
. 40	1.34

¹ Interpolations may be made.

Table 5.- Guide to selection of retardance curve

Average length of vegetation	Retarda fo	nce curve r—
· ·	Good stand	Fair stand
6–10 inches	C	D. D.

from Hydraulic Design Series No. 3, "Design Charts for Open-Channel Flow"

can be obtained.

Annuals, used on mild slopes or as temporary protection until permanent

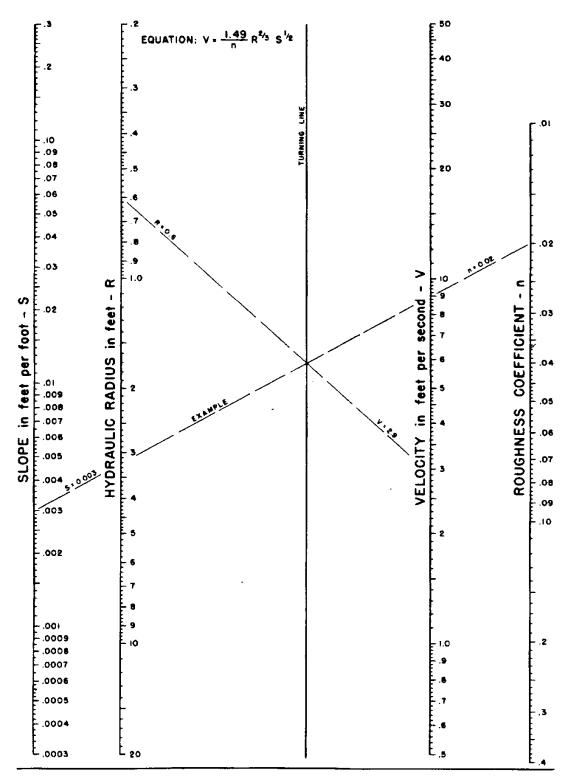
covers are established.

Use on slopes steeper than 5 percent is not recommended.

Graphic Solution of the Manning Equation

FIGURE 2 is a nomograph for the solution of the Manning equation:

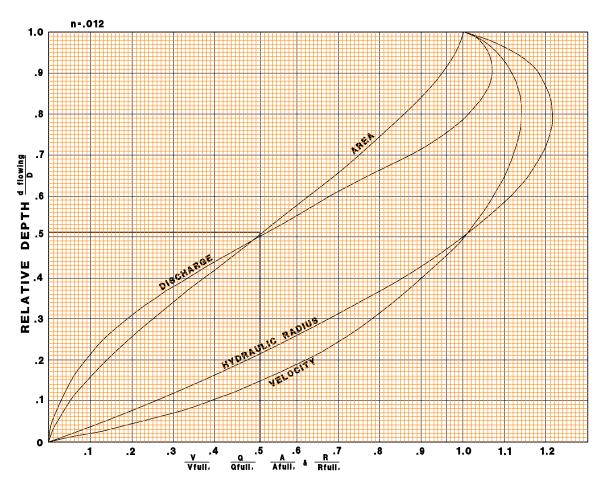
$$V = \frac{1.49}{n} R^{2/3} S^{1/2}.$$

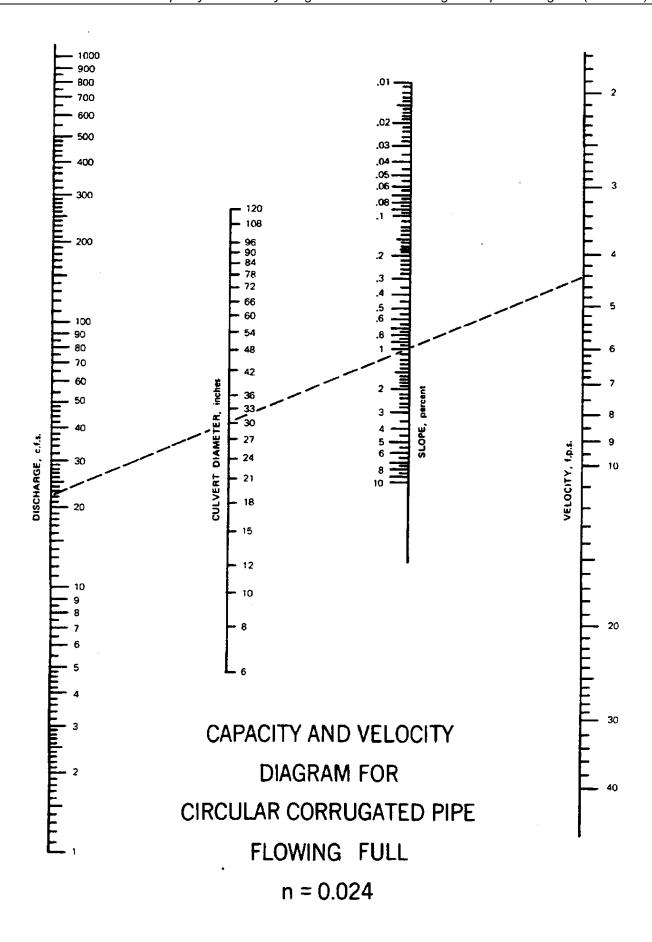

This chart will be found useful when an open-channel flow chart is not available for the particular channel cross section under consideration. Values of n will be found in table 1, and slope S and hydraulic radius R=A/WP, where A is the area of cross section and WP is the wetted perimeter, are dimensions of the channel.

Use of the chart is demonstrated by the example shown on the chart itself. Given is a channel with rectangular cross section, 6 feet wide, flowing at a depth of 0.75 foot, with a 0.3-percent slope (S=0.003), and n=0.02. Area $A=6\times0.75=4.50$ sq. ft.; wetted perimeter $WP=6+2\times0.75=7.50$ ft.; then R=A/WP=4.50/7.50=0.6.

A straight line is laid on the chart, connecting S=0.003 and n=0.02. Another straight line is then laid on the chart, connecting R=0.6 and the intersection of the first line and the "turning line," and extending to the velocity scale. Reading this scale, V=2.9.

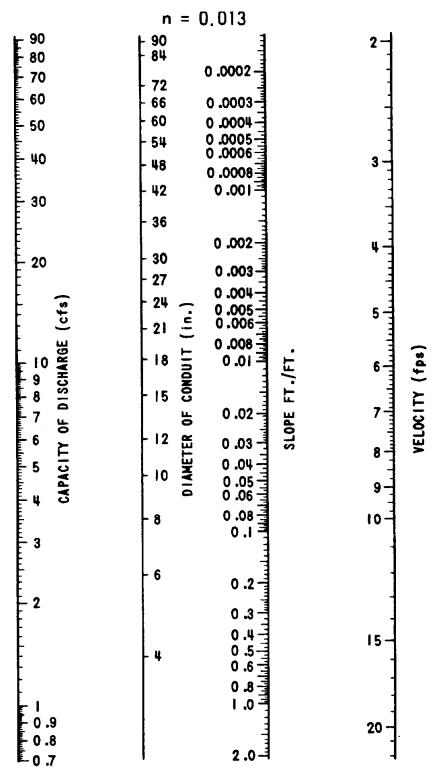
The chart may, of course, be used to find any one of the four values represented, given the other three; and may also be used for channels with cross sections other than rectangular.


Source: Hydraulic Design Series No. 3, "Design Charts for Open-Channel Flow"

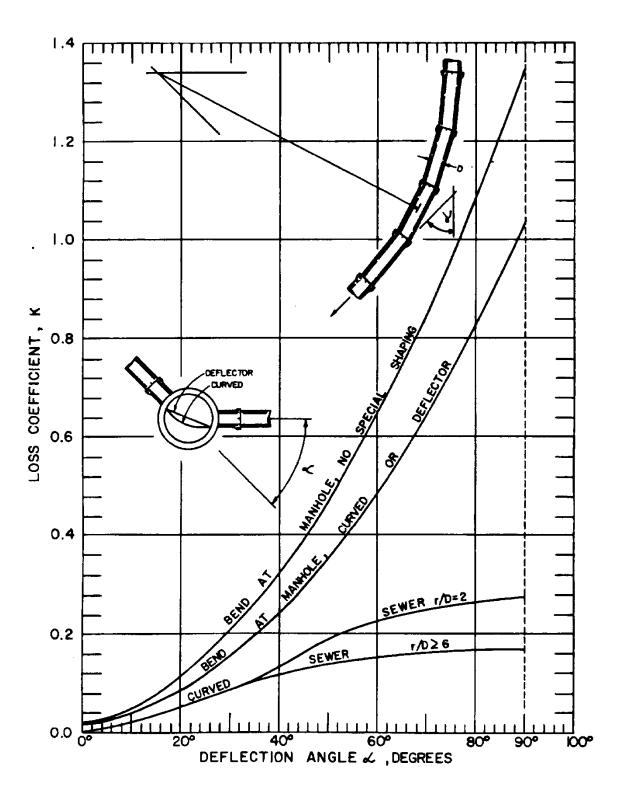

NOMOGRAPH FOR SOLUTION OF MANNING EQUATION

#U. S. GOVERNMENT PRINTING OFFICE: 1961 O - 597083

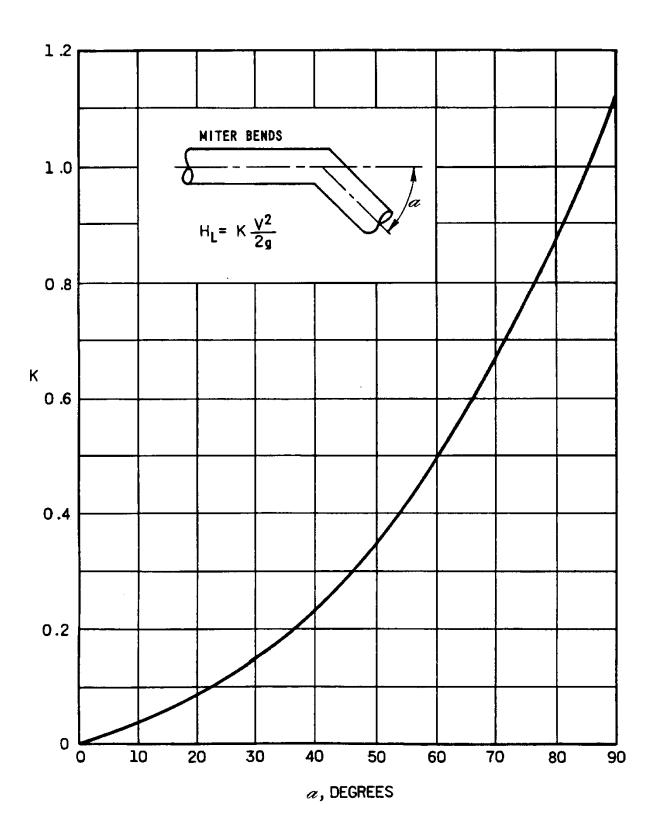
Source: Hydraulic Design Series No. 3, "Design Charts for Open-Channel Flow



HYDRAULIC ELEMENTS
CIRCULAR SECTION

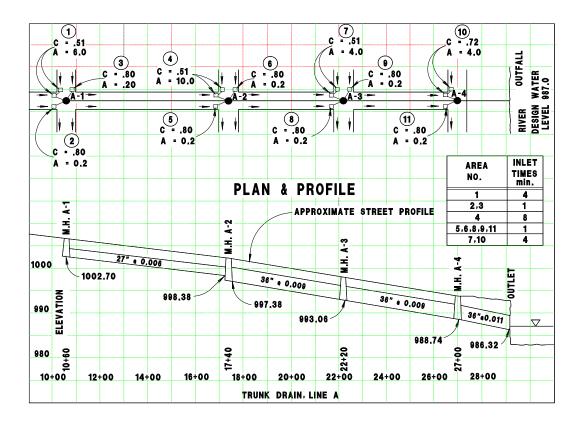

Capacity and Velocity Diagram

For Circular Concrete Pipe Flowing Full



Nomograph based on Manning's formula for circular pipes flowing full in which n=0.013

Sewer Bend Loss Coefficient


Source: Denver Regional Council of Governments, "Urban Storm Drainage"

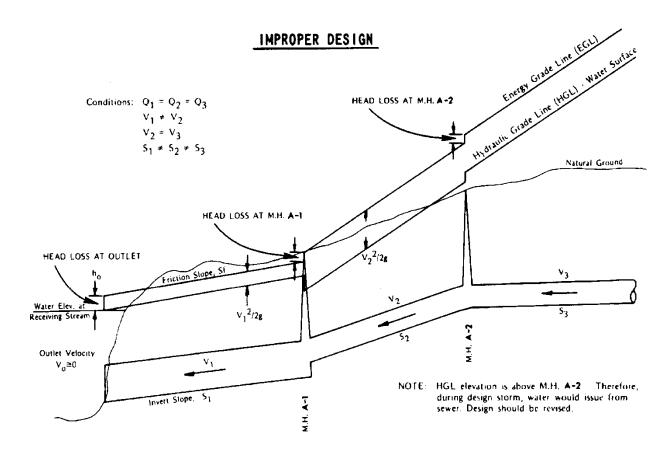
LOSS COEFFICIENTS FOR MITER BENDS

WORK SHEET FOR STORM SEWER DESIGN

	PROJ	ECT	.) (_ ROAD_						COUNTY						_ DESI	GN FRE	DUENCY			YR		
		С	OMPUTE	D BY _			DA	.IE				CHECK	ED BY_					D.	AIE						
Lo	cation	1		Trib	utary	Area			Trave	l Time		R	ainfal	1-Runo	ff		F	low in	Condu.	i.†		٧	ertical	Control	
of e	Str tur					red)ff	me	F] Ti	.ow me	ation	nfall y						Ful1	ocity Full	4		Inv Ele	ert V.	Top of Struc	tures
Station of Upstream Structure	from	40	Index No.	Area	Runoff Coeff.	Equlv. Area for	100 Runoff	Inle† Time	Street	Pipe	Time of Concentration	Ave. Rainfall Intensity	Direct Runoff	Other Runoff	Design Runoff	Slope of Sewer	Pipe Size	Capacity Flowing Full	Wean Velocity Flowing Full	Length of Pipe	Fall of Pipe	Upper	Lower	Upper	Lower
				Α	С	△CA	٤CA																		
				Acres		Acres	Acre	Min.	Min.	Min.	Min.	In/Hr		Cfs	Cfs	Ft/Ft		Cfs	Fps	Ft.	Ft.	Ft.	Ft.	Ft.	F†.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1						_	. –			_				_	1		_								

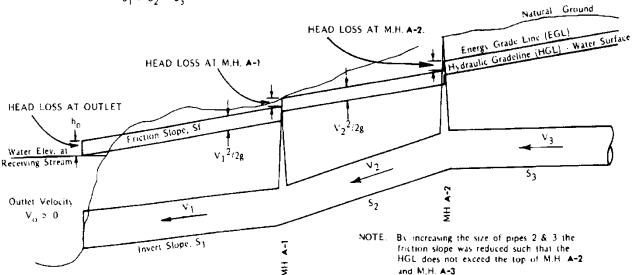
Detail A

WORK SHEET FOR STORM SEWER DESIGN


	PROJ			7-00 D BY_		ROAD			A R 2/24/	0AD 95		COUNTY		DAN J.F.K				DESI	GN FRE ATE_1	QUENCY 2/25/	10 95	<u> </u>	YR		
Loc	noitac			Trib	utary	Åreα			Trave	l Time)	F	ainfei	1-Runo	ff	T	F	low in	Condu	އ		٧	ertical	Contro	1.
9.	Str					Area	£	ше		low Lme	ation	Rainfall Salty						Full	ocity Full	of		Inv Ele		Struc	p f stures
Station of Upstream Structure	from	40	Index No.	Area	Runoff Coeff.	Equiv.	190 Runaff	Inle† Time	Street	Pipe	Time of Concentration	Ave. Raj Intensii Direct Runoff	Other Runoff	Dasign Runoff	Slope of Seyer	Slope of Sewer Plps Slze	Capacity Flowing F	Mean Velocity Flowing Full	Langth o	Fall of Pipe	Lapper	Lower	üpper	Lower	
i i				Acres	C	∆CA Ádres	£CA Acre	Win.	Min.	Win.	Min.	In/Hr		Cfs	Cfs	F†/F†	In.	Cfs	Fps	Ft.	F+.	F†.	Ft.	F†.	Ft.
1	2	3	4	5	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
<u> </u>		МН		ļ				ļ		-	ļ	<u> </u>	<u> </u>	ļ	<u></u>	ļ		ļ 		ļ		ļ		ļ	ļ
10+60	A-1	A-2	1	6.0	0.51	3.06	3.06	4	<u> </u>	<u> </u>	ļ	ļ	ļ		ļ						L	ļ		<u> </u>	ļ
			2	0.2	0.80	0.16	3.22	1	-	0.1		}	į												
			3	0.2	0.80	0.16	3.38	1	-	1.9	50)	6.2	21.	-	21.	.006	2.7	23	6.1	680	4.32	1002.7	998.38	1006.7	1002.3
	мн	ΜН		1			,		***************************************				-	**********						*********		10100100000		T	-
17+40	A-2	A-3	4	10.0	0.51	5.10	8.48	8	-				-	İ		İ									
			5	0.2	0.80	0.16	8.64	1			1	1					ļ					1		†	
			6]		<u> </u>	8.80			0.0	9(2)	5.5	48.	_	48.	000	26	64.0	9.0	490	1 22	997.38	002.04	1002.2	000.20
			· ·	0.2	0.00	0.10	0.00	-			0,,	3.3	40.		40.		30	04.0	2.0	400	4.34	997.30	333.00	1002.3	770.20
		МН		ļ		ļ			ļ		 	ļ	L					 				 			
22+20	A-3	A-4	_7_	!	i	1	10.84		100	-	-	İ	-	_	<u></u>	-	 	 		 	-	 	-	-	-
		<u> </u>	8	i		<u> </u>	11.0		-	-		-	ļ	ļ	ļ					_	<u> </u>	ļ	ļ	-	
			9	0.2	0.80	0.16	11.10	1_	<u> </u>	0.9	8.9	5.3	59.	<u>-</u>	59.	.009	36	64.0	9.0	480	4.32	993.06	988.74	998.20	994.00
	МН			ļ	<u></u>	ļ			ļ.,		ļ	ļ	ļ	ļ			<u> </u>	<u></u>		<u> </u>					ļ
27+00	A-4	fall	10	4.0	0.72	2.88	14.04	4	20001	2000		Ì	i i												
			11	0.2	0.80	0.16	14.2	1	-	0.8	9.8	5.0	71.	_	71.	.011	36	72.0	10.0	220	2.42	988.20	986.32	994.00	993.00
				-								}	[<u> </u>								-			
(1) 1/6			L	<u> </u>	<u> </u>	<u> </u>	L	L	<u> </u>	<u> </u>	<u>L</u>	10	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	Ĺ	<u> </u>	İ	L	<u></u>	<u></u>	<u> </u>	

(1) Minimum design $T_{\mathfrak{C}}$

(2) Maximum of (5.0 ± 1.9) or 8.0


Detail B

Energy and Hydraulic Grade Lines for a Properly and Improperly Designed Storm Sewer

PROPER DESIGN

Conditions:
$$Q_1 = Q_2 = Q_3$$

 $V_1 = V_2 = V_3$
 $S_1 \neq S_2 \neq S_3$

WORK SHEET FOR STORM SEWER DESIGN

SURCHARGED FLOW

PROJECT		ROAD	COUNTY	DESIGN FREQUENCY	YR
	COMPUTED BY	DATE	CHECKED BY	DATE	

Locat	ion	Pi	pe Dat	a	Ŋ	/elocit	y Head	1		Pipe Loss	Head es		Struc Head l	ture osses	Grade Elev Struc	. at	Ve	rtica [ontro]	
on of ture	ture å No.	arge		ų	Pipe ity	Velocity	Mean Channel Yelocity	el ity Head	. K Loss	Bend Energy Loss	ion	ion Loss	. K ture	Structure Energy Losses	E.G.L. Down- stream	 -	Invert Elev. Down- stream	1 01	Free- board
Station of Structure	Structure Type & No.	Discharge	Pipe Size	Pipe Length	Mean Pipe Velocity	Pipe Head	Mean	Channel Velocity	Coeff. K Bend Loss	Bend Energ	Friction Slope	Friction Head Loss	Coeff. K Structure	Struc Energ	Up- stream	Up-* stream	Up- stream		
		Q cfs		£4	V1	۷ ₁ 2/2g		V2 ² /2g	КЪ	<u> </u>	So		K	-					
1/	2,	3	in.	ft.	fps 6	ft.	fps 8	ft.	10	ft.	ft/ft 12	ft. 13	14	ft. 15	ft. 16	ft. 17	ft. 18	ft. 19	ft. 20
													-						

^{*} water surface elevation in structure.

SURCHARGED FULL SEWER DESIGN PROBLEM

WORK SHEET FOR STORM SEWER DESIGN

SURCHARGED FLOW

		OMPUTE	D BY	D. J. S	j	DAT	E_10-1	6-78	CHE	KED BY	F	. D. S.		_ DATE	10-	17-78			
Locat	ion	₽ſ	pe Dat	a	٧	/elocit	y Head			Pipe Loss		•	Struc Head L		Grade Elev. Struc	at		rtica ontro	
						ty	-	Head						£ 55	E.G.L.	H.G.L.	Invert Elev.	TOP	Free-
on of ture	ture 8 No.	arge		ے	Pipe ity	Velocity	Channe ity	el ity He	. K Loss	y 1.05\$	ion	ion Loss	tar erre	ture y Loss	Down- Stream	Down- stream	Down- 生ream	Struc.	board
Station of Structure	Structure Type & No.	Discharge	Pipe Size	Pipe Length	Mean Pipe Velocity	Pipe Head	Mean Channel Velocity	Channel Velocity	Coeff. Bend Lo	Bend Energy Lass	Friction Slope	Friction Head Loss	Coeff. X Structure		Up- stream	Up~♥ stream	Up- stream		
		Q			٧٦	¥12/29	V ₂	V2 ² /29	Кb		So		K						
		cfs	in.	ft.	fps	ft.	fps	ft.			ft/ft			ft.	ft.	ft.	ft.	ft.	ft.
777	5,		17477	2000	77777	111111	111111	111111	7977	111111	12	15/11	14	15	16	11111	81	19	20
29+20	Divor		())))							IIIII			1.00	1.55	990.50	990.58	986.32	777777	77777
29-20	Outlet	777777		220	100	777777	777777	277777	,,,,,,	777777	27777	2 40	1100	1,55	992.05	990.58	980. T.		
27+00	M.H.	71	36	220	10.0	1.55	-	-	-	-	.0109	2.40	0.71	1.10	994.45	992,98	988.74		
	A-4	59	36	480	8.3	1.08	_	_	_	_	.0077	3.70			995,55	994.47	66		<u> </u>
2+20	; !	-	-		0.0	1.00										-			
29+20	A-3 River												1.00	1.55	998.50	990.50	986.32	<u> </u>	
	Outlet												1	1	992.05	990.58	44		
27+00	M.H.	71	42	220	7.4	0.85	-	-	-	-	.0047	1.30	0.30	0.26	993,88	992.23	988.74	994.00	1.74
	A-4	59	36	480	8.3	1.08			-		.0077	2 70			993,34	992.26		-	
22+20		39	30	400	0.5	1.08	-	-		-	.00 / /	3.70	0.71	0.77	997.84	995.96	993.06	998.20	1.11
17+40	A-3 M H	48	36	480	6.8	0.72	_	_	_	_	.0048	2.30	0.71	0.51	997,81 1000,11	997,09		1002.3	(3)
1	A-2												1	17.2.2		999.92	998.38		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		21	24	480	6.7	0.71	-	-	-	-	.0081	3.89							
					11111			dille			IIIII	IIIII	ļ		*****			[· ******	keer

^{*} water surface elevation in structure.

⁽¹⁾ K Coeff's obtained from Ref. 2, FDM 13-25-35.

⁽²⁾ Water surface above M H. Cover A-4. Replace downstream pipe with next larger pipe.

⁽³⁾ Free water surface within conduit. Discontinue calculations or use normal depth of flow within conduit for further calculations.