Steve Cyra, PE, PTOE
Fellow, Associate Vice President
Traffic Operations/ITS

HNTB
WI Steering Committee on Autonomous and Connected Vehicle Testing and Deployment

November 15, 2017
Goal 1

- Connected Vehicle (CV) Basics
- USDOT CV Pilot Background
- Tampa-Hillsborough Expressway Authority (THEA) CV Pilot
 - Project Goals
 - Contract Specifics
 - Traffic and Safety Challenges/Use Cases and CV Apps
 - Key enabling activities
 - Lessons Learned (so far)
What is a Connected Vehicle?

Vehicles that wirelessly exchange safety and traffic information with other vehicles, roadway infrastructure and personal devices (e.g. smartphones). Three key terms:

1. Vehicles connected to other vehicles (V2V)
2. Vehicles connected to roadway infrastructure (V2I/I2V)
3. Vehicles connected to other personal devices (V2X)
Is a CV the same as an Autonomous Vehicle?

No. The driver of a connected vehicle receives safety messages but remains in full control of the vehicle at all times.

However, Autonomous Vehicles will also have some element of connectivity for safe operations.
Currently, CVs utilize dedicated short range communications (DSRC), which is similar to Wi-Fi (specifically 75MHz of spectrum in the 5.9GHz DSRC band, IEEE 802.11p).

Future, 5G cellular?
2010-2014: Prototyping and assessment of 36+ CV Applications

2012: USDOT tested and proved CVs’ safety potential with over 2,700 equipped vehicles operating on the streets of Ann Arbor, Michigan.

2015: USDOT competitively awarded funding for further demonstration of CV technologies and benefits in “real-world” settings. Three locations (out of 40+ applications) selected/funded for pilots.
USDOT CV Applications

V2I Safety
- Red Light Violation Warning
- Curve Speed Warning
- Stop Sign Gap Assist
- Spot Weather Impact Warning
- Reduced Speed/Work Zone Warning
- Pedestrian in Signalized Crosswalk Warning (Transit)

V2V Safety
- Emergency Electronic Brake Lights (EEBL)
- Forward Collision Warning (FCW)
- Intersection Movement Assist (IMA)
- Left Turn Assist (LTA)
- Blind Spot/Lane Change Warning (BSW/LCW)
- Do Not Pass Warning (DNPW)
- Vehicle Turning Right in Front of Bus Warning (Transit)

Environment
- Eco-Approach and Departure at Signalized Intersections
- Eco-Traffic Signal Timing
- Eco-Traffic Signal Priority
- Connected Eco-Driving
- Wireless Inductive/Resonance Charging
- Eco-Lanes Management
- Eco-Speed Harmonization
- Eco-Cooperative Adaptive Cruise Control
- Eco-Traveler Information
- Eco-Ramp Metering
- Low Emissions Zone Management
- AFV Charging / Fueling Information
- Eco-Smart Parking
- Dynamic Eco-Routing (light vehicle, transit, freight)
- Eco-ICM Decision Support System
Mobility
- Advanced Traveler Information System
- Intelligent Traffic Signal System (I-SIG)
- Signal Priority (transit, freight)
- Mobile Accessible Pedestrian Signal System (PED-SIG)
- Emergency Vehicle Preemption (PREEMPT)
- Dynamic Speed Harmonization (SPD-HARM)
- Queue Warning (Q-WARN)
- Cooperative Adaptive Cruise Control (CACC)
- Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG)
- Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE)
- Emergency Communications and Evacuation (EVAC)
- Connection Protection (T-CONNECT)
- Dynamic Transit Operations (T-DISP)
- Dynamic Ridesharing (D-RIDE)
- Freight-Specific Dynamic Travel Planning and Performance
- Drayage Optimization

Road Weather
- Motorist Advisories and Warnings (MAW)
- Enhanced MDSS
- Vehicle Data Translator (VDT)
- Weather Response Traffic Information (WxTINFO)

Smart Roadside
- Wireless Inspection
- Smart Truck Parking

Agency Data
- Probe-based Pavement Maintenance
- Probe-enabled Traffic Monitoring
- Vehicle Classification-based Traffic Studies
- CV-enabled Turning Movement & Intersection Analysis
- CV-enabled Origin-Destination Studies
- Work Zone Traveler Information
1. New York City

- Safety application focus, “Vision Zero”
- Dense, large city application (Manhattan and Brooklyn)
- V2V, V2I, I2P (pedestrian)
- 8000 fleet vehicles (bus, delivery, DOT, taxi)
- 300 roadside units (RSUs)
2. Wyoming DOT

- Freight, weather, safety and travel reliability, road conditions focus
- I-80 corridor, critical interstate connector
- V2V, V2I
- 400 fleet vehicles
- 75 roadside units (RSUs)
3. THEA/Tampa
Project Goals

1. Develop and deploy CV infrastructure to support proposed applications.
2. Improve mobility in the Central Business District.
3. Reduce the number of safety incidents within the Pilot Area.
4. Reduce environmental impact within the Pilot Area.
5. Improve agency efficiency.
6. Develop a business environment for sustainability.
Agreement between USDOT and THEA

Budget - **$21,519,832**:
- Phase 1: Concept Development $2,443,071 (100% Fed.)
- Phase 2: Design/Deploy/Test $13,905,548
- Phase 3: Maintain/Op Pilot $5,171,213

$3,815,352 (20%) hard cash THEA match for Phase 2/3 (THEA funded entirely by toll revenues)
Schedule (~ 50 months):

- Phase 1 Concept Development: **9/2015 - 9/2016**
- Phase 2 Design/Deploy/Test: **9/2016 - 4/2018**

All elements deployed in the pilot will be permanent.

THEA funding programmed FY2017 through FY2047 ($0.5M-$1.5M/year) to support automated and connected vehicles (including continuation and expansion of pilot).

Exploring other funding opportunities including Mobility as a Service (MaaS) Concessionaire.
Rigorous systems engineering and reporting process

Reports/Documentation

- Concept of Operations
- Outreach Plan
- Human Use Approval Summary
- Participant Training and Stakeholder Education Plan
- Partnership Status Summary
- Comprehensive Pilot Deployment Plan
- Application Deployment Plan
- Deployment Readiness Summary
- Data Privacy Plan
- Data Management Plan

Figure 1: “V-Diagram” of Systems Engineering Development Process.
Source: (THEA, February 2016)
Other THEA CV Pilot Contractual Arrangements

- THEA Contracts and Partnerships: HNTB, Siemens, BrandMotion, Global-5 Communications, USF CUTR
- THEA and City of Tampa (Operations Interlocal Agreement)
- City of Tampa and FDOT
- THEA and Hillsborough Area Transit Authority
Tampa Use Cases

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Condition</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC1</td>
<td>Morning Backups</td>
<td>Selmon Expressway REL at E. Twiggs Street</td>
</tr>
<tr>
<td>UC2</td>
<td>Wrong Way Entry</td>
<td>REL at E. Twiggs Street and Meridian Street</td>
</tr>
<tr>
<td>UC3</td>
<td>Pedestrian/Vehicle Conflicts</td>
<td>E. Twiggs Street at George E. Edgecomb Courthouse</td>
</tr>
<tr>
<td>UC4</td>
<td>Traffic Progression</td>
<td>Meridian Street to MAFB</td>
</tr>
<tr>
<td>UC5</td>
<td>Transit Trip Time, Transit Safety</td>
<td>REL to Marion Street Transit Mall</td>
</tr>
<tr>
<td>UC6</td>
<td>Trolley/Auto/Pedestrian/Bike Conflicts</td>
<td>Channelside Drive</td>
</tr>
</tbody>
</table>
THEA Pilot CV Applications

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of Ramp Deceleration Warning (ERDW)</td>
<td>Alerts driver approaching ramp curve with speed safety warning</td>
</tr>
<tr>
<td>Emergency Electronic Brake Light (EEBL)</td>
<td>Enables broadcast to surrounding vehicles of severe braking</td>
</tr>
<tr>
<td>Forward Collision Warning (FCW)</td>
<td>Warns driver of impending collision ahead in same lane</td>
</tr>
<tr>
<td>Intersection Movement Assist (IMA)</td>
<td>Indicates unsafe (i.e., wrong way) entry into an intersection</td>
</tr>
<tr>
<td>Intelligent Traffic Signal System (I-SIG)</td>
<td>Adjusts signal timing for optimal flow along with PED-SIG and TSP</td>
</tr>
<tr>
<td>Probe Date Enabled Traffic Monitoring (PDETM)</td>
<td>Uses vehicles as probes to calculate travel times</td>
</tr>
<tr>
<td>Transit Signal Priority (TSP)</td>
<td>Allows transit vehicle to request and receive priority at a traffic signal</td>
</tr>
<tr>
<td>Vehicle Turning Right in Front of a Transit Vehicle (VTRFTV)</td>
<td>Alerts transit vehicle driver that a car is attempting to turn right in front of the transit vehicle as well as the driver of the car.</td>
</tr>
<tr>
<td>Wrong Way Entry (WWE)</td>
<td>Warns driver of potential and actual Wrong Way travel direction</td>
</tr>
</tbody>
</table>
APPLICATION

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Collision Warning (PCW)</td>
<td>OBU application warning drivers of potential conflicts with pedestrians</td>
</tr>
<tr>
<td>Pedestrian Safety</td>
<td>Single pedestrian information device application</td>
</tr>
<tr>
<td>Pedestrian in a Signalized Crosswalk (PED-X)</td>
<td>Alerts vehicle to the presence of pedestrian in a crosswalk</td>
</tr>
<tr>
<td>Pedestrian Mobility (PED-SIG)</td>
<td>Gives pedestrians priority with signal phase and timing</td>
</tr>
<tr>
<td>Pedestrian Transit Movement Warning (PTMW)</td>
<td>Provides informational warnings to pedestrians that a bus or streetcar is starting up / stopping at an intersection</td>
</tr>
</tbody>
</table>
Use Case: Morning Queue Crashes

Forward Collision Warning (FCW)

Emergency Electronic Brake Light (EEBL)

End of Ramp Deceleration Warning (ERDW)
Morning Queue Crashes
(live demo Nov. 13, 2017)

End of Ramp Deceleration Warning

Forward Collision Warning
Use Case: Wrong-Way Drivers

Wrong-way Entry
Intersection Movement Assist (IMA)
Signal Phasing and Timing (SPaT)
Use Case: Wrong-Way Drivers
(live demo Nov. 13, 2017)

Photo of In-Vehicle “Wrong Way” Warning

Traffic Management Center Video Image of Problem Intersection
Use Case: Wrong-Way Drivers
(live demo Nov. 13, 2017)

Photo of Approaching Vehicle “Wrong Way” Warning
Use Case: Pedestrian Safety

Pedestrian in a Crosswalk
Vehicle Warning (PED-X)

Pedestrian Collision Warning (PCW)

Mobile Accessible Pedestrian Signal (MAP)

PHOTO: TAMPA HILLSBOROUGH EXPRESSWAY AUTHORITY (THEA)
Use Case: Transit Efficiency

Intelligent Traffic Signal (I-SIG)
Transit Signal Priority (TSP)
Intersection Movement Assist (IMA)
Pedestrian Transit Movement Warning (PTMW)
Use Case: Streetcar Conflicts/Safety

Vehicle Turning Right in Front of Transit Vehicle (VTRFTV)

Pedestrian Transit Movement Warning (PTMW)
Use Case: Traffic Management

Probe Data Enabled Traffic Monitoring (PDETM)
Intelligent Traffic Signal (I-SIG)
Intersection Movement Assist (IMA)
Comprehensive Outreach Plan

- Audiences and Messages
- Outreach Products: Digital, Print, Exhibits and Signs
- Distribution Strategies: Local and National
- Identity and Brand Management
- Media Relations
- Evaluation
- Crisis Communication Plan
Extensive Participant Recruiting

- No changes to state/local laws needed
- Human “experiment”, 3rd Party Institutional Review Board (IRB) approval requirements
- Specific eligibility criteria and screening process
- Informed Consent Document (ICD)
- Personally Identified Information (PII) and privacy considerations
Incentives

- 30% rebate on tolls (up to $550)
- Keep equipment
- Community
- Events, parties, prizes
- Exclusive updates
- Recognition
Participants and Devices

- **1,600** Privately Owned Vehicles
- **500+** Pedestrian Smartphones (Android devices only)
- **10** TECO Line Streetcar Trolleys
- **10** Hillsborough Area Regional Transit (HART) buses
Participants and Devices

Smart Antenna
- SiriusXM
- DSRC V2I / I2V
- DSRC V2V
Equipment

20 On-Board Transit Units (OBUs)
 Tablet display for transit vehicles

40 Road Side Units (RSUs)
 Mounted on existing structures throughout the deployment area
Deployment

- Road Side Units (RSUs) installation by Siemens
- Participant On-Board Units (OBUs) installation by auto mechanic students at Hillsborough Community College
- Bus OBUs by HART mechanics
- Maintenance by THEA contractors, City of Tampa and FDOT
- Various software installation support and system integrators
- TMC operations
Structured Performance Measurement and Evaluation

- Performed by Center for Urban Transportation Research (CUTR) at the University of South Florida (USF)

- Data Collection/Management:
 - Administrative participant data
 - CV application data
 - Performance measurement data

- Closely tied to project goals and specific use cases
Do not lose sight of the real-world problems

CV application maturity (and lack thereof)

Roadway CV applications require high penetration (of equipped vehicles) to function properly. Gaps filled with traditional vehicle detector mechanisms.

Adequate consumer/participant incentives

Challenges with 1600 participant and 20 transit OBU installations
Lessons Learned – Infrastructure and In-Vehicle

- Multiple tech scans using RFPs (with on the road testing) to identify promising suppliers who can meet system, cost and project timing, critical to scrutinize and select the best suppliers
- Early sourcing of suppliers is key to creating a collaborative environment
- Collaboration around common specifications and standards
- Need for complete and experienced project team-systems, infrastructure, vehicle systems, evaluation, etc.
In Closing…

“The success of the long-term operations requires a close working relationship amongst all partners for both policy and technical issues.”

THEA CV Pilot Partnership Status Summary, FHWA-JPO-16-319
Thank You!

Steven J. Cyra, PE, PTOE
HNTB Fellow, Associate Vice President
Traffic Operations/ITS
HNTB Corporation
11414 W. Park Place, Suite 300
Milwaukee, Wisconsin 53224
scyra@hntb.com
(414) 410-6710