Region Annual IAP Report
Executive Summary

John Brophy
NC Region – Rhinelander
December 9, 2014
Wisconsin Dells, WI
Region IAP Administration

- IA Assistants – Dean Gritzmacher
- Lab personnel – Steven Hunter

- Used NC Region – Wisconsin Rapids lab for any IA reviews done on the Rhinelander lab.
Estimated Construction Quantities

- 210,000 Tons of Base Course
- 105,000 Tons of HMA
- 2,800 Cubic yards of Concrete Masonry and Ancillary Concrete
- 68,000 Square yards of Concrete Pavement
IAP Construction Season Activities

- 18 - aggregate sampling observations
- 10 - base course (split samples)
- 11 - concrete aggregates (bridges or miscellaneous) split samples
- 23 - freshly mixed concrete observations
- 9 - asphalt mixture split samples
- 23 - asphalt density comparisons
- 5 - concrete laboratory reviews
- 3 - base course densities
- 102 – total reports
Estimated Coverage of IA Activities

- 90 percent aggregate sampling observations
- 90 percent base course (split and/or proficiency samples)
- 100 percent concrete aggregates (bridges or miscellaneous) split samples
- 90 percent freshly mixed concrete observations
- 100 percent asphalt mixture split samples
- 100 percent asphalt density comparisons
- 100 percent concrete laboratory reviews
Aggregate Sampling

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Organization</th>
<th>Task</th>
<th>Date</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schreiber, Nathan</td>
<td>County Materials</td>
<td>Aggregate Sampling</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>5</td>
<td>Huebsch, Fred</td>
<td>County Materials</td>
<td>Aggregate Sampling</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>6</td>
<td>Kirchner, Christopher</td>
<td>County Materials</td>
<td>Aggregate Sampling</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>7</td>
<td>Trudell, Douglas</td>
<td>County Materials</td>
<td>Aggregate Sampling</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>11</td>
<td>Strong, Mike</td>
<td>County Materials</td>
<td>Aggregate Sampling</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>15</td>
<td>Walczak, Zachary</td>
<td>EMCS</td>
<td>Aggregate Sampling</td>
<td>6580-08-71</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>16</td>
<td>Becker, Jessica</td>
<td>Gremmer</td>
<td>Aggregate Sampling</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>19</td>
<td>Klebenow, Keith</td>
<td>REI</td>
<td>Aggregate Sampling</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>21</td>
<td>Zeinert, Eric</td>
<td>Michels</td>
<td>Aggregate Sampling</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>23</td>
<td>Adams, Mathew</td>
<td>FAA</td>
<td>Aggregate Sampling</td>
<td>9478-05-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>24</td>
<td>Kilen, Kai</td>
<td>WisDOT</td>
<td>Aggregate Sampling</td>
<td>1170-21-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>27</td>
<td>Gumm, Virgil</td>
<td>Forest County</td>
<td>Aggregate Sampling</td>
<td>1600-29-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>30</td>
<td>Marquardt, Wayne</td>
<td>AET</td>
<td>Aggregate Sampling</td>
<td>1600-29-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>33</td>
<td>Roskoskey, Ben</td>
<td>WisDOT</td>
<td>Aggregate Sampling</td>
<td>1009-43-61</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Organization</td>
<td>Test Type</td>
<td>Test Code</td>
<td>Result</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>35</td>
<td>Beyer, Chad</td>
<td>Gremmer</td>
<td>Aggregate Sampling</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>37</td>
<td>Strunk, Jeff</td>
<td>REI</td>
<td>Aggregate Sampling</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>38</td>
<td>Hribar, Jason</td>
<td>MSA</td>
<td>Aggregate Sampling</td>
<td>9360-02-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>39</td>
<td>Erdmann, Ryan</td>
<td>Ayres</td>
<td>Aggregate Sampling</td>
<td>9000-13-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Agency</td>
<td>Type</td>
<td>Date</td>
<td>Result</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>17</td>
<td>Scriven, Matthew</td>
<td>BATC</td>
<td>1.25" Base Aggregate</td>
<td>6580-08-71</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td>18</td>
<td>Scriven, Matthew</td>
<td>BATC</td>
<td>1.25" Base Aggregate</td>
<td>6580-08-71</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>20</td>
<td>Keckelis, Jon</td>
<td>Pitlik & Wick</td>
<td>1.25" Base Aggregate</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>22</td>
<td>Steffen, Nicholas</td>
<td>Michels</td>
<td>1.25" Base Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>25</td>
<td>Verduerth, Chris</td>
<td>AET</td>
<td>.75" Base Aggregate</td>
<td>9478-05-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>26</td>
<td>Hunter, Steven</td>
<td>WisDOT</td>
<td>.75" Base Aggregate</td>
<td>1170-21-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>28</td>
<td>Pitlik, Dawn</td>
<td>Pitlik & Wick</td>
<td>.75" Base Aggregate</td>
<td>1170-21-70</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td>29</td>
<td>Pitlik, Dawn</td>
<td>Pitlik & Wick</td>
<td>.75" Base Aggregate</td>
<td>1170-21-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>34</td>
<td>McCullough</td>
<td>Langlade County</td>
<td>1.25" Base Aggregate</td>
<td>9360-02-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>36</td>
<td>Peterson, Nick</td>
<td>AET</td>
<td>1.25" Base Aggregate</td>
<td>9015-12-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Company</td>
<td>Type</td>
<td>Test Date</td>
<td>Rating</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>804</td>
<td>Keckeisen, Jon</td>
<td>Pitlik & Wick</td>
<td>Hot Mix Asphalt</td>
<td>1170-21-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>804</td>
<td>Pitlik, Dawn</td>
<td>Pitlik & Wick</td>
<td>Hot Mix Asphalt</td>
<td>1170-21-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>804</td>
<td>Baenen, Chris</td>
<td>NEA</td>
<td>Hot Mix Asphalt</td>
<td>1600-29-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>804</td>
<td>Johnson, Olaf</td>
<td>NEA</td>
<td>Hot Mix Asphalt</td>
<td>9532-02-71</td>
<td>Satisfactory*</td>
</tr>
<tr>
<td>804</td>
<td>Johnson, Olaf</td>
<td>American Asphalt</td>
<td>Hot Mix Asphalt</td>
<td>9476-00-71</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>804</td>
<td>Blechschmidt, Rachel</td>
<td>AET</td>
<td>Hot Mix Asphalt</td>
<td>9360-02-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>804</td>
<td>Hunter, Steven</td>
<td>WisDOT</td>
<td>Hot Mix Asphalt</td>
<td>9015-12-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>804</td>
<td>Dassow, Karrie</td>
<td>American Asphalt</td>
<td>Hot Mix Asphalt</td>
<td>9000-13-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Organization</td>
<td>Test Result</td>
<td>Interpretation</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>1 Sheahen, Jessica</td>
<td>American Asphalt</td>
<td>Asphalt Density</td>
<td>1170-16-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>2 Pitlik, Austin</td>
<td>Pitlik & Wick</td>
<td>Asphalt Density</td>
<td>1170-21-60</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>3 Kasmarek, Paul</td>
<td>WisDOT</td>
<td>Asphalt Density</td>
<td>1170-21-60</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>4 Verfuhrth, Chris</td>
<td>AET</td>
<td>Asphalt Density</td>
<td>9478-05-70</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td>803</td>
<td>5 Stolt, Clarence</td>
<td>PSI</td>
<td>Asphalt Density</td>
<td>9478-05-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>6 Verfuhrth, Chris</td>
<td>AET</td>
<td>Asphalt Density</td>
<td>9478-05-70</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td>803</td>
<td>7 Willmarth, Thomas</td>
<td>REI</td>
<td>Asphalt Density</td>
<td>8881-01-71</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>8 Verfuhrth, Chris</td>
<td>AET</td>
<td>Asphalt Density</td>
<td>9478-05-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>9 Milanowski, Matthew</td>
<td>AET</td>
<td>Asphalt Density</td>
<td>9478-05-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>10 Atanasoff, Neal</td>
<td>SHE</td>
<td>Asphalt Density</td>
<td>1600-29-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>11 Harding, Tom</td>
<td>AET</td>
<td>Asphalt Density</td>
<td>9532-02-71</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>12 Verfuhrth, Chris</td>
<td>NEA</td>
<td>Asphalt Density</td>
<td>9532-02-71</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>13 Webb, Joshua</td>
<td>Becher-Hoppe</td>
<td>Asphalt Density</td>
<td>9476-00-71</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>15 Young, Paula</td>
<td>NEA</td>
<td>Asphalt Density</td>
<td>9015-12-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>803</td>
<td>16 Hribar, Jason</td>
<td>MSA</td>
<td>Asphalt Density</td>
<td>9360-02-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Project</td>
<td>No.</td>
<td>Name</td>
<td>Consultant</td>
<td>Study Description</td>
<td>Start Date</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>803</td>
<td>17</td>
<td>Verfuert, Chris</td>
<td>AET</td>
<td>Asphalt Density</td>
<td>9360-02-72</td>
</tr>
<tr>
<td>803</td>
<td>18</td>
<td>Schraeder, Adam</td>
<td>Kapur</td>
<td>Asphalt Density</td>
<td>9180-17-70</td>
</tr>
<tr>
<td>803</td>
<td>19</td>
<td>Mittelsteadt, Karl</td>
<td>AECOM</td>
<td>Asphalt Density</td>
<td>6999-02-78</td>
</tr>
<tr>
<td>803</td>
<td>20</td>
<td>Cowart, James</td>
<td>American Asphalt</td>
<td>Asphalt Density</td>
<td>1174-10-72</td>
</tr>
<tr>
<td>803</td>
<td>21</td>
<td>Hoffman, Regina</td>
<td>American Asphalt</td>
<td>Asphalt Density</td>
<td>9000-13-70</td>
</tr>
<tr>
<td>803</td>
<td>22</td>
<td>Makela, Josh</td>
<td>Ayres</td>
<td>Asphalt Density</td>
<td>9000-13-70</td>
</tr>
<tr>
<td>803</td>
<td>23</td>
<td>Klebenow, Keith</td>
<td>REI</td>
<td>Asphalt Density</td>
<td>1174-10-72</td>
</tr>
</tbody>
</table>
Concrete Aggregate

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Source</th>
<th>Type</th>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Hensler, Christopher</td>
<td>County Materials</td>
<td>Concrete Aggregate</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Peterson, Nick</td>
<td>AET</td>
<td>Concrete Aggregate</td>
<td>1600-29-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>801</td>
<td>Peterson, Nick</td>
<td>AET</td>
<td>Concrete Aggregate</td>
<td>1600-29-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Company/Source</td>
<td>Test Type</td>
<td>Date</td>
<td>Result</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>802</td>
<td>Beyer, Chad</td>
<td>Gremmer</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Trudell, Douglas</td>
<td>County Materials</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Strong, Mike</td>
<td>County Materials</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Schreiber, Nathan</td>
<td>County Materials</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Schultz, Todd</td>
<td>County Materials</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Feit, Aaron</td>
<td>Gremmer</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory*</td>
</tr>
<tr>
<td>802</td>
<td>Lavin, Mitch</td>
<td>WisDOT</td>
<td>Concrete Mix</td>
<td>1170-21-60</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Umentum, Corey</td>
<td>Chippewa</td>
<td>Concrete Mix</td>
<td>1170-16-70</td>
<td>Satisfactory*</td>
</tr>
<tr>
<td>802</td>
<td>Poirier, Randall</td>
<td>County Materials</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Wetterau, Lane</td>
<td>Gremmer</td>
<td>Concrete Mix / probing</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Nelson, Darren</td>
<td>Sampson</td>
<td>Concrete Mix</td>
<td>1600-29-70</td>
<td>Satisfactory*</td>
</tr>
<tr>
<td>802</td>
<td>Kasmarek, Paul</td>
<td>WisDOT</td>
<td>Concrete Mix</td>
<td>1600-29-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Douglas, Mark</td>
<td>Coleman Engineering</td>
<td>Concrete Mix</td>
<td>1009-43-61</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>Weber, Joel</td>
<td>CORRE</td>
<td>Concrete Mix</td>
<td>1053-02-63</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Job</td>
<td>Name</td>
<td>Material</td>
<td>Mix Type</td>
<td>Date</td>
<td>Result</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>802</td>
<td>15 Konopacki, Aaron</td>
<td>County Materials</td>
<td>Concrete Mix</td>
<td>9015-12-70</td>
<td>Satisfactory*</td>
</tr>
<tr>
<td>802</td>
<td>16 Becker, Jessica</td>
<td>Gremmer</td>
<td>Concrete Mix</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>17 Peterson, Nick</td>
<td>AET</td>
<td>Concrete Mix</td>
<td>8717-00-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>18 Belanger, Neil</td>
<td>Becher-Hoppe</td>
<td>Concrete Mix</td>
<td>8717-00-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>19 Strunk, Jeff</td>
<td>REI</td>
<td>Concrete Mix</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>20 Martell, Michael</td>
<td>Martell</td>
<td>Concrete Mix</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>21 Hassler, Jason</td>
<td>Kapur</td>
<td>Concrete Mix</td>
<td>1053-07-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>22 Dunn, Aaron</td>
<td>Gremmer</td>
<td>Concrete Mix / probing</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>802</td>
<td>23 Konitzer, Cindy</td>
<td>Michels</td>
<td>Concrete Mix / probing</td>
<td>1170-01-73</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>#</td>
<td>Name</td>
<td>Firm</td>
<td>Project Description</td>
<td>Date</td>
<td>Grade</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>--------</td>
<td>------------------------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>Klebenow, Keith</td>
<td>REI</td>
<td>Density - Base Course</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>2</td>
<td>Klebenow, Keith</td>
<td>REI</td>
<td>Density - Base Course</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>3</td>
<td>Klessig, Jakob</td>
<td>Pitlik & Wick</td>
<td>Density - Base Course</td>
<td>1174-10-72</td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>
Cylinder Lab Inspections

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Company</th>
<th>Test Type</th>
<th>Phone Number</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Madderom, Matthew</td>
<td>Northern Lakes Concrete</td>
<td>Cylinder Lab Inspection</td>
<td>1170-21-60</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>2</td>
<td>Milanowski, Matthew</td>
<td>AET</td>
<td>Cylinder Lab Inspection</td>
<td>8717-00-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>3</td>
<td>Trudell, Douglas</td>
<td>County Materials</td>
<td>Cylinder Lab Inspection</td>
<td>1170-01-70</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>4</td>
<td>Douglas, Mark</td>
<td>Coleman Engineering</td>
<td>Cylinder Lab Inspection</td>
<td>1009-43-61</td>
<td>Satisfactory*</td>
</tr>
<tr>
<td>5</td>
<td>Donahue, Graham</td>
<td>Coleman Engineering</td>
<td>Cylinder Lab Inspection</td>
<td>0617-07-00</td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>
HMA Corrective Actions/Follow-up

- Olaf Johnson – Northeast Asphalt, # 4 sieve was outside of the allowable difference on extraction.
- Follow up concluded that difference was due to the splitting of the HMA down for the extraction.

7-804-0005-2014 is the follow up to report 7-804-0004-2014.
Base Course Corrective Actions/Follow-up

- Chris Hensler – County Materials, #2 stone (1” sieve) original split.
- Matt Scriven – Bay Area Testing, (#200 sieve) washing of P#4 material.
- Dawn Pitlik – Pitlik & Wick, (#200 sieve) washing of P#4 material.

- Base Course follow up reports 7-801-9, 17, & 28-2014
Concrete Mix Corrective Actions/Follow-up

- Aaron Feit – Gremmer, out of allowable difference on air content test had Aaron re-run his again. New test was within .1%.
- Corey Umentum – Chippewa, thermometer was outside of the allowable difference. Need to cover mix.
- Aaron Konopacki – County Materials, Need to cover mix, and to add extra mix only during rodding.
- Concrete aggregate reports 7-802-6,8, &15.
Equipment Deficiencies

- AET’s Troxler nuclear gauge # 24684
- Chris Verfuerth’s gauge was consistently running 2.0 lbs lower than IA gauge, over two reviews.
- Gauge was run over regional block still low – Bob Schiro, Rich Auguire calibrated over the phone.

- 7-803-4,6 & 8 - 2014
Participation/Performance/Non-qualified Personnel Issues

- None
Observations and comments

- I believe a strong emphasis should be placed on reviewing new and inexperienced testers.
Specification Issues

- Base course, small quantities.
IA Program Continuous Improvement

- A mid season IA meeting for primary IAs to discuss problems and issues that arise during construction.
Questions?
Region Annual IAP Report
Executive Summary

Jeff Michalski, NC-Wis. Rapids
12/9/14, Wis. Dells
Region IAP Administration

- IA Assistants, Pat Shuda (HMA Mixtures)
- Lab personnel, Al Smith and Howard Marg
Estimated Construction Quantities

Includes Local Roads

- Tons of Base Course – 398,445 Tons
 113,842 Carry-over to 2015
- Tons of HMA – 207,883 Tons
 36,069 Carry-over to 2015
- Square yards of Concrete Pavements
 59,318 S.Y., 46,597 S.Y. Carry-over to 2015
- Cubic yards of Concrete Masonry Bridges
 14,467 C.Y., 4,994 C.Y. Carry-over to 2015
IAP Construction Season Activities

- Aggregate sampling observations = 13
- Base course split samples = 7
- Concrete aggregate split samples = 7
- Freshly mixed concrete observations/splits = 14
- Asphalt mixture split samples = 4
- Asphalt density comparisons = 13
- Base compaction comparisons = 3
- Concrete laboratory reviews = 1
Estimated Coverage of IA Activities

- 90% aggregate sampling observations
- 90% base course (split and/or proficiency samples)
- 90% concrete aggregates (bridges or miscellaneous) split samples
- 95% freshly mixed concrete observations
- 98% asphalt mixture split samples
- 98% asphalt density comparisons
- 100% concrete laboratory reviews
Corrective Actions/Follow-up

Base course split sample does not correlate with large commercial lab. (Test 4-801-8-2014)

Follow-up included getting retains from QC as well as QV (Region) lab and send to C.O. Lab for referee testing.

QC (4-801-9-2014) does not correlate with C.O.

QV (4-801-10-2014) does correlate with C.O.

Interim IA with another QC from same lab using same equipment. Correlations are good. Rules out potential equipment issues. (4-801-11-2014)
Corrective Actions/Follow-up

With the additional split samples tested I showed QC Lab Manager results. Agreed to take a new sample with tester in question. Also discussed areas where I thought needed improvement. Discussions were good, new sample was taken and correlations improved and met tolerances. (4-801-15-2014)

This approach was taken to eliminate the response from QC lab on initial split being “How do you know your numbers are correct?”
Equipment Deficiencies

- Needed to use Nuclear Density Bias on four gauges this year to make correlations.
 (4-803-4, 9 & 11-2014) (4-805-3-2014)
- Need to come up with method to establish and track nuclear gauge bias’.
Identify participation/performance/non-qualified personnel issues (None).
Training issues

- Continue to emphasize proper air meter calibrations and documentation associated with this through HTCP.

 i.e. What to report test values at (0.1%) and recording a second check on the initial pressure line.
Specification Issues

- Hopefully considerations will be given on requested comments for the Base Course Compaction specifications. A “Hands-On” team needs to look at existing specification.
IA Program Continuous Improvement

- Continuous dialogue between Regions is needed for program consistency and needs.
- Recommend short mid-year teleconference with IA’s to discuss relevant issues.
Questions?
NE Region Annual IAP Report Executive Summary

Adam G. Johnson – NE Region
December 9, 2014 – Wisconsin Dells
Region IAP Administration

- Adam Johnson (920)492-4124 – Concrete & Aggregate
- Brian Jandrin (920)492-5626 – HMA
- Jason Tucker (920)492-4121 – Structure Concrete & MSE Walls
- Jamie Cynor (920)492-5677 – NE Region Lab Coordinator
Estimated Construction Quantities

<table>
<thead>
<tr>
<th>Items</th>
<th>Let CY 14</th>
<th>Carry-Over</th>
<th>Total Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Aggregate (Including Breaker)</td>
<td>807,000 Tons</td>
<td>2,268,000 Tons</td>
<td>3,075,000 Tons</td>
</tr>
<tr>
<td>Hot Mix Asphalt</td>
<td>406,000 Tons</td>
<td>168,000 Tons</td>
<td>574,000 Tons</td>
</tr>
<tr>
<td>PCC Pavement</td>
<td>202,000 SY</td>
<td>1,059,000 SY</td>
<td>1,261,000 SY</td>
</tr>
<tr>
<td>PCC Masonry</td>
<td>450,000 SF</td>
<td>1,256,000 SF</td>
<td>1,706,000 SF</td>
</tr>
<tr>
<td>Excavation</td>
<td>1,470,000 CY</td>
<td>3,625,000 CY</td>
<td>5,095,000 CY</td>
</tr>
</tbody>
</table>
IAP Construction Season Activities

Aggregates

- Number of aggregate sampling observations
 - Reviews: 13

- Number of base course split samples
 - Reviews: 6
 - Testers: 6

- Number of concrete aggregates split samples
 - Reviews: 19
 - Testers: 7
IAP Construction Season Activities

- PCC Mixtures
 - Reviews: 67
 - Testers: 63
 - Side By Side: 49 (73%)

- Concrete Laboratory Reviews: 3
 - Vinton Construction
 - WisDOT-NE Region
 - Bay Area Testing
IAP Construction Season Activities

- Asphaltic Concrete Mixture
 - Reviews: 12
 - Testers: 11

- Number of asphalt density comparisons
 - Reviews: 11
 - Testers: 11
Between the NE and our cross regional neighbors we believe that 90%, or more, of active qualified samplers and testers were reviewed for the following:

- Aggregates, split and/or proficiency
- PCC Mixtures
- HMA Mixtures
- HMA Density

We believe the following reviews did not meet the 90%

- Aggregate sampling observations (QV Samplers)
- Concrete Strength Laboratory
Corrective Actions/Follow-up

- **Follow-Ups Aggregates**
 - **Concrete Aggregate Size #1**
 - 3-801-0003-2014
 - Out on ½” sieve 7.5%
 - 3-801-0004-2014
 - Out on ½” sieve 6.2%
 - 3-801-0025-2014 out on ½” and 3/8” sieves; 3-801-0026-2014
 - **Concrete Aggregate Fine, out on multiple sieves**
 - 3-801-0016-2014
 - #8, #16, #30, #50
 - 3-801-0018-2014
 - #8, #16, #30, #50

3-801-0005-2014

3-801-0019-2014 (Re-sampled, in tolerance.)
Corrective Actions/Follow-up

Follow-Ups-PCC Mixtures

- 3-802-0004-2014; Air out of tolerance (1%)
 - Follow-up: 3-802-0014-2014
- 3-802-0019-2014; Did not strike off properly
 - Follow-up: 3-802-0020-2014
- 3-802-0032-2014; Procedural
 - Follow-up: 3-802-0061-2014
- 3-802-38-2014
 - Required follow-up due to deficient testing procedures, however was released by Trieweiler prior to follow-up being administered.
Follow-Up HMA Mixtures

- 3-804-0009-2014; Gradation out on #4 & #100 sieves.
 - Follow-up: 3-804-0010-2014
Equipment Deficiencies

- Air meter past calibration due date by eight days. Meter checked out on cal can correlation, allowed to use. Instructed to calibrate immediately after the day’s test. (3-802-52-2014)

- Air meter lid gasket had a noticeable leak, IA air test review resulted in a IA-QC tolerance of 1%, exchanged air meters, follow up performed 1 ½ weeks later. (3-802-0004-2014; follow up – 3-802-14-2014)
Thermometers out of tolerance….
- 7 thermometers were out of tolerance with the IA thermometer, asked to have recalibrated.

All testers on same page with hi/low thermometers!
Participation/Performance/Non-qualified Personnel Issues

- None identified for 2014
Specification Issues

- None identified for 2014
Training issues

- None identified for 2014

HOWEVER......
IA Program Continuous Improvement

- Teach not “Bust”
- Comfort vs. Nervousness
- Mid year meeting with other IA-s
Questions?

ANY QUESTIONS?
Region Annual IAP Report
Executive Summary

Howard Marg NW Region Eau Claire
December 9, 2014
Chula Vista Resort
Wisconsin Dells, WI
Region IAP Administration

- IA Assistants
 - Shelly Morrow
 - Patrick Savage
- Lab personnel
 - Shelly Morrow
 - Patrick Savage
Estimated Construction Quantities

- 594,548 Tons of Base Course
 - 293,600 Reclaimed Asphaltic Pavement
- 288,913 Tons of HMA
- 41,557 Tons of SMA
- 235,500 Tons of CIR
- 8,440 CY of Concrete Masonry
- 29,024 CY of Concrete Pavement
- 3,601 CY Ancillary Concrete
IAP Construction Season Activities

- 9 aggregate sampling observations
- 3 base course (split and/or proficiency samples)
- 8 freshly mixed concrete observations
- 2 asphalt mixture split samples
- 8 asphalt density comparisons
- 1 concrete strength
Estimated Coverage of IA Activities

- 90% aggregate sampling observations
- 90% base course (split and/or proficiency samples)
- 90% freshly mixed concrete observations
- 90% asphalt mixture split samples
- 90% asphalt density comparisons
Corrective Actions/Follow-up

- Delay in posting results on MIT by Testing firm. (This has been addressed with lab manager of the Failure of the QMP)
- Tester recorded by initials, in the future Testers full name must be on worksheets. Email sent to adjust present and future worksheet. (per email response this is taken care of.)
- Test 6-801-0008-2014
Equipment Deficiencies

- 2 Air meters had failures due IA inspection and were replaced on site with the back up.
- 1 thermometer failure, a battery was supplied and allowed to use a back up thermometer. Calibration check was presented.
- No cooler on site, borrowed QC.
- Backup air meter calibration sheet was not readable, was emailed the calibration sheet.
Equipment Deficiencies

- MTS test report numbers
 - 6-802-0001-2014
 - 6-802-0007-2014
 - 6-802-0008-2014
A correlation issue was reported that the QV and QC gauges were outside of the correlation limits and needs to be investigated.

It was discovered that Standard Counts were not taken and needed to be re-established.

A new correlation value was ran between the QV/QC gauge and was within tolerances. Another IA report was filed to verify that the QV gauge was within IA tolerances.
Equipment Deficiencies

- Determined the QC gauge was running high values due to lack of new standard counts.
- State RSO on-site.
- Test 6-803-0006-2014
Issue of a unqualified HMA sampler not being trained in TBS to witness sampling. The sample was used for information only and a qualified sampler retrieved another QV.
Training issues

- Calibration sheets for air meters are lacking information, will need to educate calibration personnel
- HTCP qualified samplers of TBS need to be identified easier
Specification Issues

- None
Update the Dotnet, the IA guide is from 2010
Find a way to have who was IA’ed statewide
Give regions access to the current ASSHTO manuals
Questions?

Hearing None

Thank You for Your Time
Region Annual IAP Report
Executive Summary

Jeffrey Blix NW Region Superior
December 9, 2014
Chula Vista Resort
Wisconsin Dells, WI
Region IAP Administration

- IA Assistants - Thomas Rossmann
- Lab personnel - Thomas Rossmann
Estimated Construction Quantities

- 330,595 Tons of Base Course
- 193,612 Tons of HMA
- 209,420 Square yards of Concrete Masonry and Ancillary Concrete
IAP Construction Season Activities

- 4 aggregate sampling observations
- 4 base course (split and/or proficiency samples)
- 4 soils density comparisons
- 29 freshly mixed concrete observations
- 10 asphalt mixture split samples
- 16 asphalt density comparisons
- 3 concrete laboratory reviews
- 4 concrete strength testing reviews
Estimated Coverage of IA Activities

- 90% aggregate sampling observations
- 90% base course (split and/or proficiency samples)
- 90% soils density comparisons
- 90% freshly mixed concrete observations
- 90% asphalt mixture split samples
- 90% asphalt density comparisons
- 90% concrete laboratory reviews
Mathy HMA testing labs, most heat tables were not on for splitting of mix.
A thermometer had to be replaced during a bridge deck pour because it was out of tolerance.
Had one issue with gradation correlation tolerances.

MTS 8-801-0002-2014
Training issues

- ACT certified testers not entered in MTS in a timely manner.
Specification Issues

- None
Have a kickoff meeting before construction season.
Questions?
Region Annual IAP Report
Executive Summary

Jonathan Joslin/Robert Schiro
SE Region/Zoo Interchange
December 9 & 10, 2014
Chula Vista Resort, Wisconsin Dells
Region IAP Administration

- IA Assistants
 - Sheryl Sorby – Aggregates & PCC
 - Shannon Knoll – HMA Mix/HMA Density

- Lab Personnel
 - Sheryl Sorby – Aggregates
 - Shannon Knoll – HMA Mix
Estimated Construction Quantities

- 1,797,636 Tons of Base Course
- 1,020,245 Tons of HMA
- 1,058,279 Square yards of Concrete Pavement
- 996,059 Square feet Masonry and Ancillary Concrete
IAP Construction Season Activities

- 17 aggregate sampling observations
- 7 base course (split and/or proficiency samples)
- 12 concrete aggregates (bridges or miscellaneous) split samples
- 128 freshly mixed concrete observations
- 19 asphalt mixture split samples
- 16 asphalt density comparisons
- 10 soils density comparisons
- 5 concrete laboratory reviews
Estimated Coverage of IA Activities

- 90% aggregate sampling observations
- 98% aggregates (bridges, bases, and miscellaneous) split samples
- >95% freshly mixed concrete observations
- 99% asphalt mixture split samples
- 90% asphalt & soils density comparisons
- 84% concrete laboratory reviews
Decertification of QV density tester found with fraudulent test results

MTS follow-up test report numbers
- 2-801-0013-2014
- 2-802-0034-2014
- 2-802-0071-2014
- 2-802-0016-2014
- 2-803-0011-2014
- 2-804-0003-2014
Equipment Deficiencies

- QV concrete testing equipment insufficient or not calibrated properly
 - 2-802-0034-2014
 - 2-802-0116-2014
Participation/Performance/Non-qualified Personnel Issues

- Fraudulent test data reporting for HMA Nuclear Density Testing
- MTS test report numbers
 - 2-803-0017-2014
 - 2-803-0018-2014
Training issues

- Subgrade/Base Course QMP specification interpretation discrepancies
- Base Course QMP issues pertaining to the use and testing of recycled materials
- Subgrade QMP issues with moisture dry back and relation to Proctor testing
- MIT Concrete Thickness Scanner training/processes not clear to regional staff
Specification Issues

- Minimum depth check base plate thickness
- Plate locations for MIT scanner need to be moved from wheel path (4’ from baskets and tie bars)
- HPC slump specification needs revisiting
IA Program Continuous Improvement

- State wide continuity with procedural and equipment necessities
- QV testing possibly holding more validity
Questions?
Region IAP Administration

- IA Assistants – Steve Ames, Russ Frank
- Lab personnel – Leone Westlie
Tons of Base Course – 636,219
Tons of HMA – 161,921
Square yards of Concrete Pavement – 159,309
Cubic Yards Concrete Structures – 4,590
IAP Construction Season Activities

- Aggregate sampling observations: 19
- Base course (split and/or proficiency sample): 14
- Number of concrete aggregates (bridges or miscellaneous) split samples: 5
- Number of freshly mixed concrete observations: 60
- Number of asphalt mixture split samples: 6
- Number of asphalt density comparisons: 10
- Number of concrete laboratory reviews: 0
Estimated Coverage of IA Activities

- Percent (%) aggregate sampling observations - 90
- Percent (%) base course (split and/or proficiency samples) - 90
- Percent (%) concrete aggregates (bridges or miscellaneous) split samples - 90
- Percent (%) freshly mixed concrete observations - 90
Estimated Coverage of IA Activities

- Percent (%) asphalt mixture split samples - 90
- Percent (%) asphalt density comparisons - 90
- Percent (%) concrete laboratory reviews - 0
A split sample of size 1 concrete agg. was out of tolerance on the ½” sieve. This sample was taken during a deck overlay when the stock pile was very small. Follow-up sample was taken on next overlay with a full size stock pile with satisfactory results. MTS #5-801-0018-2014
Corrective Actions/Follow-up

- IA and QC density gauges were out of tolerance after 5 comparison tests. An adjustment was made to QC’s gauge by Seaman Nuclear. QC’s gauge was then ran on C.O. blocks and was within tolerances. When this gauge came back to La Crosse, it was ran on La Crosse block with satisfactory results. MTS #5-803-0010-2014.
Equipment Deficiencies

- No calibration records with air meter MTS # 5-802-19,45-2014
- Air meter past due for calibration MTS #5-802-3,32,34-2014
- Air meter out of tolerance with IA cal-can MTS #5-802-24,37-2014
- Thermometer out of tolerance with IA thermometer MTS #5-802-4,6,26,36,38,50-2014
Equipment Deficiencies (cont.)

- No cover for concrete sample
 MTS # 5-802-29,47,49-2014
- No min/max thermometer for cylinder curing
 MTS #5-802-9,10,11,21,30,42,44,46,49-2014
Participation/Performance/Non-qualified Personnel Issues

- Individual concrete samples not mixed with shovel
- Scoop not moved around top of cylinder mold or air meter bowl
- Lifting slump cone with twisting motion
- Not rodding slump cone/air meter sample completely through layers
- Slump test started more than 5 minutes after final sampling
Participation/Performance/Non-qualified Personnel Issues

- Last layer of concrete in slump cone kept below top of cone
- Slump cone lifted too quickly
- Cylinders not plainly marked and identified
- Air bowl not screeded off level with strike off bar
- Vibrator touched bottom of cylinder mold
- Sampling & mixing receptacle not clean or non-absorbent
Participation/Performance/Non-qualified Personnel Issues

- Temperature measurement not completed within 5 minutes of obtaining sample
- MTS #5-802-1,4,7,8,9,10,12,18,19,20,22,23,29, 30,32,33,35,37,38,43,45,46,47,48,49,53,56-2014
We had a ready-mix company from La Crosse sending a non-certified tester to 2 Wisdot projects for PCC testing. All project staff were alerted and the ready-mix company was instructed to not send this person to WisDOT projects. Project staff on the 2 projects where this person tested concrete were directed to C&M manual 8-30 for pay reductions.
Specification Issues

- Is P200 testing required for small quantities of Class I concrete pavement?
 Standard Spec. 710.5.6.2(2)

- Is moisture and P200 testing required for small quantities of Class I concrete structures?
 Standard Spec. 710.5.6.2(2) & 715.3.3.2
IA Program Continuous Improvement

- I was unable to create an 802 report for a non-certified PCC tester because the report requires a certified tester to be entered. Can we change this to report non-certified testers.
Region IAP Administration

- IA Assistants
 - Nancy Busche – HMA Specialist
 - Chad Hayes – Materials Engineer
 - Tim McCarthy – Pavement Engineer

- Lab Personnel
 - Bob Downing – Lab Chief
 - Nancy Ringelstetter
Estimated Construction Quantities

- 888,149 Tons of Base Course
- 267,623 Tons of HMA
- 350,000 Square yards of Concrete Masonry and Ancillary Concrete
IAP Construction Season Activities

- 6 aggregate sampling observations
- 4 base course (split and/or proficiency samples)
- 1 concrete aggregates (bridges or miscellaneous) split samples
- 44 freshly mixed concrete observations
- 18 asphalt mixture split samples
- 24 asphalt density comparisons
- 0 concrete laboratory reviews
Estimated Coverage of IA Activities

- 45% aggregate sampling observations
- 45% base course (split and/or proficiency samples)
- 10% concrete aggregates (bridges or miscellaneous) split samples
- 95% freshly mixed concrete observations
- 95% asphalt mixture split samples
- 95% asphalt density comparisons
- 0% concrete laboratory reviews
PCC Corrective Actions/Follow-up

- 1-802-0009-2014
- QC air meter had leaky needle valve. QC tester only had one meter on site. QC testers had to use QV meter for the duration of the deck pour. QC testers were unable to complete air loss comparison test in a reasonable time. QV firm used IA meter to complete QV tests. Follow up 1-802-0047-2014.
PCC Corrective Actions/Follow-up

- 1-802-0010-2014
- QC air meter had leaky needle valve. QC tester only had one meter on site. QC testers had to use QV meter for the duration of the deck pour. QC testers were unable to complete air loss comparison test in a reasonable time. QV firm used IA meter to complete QV tests. No follow up completed.
PCC Corrective Actions/Follow-up

- 1-802-0032-2014
- QC tester did not cover sample. QC tester did not rod consistently 25 times. QC tester struck off slump cone and did not roll rod. QC tester did not make cylinders. Last load of day and did not see tester again.
Asphaltilc Pavement Density

In general, observed sampling and testing procedures demonstrated by QC and QV technicians were performed proficiently and correctly. There were a few non-conformances which were corrected on-site. These consisted of using wrong worksheets and not taking new standard on the material to be tested.
There were three instances of QC/QV and IA gauges did not correlate. All of these gauges were brought to the BTS blocks in Wisconsin Rapids.

The first instance, a CPN was found to be out of tolerance on the blocks and it was found that the handle needed adjustment. On follow-up IA correlation the gauge was in tolerance.
Asphalctic Pavement Density

The second instance of non-correlation was a Seaman gauge. This gauge was run on the Wisconsin Rapids blocks and found to be within tolerance, no adjustments were made. When the gauge was brought back to the project, it correlated with the IA gauge.
Asphalitic Pavement Density

The third instance of a gauge not correlating with IA gauge was another Seaman. This gauge was brought to Wisconsin Rapids and was good on the blocks. It was determined 2.4 pcf bias was needed when testing on the pavement. When the gauge was brought back to the project, another correlation was run with the IA gauge and BTS gauge. All correlated.
Asphaltic mixture observations requiring follow up:

- 1-804-0005-2014
- Split sample results for the #8 sieve was out of the allowable correlation tolerance. For the #8 sieve IA results were 41.6% and QC results were 46.3%. Tester left the contractor so a follow-up was not performed.
Asphaltic mixture observations requiring follow up Continued:

- 1-804-0013-2014
- The comparison correlation tolerance was out for the Gmm at 0.021. The tester left the Madison area shortly after the split sample was taken. Tester did not return to SW Region – Madison, so a follow-up could not be conducted. This tester was IA’d in the SE region with satisfactory results.
Asphalitic mixture observations requiring follow up Continued:

- The comparison correlation tolerance was out for the Gmm at 0.021. A follow-up IA was completed with the QC technician. Sampling and splitting were observed and Gmm split sample testing was performed. Correlation comparison was 0.011. No obvious reason for out of tolerance correlation was found.
Equipment Deficiencies

- Saw 2 cut-off tapes and threw them away.
- 2 leaky valves on air meters.
- Had a few instances of non conforming thermometers.
Participation/Performance/Non-qualified Personnel Issues

- None
Training issues

- Some QC PCC testers are not using their random number to locate which truck and sampling toward the beginning of the load. They would wait until their random no matter where in the load.
Specification Issues

- None
Questions?