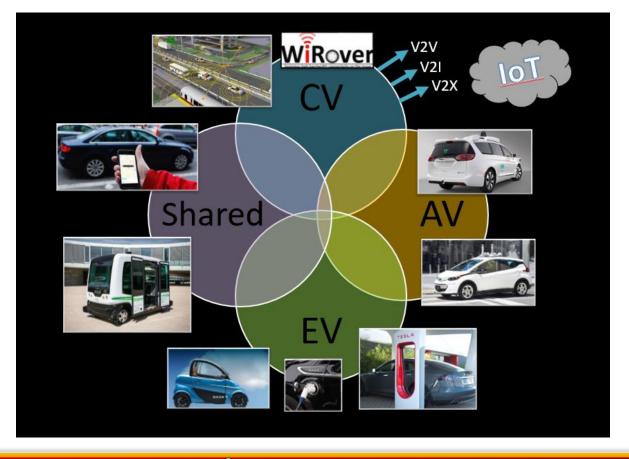
34th DBE Workshop & Secretary's Golden Shovel Awards
Pewaukee, Wisconsin - February 20, 2020

UW TOPS Lab Connected and Autonomous Vehicle Research

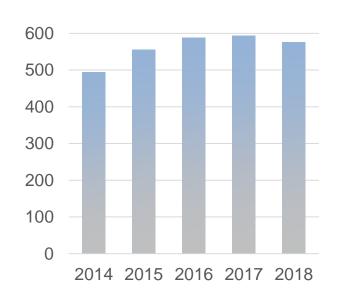

Steven T. Parker, Ph.D.
Traffic Operations and Safety (TOPS) Laboratory

Civil and Environmental Engineering

UNIVERSITY OF WISCONSIN-MADISON

Automated, Connected, Electric and Shared

Trends, Implications, Motivations: Safety


Traffic Fatalities Rising

Nationally:

- 2015-2016, Largest two-year increase in 50 years
- In 2017, 37,133 deaths
- 90+% Attributable to Human Error

Wisconsin:

Pedestrian deaths now up to 15% of all traffic deaths

Sources: NHTSA, NSC, WisDOT

SAE Levels of Vehicle Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

2

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

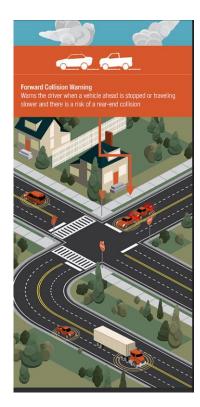
Conditional Automation

3

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

High Automation

4


The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

V2V / V2I Safety Applications


Forward Collision Warning

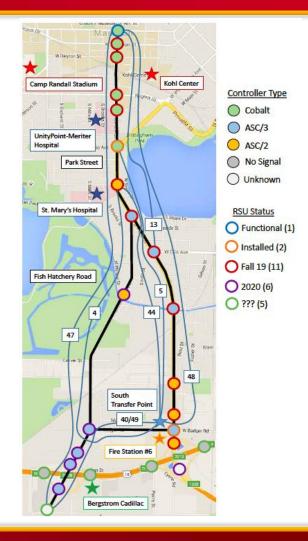
Motorist Advisories

Red Light Violation Warning

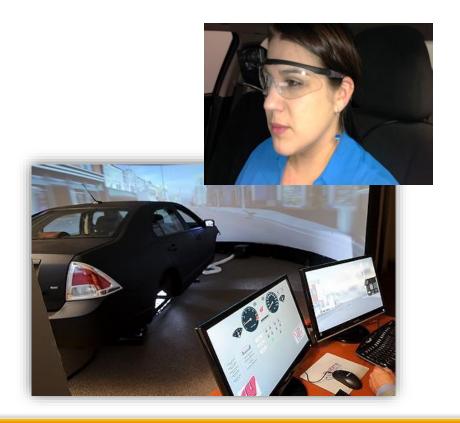
Pedestrian in Crosswalk

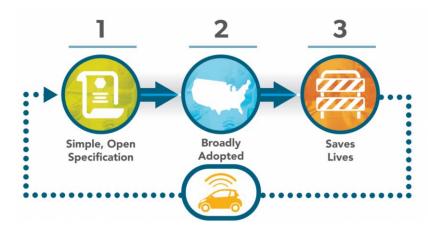
Wisconsin - MASSTO CAV Summit

- Held October 2019 at UW-Madison
- Region-wide conversation on how new CAV technologies have, are, and may impact state transportation systems
- Topics
 - MAASTO States CAV Initiatives
 - Strategy and Enforcement
 - Planning and Infrastructure
 - Truck Platooning
- AV/CV Demonstration


City of Madison Smart Corridor

- Satisfies SPaT (Signal Phasing and Timing)
 Challenge
- Goal: 26 DSRC deployment
- TSP/MMITSS application
- Transit/VRU interaction apps
- Red light violation warning
- V2I general testing
- Simulation-to-design
- Preparation for 5G



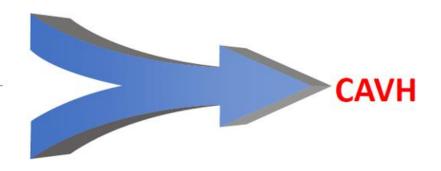

UW-Madison - Human AV Interaction (HAVI)

- Full-scale driving simulation
- Partial automation research
- Driver reengagement
- Disengagement scenarios
- Driver attentiveness / distraction
- ADAS/CV driver notification strategies
- AV interaction with human drivers
- Vehicle assertiveness

USDOT Work Zone Data Exchange (WZDx)

- Specification to enable ubiquitous access to real-time, harmonized work zone data
- Help automated driving systems (ADS) navigate work zones more efficiently
- Inspired by General Transit APIs (GTFS)
- FHWA grants forthcoming to jump start State Agency participation

Connected Automated Vehicle Highway (CAVH) Systems "Simple Vehicle, Smart Road"


Vehicle Based Approach

IT & OEM Firms Connected Automated Vehicle

Infrastructure Based Approach

Transportation Industry

Connected Automated Highway

