PLAN FOR TYPE A1 ABUTMENT
SEE STD. 12.02 FOR ABUTMENT BODY DETAILS

WING ELEVATION
(WING TRAVELING UP STATION)
LOCATE NAME PLATE ON FIRST RIGHT
SHOWN ON STANDARD 30.24), "M", NY3&4 OR TIMBER RAIL AS
NAME PLATE (ONLY FOR TYPE "W",
AND NOTES)
ADDITIONAL DETAILS
(SEE STD. 9.01 FOR
WRAPPED (6-INCH)
PIPE UNDERDRAIN
ABUTMENT CENTERLINE
ENCOUNTERED IN NORTHWEST WISC. (SUPERIOR AREA)
*USE 2:1 FOR THE UNSTABLE CLAYS WHICH ARE SOMETIMES
THE BOTTOM OF ABUTMENT.
STREAM CROSSINGS WHERE HIGH WATER ELEVATION IS ABOVE
OF WINGS PARALLEL TO THE ROADWAY. DO NOT USE FOR
THIS TYPE OF WING SHOULD BE USED WHEN POSSIBLE.
IN-WING WATER ELEVATION IS ABOVE
WHEN TIMBER RAILING IS USED AS PER STANDARD 30.24,
AND THE USE OF THE CONSTRUCTION JOINT SHALL
BE INAcTIVATED. THE LW CONSTRUCTION JOINT IS TO BE
LOCATED AT THE LOWER END POSTS TO BE
PLACED.
ALL WING BARS SHALL BE EPOXY COATED.
SHOW ALL LONGITUDINAL BARS FOR CLARITY.
ALL WING BARS SHALL BE EPOXY COATED.

WING LENGTH - 10'-0" MINIMUM
WING LENGTH = 12'-0" MINIMUM
WING LENGTH = 16'-0" MINIMUM
WING LENGTH = 20'-0" MINIMUM

*4 BARS @ 1'-0"
*4 BARS @ 1'-0"
*4 BARS @ 1'-0"
*4 BARS @ 1'-0"

DETAILS FOR WINGS
PARALLEL TO A1
ABUTMENT CENTERLINE

SEC. 12.07

Bill Oliva
DATE: 7-17

STANDARD 12.07

TYPICAL BALANCE BETWEEN
WING AND WING WALL.

WING LEVEL
PROPER WING LEVEL
LATERAL FORCE PROPERLY TRANSFERRED.

WING WALL LEVEL
A1 BARS
MIN.

WING TRAVELING DOWN STATION
LOCATE NAME PLATE ON FIRST LEFT
SHOWN ON STANDARD 30.24), "M", NY3&4 OR TIMBER RAIL AS
NAME PLATE (ONLY FOR TYPE "W",
AND NOTES)
ADDITIONAL DETAILS
(SEE STD. 9.01 FOR
WRAPPED (6-INCH)
PIPE UNDERDRAIN
ABUTMENT CENTERLINE
ENCOUNTERED IN NORTHWEST WISC. (SUPERIOR AREA)
*USE 2:1 FOR THE UNSTABLE CLAYS WHICH ARE SOMETIMES
THE BOTTOM OF ABUTMENT.
STREAM CROSSINGS WHERE HIGH WATER ELEVATION IS ABOVE
OF WINGS PARALLEL TO THE ROADWAY. DO NOT USE FOR
THIS TYPE OF WING SHOULD BE USED WHEN POSSIBLE.
IN-WING WATER ELEVATION IS ABOVE
WHEN TIMBER RAILING IS USED AS PER STANDARD 30.24,
AND THE USE OF THE CONSTRUCTION JOINT SHALL
BE INAcTIVATED. THE LW CONSTRUCTION JOINT IS TO BE
LOCATED AT THE LOWER END POSTS TO BE
PLACED.
ALL WING BARS SHALL BE EPOXY COATED.
SHOW ALL LONGITUDINAL BARS FOR CLARITY.
ALL WING BARS SHALL BE EPOXY COATED.
STRUCTURAL APPROACH SLAB

At MSE wingwalls

Approach slab parallel to bridge

Design data

Concrete strength: structural approach slab and footing, pc: 6200 psi
Steel: reinforcement, grade 60, fy: 4000 psi

Legend

SS901
SS601
SS501

Stainless steel (A1 abut. - slab span)
Stainless steel (A3 & A4 abut.)

Bill of bars

Note: the first or last two digits of the bar mark signify the bar size.

Structural approach slab

Dimensions and materials

Approach slab plan

Approach slab footing

Steel: reinforcement, grade 60

Structural approach slab

STAINLESS STEEL REINFORCEMENT.

Design data

Concrete strength: structural approach slab and footing, pc: 6200 psi
Steel: reinforcement, grade 60, fy: 4000 psi

Legend

SS901
SS601
SS501

Stainless steel (A1 abut. - slab span)
Stainless steel (A3 & A4 abut.)

Bill of bars

Note: the first or last two digits of the bar mark signify the bar size.

Structural approach slab

Dimensions and materials

Approach slab plan

Approach slab footing

Steel: reinforcement, grade 60

Structural approach slab

STAINLESS STEEL REINFORCEMENT.