Program Agenda

WisDOT Structural Engineers Symposium
Program Agenda
June 7, 2016

Conference Location:
University of Wisconsin-Madison Union South
1308 West Dayton Street
Madison, WI 53715

For today’s presentations, agenda, and proof of attendance, please visit:
http://wisconsindot.gov/Pages/doing-bus/eng-consultants/cnslt-rsrces/strct/design-policy-memos.aspx

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 a.m.</td>
<td>Registration</td>
</tr>
<tr>
<td>8:00 a.m.</td>
<td>Welcome & Secretary’s Office Remarks – Mark Gottlieb, WisDOT Secretary</td>
</tr>
<tr>
<td>8:10 a.m.</td>
<td>BOS Director’s Perspective – Scot Becker, BOS Director</td>
</tr>
<tr>
<td>8:20 a.m.</td>
<td>Consultant Review Topics – Najoua Ksontini, Design Supervisor; Dan Breunig, Consultant Review Engineer; Matt Allie, Hydraulic Design Engineer</td>
</tr>
<tr>
<td>9:20 a.m.</td>
<td>Structures Estimating – Fred Schunke, WisDOT Estimating Engineer</td>
</tr>
<tr>
<td>9:35 a.m.</td>
<td>Design & Construction of Post-Tensioned Integral Pier Caps – Randy Thomas, CH2M</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>Break (Beverages and Snacks)</td>
</tr>
<tr>
<td>10:20 a.m.</td>
<td>Bridge Management – Philip Meinel, Development Engineer; Josh Dietsche, Development Supervisor; Bria Lange, Development Engineer</td>
</tr>
<tr>
<td>10:55 a.m.</td>
<td>Automation, Policy, and Standards – Dave Kiekbusch, Development Supervisor; James Luebke, Development Engineer; Andrew Smith, Development Engineer</td>
</tr>
<tr>
<td>11:55 a.m.</td>
<td>Lunch</td>
</tr>
<tr>
<td>1:00 p.m.</td>
<td>South 1st Street Bascule Bridge – Michael Delemont, AECOM</td>
</tr>
<tr>
<td>1:25 p.m.</td>
<td>Construction Topics – Bill Dreher, Design Chief; Joe Balice, FHWA Division Bridge Engineer</td>
</tr>
<tr>
<td>2:05 p.m.</td>
<td>Ancillary Structures – Ben Koeppen, Maintenance Engineer; Anthony Stakston, Regional Ancillary Structure Inspection Engineer; Vu Thao, Design Engineer</td>
</tr>
<tr>
<td>2:35 p.m.</td>
<td>Break (Beverages and Snacks)</td>
</tr>
<tr>
<td>2:55 p.m.</td>
<td>Research Updates – Bill Oliva, Development Chief</td>
</tr>
<tr>
<td>3:10 p.m.</td>
<td>Accelerated Bridge Construction – James Luebke, Development Engineer; Bill Oliva, Development Chief</td>
</tr>
<tr>
<td>3:35 p.m.</td>
<td>Interactive Survey & Q/A</td>
</tr>
<tr>
<td>4:00 p.m.</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>
Welcome to the 2nd Transportation Structural Symposium

BOS Accomplishments / Looking Forward

National Trends and Challenges

How many bridges were built? Other structures?
How many bridges were designed? Other structures?
How many bridges were rated by BOS?
How many bridges were inspected?

Fun Facts – The last 2 years Since our First Symposium
Progress of St. Croix

Drones Pilot for Bridge Inspection

Today's Agenda
- Consultant Presentations
- Bureau Items
BOS Accomplishments - Looking Forward

- New Improved Bureau Web Site
- Bridge Aesthetics
- Fiber Reinforced Polymer (FRP) Policy
- Timeliness Initiative
- Implementation of Bridge Preservation Policy & Updated WisDOT/FHWA PM Agreement

BOS Looking Forward

- Ancillary Structures Program
- WiSAM (Wisconsin Structures Asset Management)
- Fabrication Phase II Project
- MASH Research and Implementation
- Accelerated Bridge Construction Program Development

National Trends and Challenges

- New 3 year frequency of LRFD Manual Versions with no interims
 - Wisconsin led this effort
- Interstate Truck Weight Exceptions – FAST Act
- LRFD Sign Structures
- National Tunnel Inspection Program
- Bridge Information Modelling
Wisconsin Transportation Structures Program

- We want your Feedback and Input
- BOS - How are we doing?
- 3rd Symposium?
- Innovations?

Once Again Welcome!
Consultant Review Reports
and Consultant Performance

Najoua Ksontini
Supervisor - Consultant Review and Hydraulics
Bureau of Structures
June 7, 2016

Goals of Presentation

- Provide an overview of some consultant review business metrics
- Discuss consultant performance and plan submittal timeliness

Consultant Review Metrics

- BOS provides reviews for all bridge, culvert, and retaining wall preliminary plans and some sign structure preliminary plans
- BOS provides QA reviews for some, not all submitted final structure plans
BOS utilizes a mix of in-house staff and consultant staff to perform preliminary and final plan reviews. Currently BOS has seven staffing contracts providing for consultant review services on a part-time or as needed basis.

- 3 staffing contracts for preliminary plan review services
- 2 staffing contracts for final plan review services
- 2 staffing contracts for sign structure plan review services
Consultant Plan Submittal Timeliness and Performance

- BOS tracks and compiles consultant plan submittal timeliness and performance data
- Consultant performance data is based on the consultant evaluations completed by BOS reviewers for each preliminary and final plan review.

Plan submittal Timeliness

Preliminary Plan Submittals - On Time vs. Late

Late = received less than 3 months prior to PSE date

<table>
<thead>
<tr>
<th>Year</th>
<th>Late</th>
<th>On Time</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>307</td>
<td>223</td>
<td>530</td>
</tr>
<tr>
<td>2012</td>
<td>291</td>
<td>163</td>
<td>454</td>
</tr>
<tr>
<td>2013</td>
<td>355</td>
<td>355</td>
<td>710</td>
</tr>
<tr>
<td>2014</td>
<td>293</td>
<td>265</td>
<td>558</td>
</tr>
<tr>
<td>2015</td>
<td>265</td>
<td>265</td>
<td>530</td>
</tr>
</tbody>
</table>

Final Plan Submittals - On Time vs. Late

Late = received less than 2 months prior to PSE date

<table>
<thead>
<tr>
<th>Year</th>
<th>Late</th>
<th>On Time</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>184</td>
<td>223</td>
<td>407</td>
</tr>
<tr>
<td>2012</td>
<td>117</td>
<td>163</td>
<td>280</td>
</tr>
<tr>
<td>2013</td>
<td>280</td>
<td>355</td>
<td>635</td>
</tr>
<tr>
<td>2014</td>
<td>293</td>
<td>265</td>
<td>558</td>
</tr>
<tr>
<td>2015</td>
<td>265</td>
<td>265</td>
<td>530</td>
</tr>
</tbody>
</table>
The consultant evaluation rating uses a scale of 1 through 5, with a rating of 3 reflecting a satisfactory performance that meets expectations.

Data from 2013 through 2015 showed BOS had completed consultant evaluation ratings for 45 consultant firms.

The compilation of the data results in a single average rating for each of the consultant firms.

Questions?
Recent and Upcoming Changes to Consultant Review Process

Najoua Ksontini
Supervisor - Consultant Review and Hydraulics
Bureau of Structures
June 7, 2016

Goals of Presentation

- Discuss implementation of the On-Time Plan Submittal Improvement form
- Discuss upcoming improved documentation of review processes and expectations
- Discuss changes to consultant review evaluations

On-Time Plan Submittal Improvement Form

- Policy was set forth in a memo dated March 2nd, 2016.
- Form is intended to gather information about the reasons for past-deadline final structure plan submittals.
- BOS will categorize those reasons and will be able to provide suggestions to Region and consultant staff about process improvements.
On-Time Plan Submittal Improvement Form

- Form is required when:
 - Final structure plans are submitted past due date (i.e., 2-month prior to PS&E date), or
 - Each time a revised final structure plan is submitted after the due date, unless the revised submittal is in response to a BOS QA review.
- Form is not required for structure addenda and post-let revision submittals.

On-Time Plan Submittal Improvement Form

- Form is available on the BOS web site and would need to be E-submitted along with the plan submittal.
- Form should include a detailed description of the reasons that caused the past due date submittal and what could have been done differently to achieve the required two-month window prior to PSE.

Documentation of Review Processes and Expectations

- Several policy items related to consultant plan submittals and review processes are currently provided in BOS design policy memoranda that are found on the BOS web site.
- BOS will incorporate these policies in Chapter 6 of the Bridge Manual.
Documentation of Review Processes and Expectations

- The documentation in the Bridge Manual will cover:
 - Consultant preliminary structure plan submittal expectations and review process
 - Consultant final structure plan submittal expectations and review process
 - Structure plan addenda submittal expectations and process
 - Structure plan post-let revision submittal expectations and process

Consultant Evaluations

- Currently, BOS provides consultant performance evaluations for all preliminary and final plan reviews
- Evaluations are returned to design consultants and Region contacts when reviews are complete

Consultant Evaluations

How are they used?

- Consultant evaluation “average scores” are incorporated by Region Project Managers or Local Program Management Consultants into the consultant contract close-out evaluation
- Consultant evaluation “average ratings” are used by BOS to develop a consultant performance ranking
In the future, BOS will not provide performance evaluations for preliminary plans for “minor” rehabilitation work. Minor work may include polymer overlays, painting, slope repairs, etc. Preliminary plans for this type of work will still be reviewed and comments will be provided. BOS will indicate when an evaluation is not provided.
Consultant Evaluations - Upcoming Changes

- In the future, average rating for final review evaluations will reflect a weighted average that places more weight on the more significant aspects of the submittal such as design and plan quality.

Contacts and resources

- Questions regarding structure plan submittals and review processes should be directed to:
 - Najoua Ksontini Najoua.Ksontini@dot.wi.gov
 - (608) 266-2657

Questions?
Common BOS Review Comments
Dan Breunig
Consultant Review Engineer

Comments largely related to detailing and constructability concerns, but design errors are important

- 80% Constructability Comments
 - Dimension errors
 - Bar steel callout errors
 - Not enough information to build

- 10% Bidability Comments
 - Incorrect bid items
 - Work detailed in plans but no bid item for work

- 10% Design Comments
 - Insufficient designs or overly conservative designs

Most Common Review Comments

- Geotechnical Reports and Piling Design
 - Several examples of misunderstandings of how to interpret the geotechnical reports and translate that to a modified gates piling design.
 - Some borings are not going deep enough, and skin friction piles cannot develop enough resistance within the boring depth. Has resulted in designs with too many piles, not driven deep enough, and driven to a resistance less than the pile’s maximum driving resistance.
 - Incorrect subsurface exploration border sheet.
Ratings – Different programs, different results
- Several different design/rating programs are used in the design community.
- BOS has access to many of these, but uses an in-house program to actually rate structures (culverts, prestress, steel, slabs).
- Occasionally, design changes are requested in order to satisfy BOS' in-house software.

Drafting Program Errors – incorrect dimension scales - dimensions all off by a constant factor.
- Design computations somehow not making it through to the final plan, typically due to a drafting error or error in an automated process.

Construction Joint Locations and Bar Couplers
- For staged construction and widenings, it is preferable to lap transverse deck bars rather than use bar couplers. Saves $$$ and reduces bar congestion.
SSR Training Resources
Matt Allie
Hydraulic Design Engineer
WisDOT Bureau of Structures

Outline
- Objective
- Background
- Resources
- Support

Objective
- Provide comprehensive SSR resources for:
 - Region – when submitting structure for BOS design
 - Consultants – when submitting preliminary structure plans for BOS review or design
 - SSRs are most valuable when containing complete and accurate information
Background

- Previously, SSR training presentations given at WisDOT Region offices
- SSR forms updated in 2012
- Update and expand upon SSR training materials
- Recommended by the BOS Timeliness Initiative Final Report

Resources

Submittal Checklists
Support

- BOS continues to provide support for filling out SSR forms and using training materials
- Please direct inquiries to Najoua Ksontini

Questions?
Estimating Engineer

- Estimating Engineer for WisDOT since January 2015
- What estimating engineer does.
 - Review estimate development processes and find ways to improve estimate accuracy.
 - Develop updated training materials, make presentations like this, and join any meetings when project estimates are discussed.
 - Organize and run quarterly Estimating User Group meetings.
 - Members are from Planning, Design, Program Control, and Bureau of Structures.
 - Review the bids and estimates for a Letting to prepare for the awards meeting, and reviewing estimate documentation and major items in PS&E estimates before the Letting.

Topics being Discussed

- Engineering Estimate Accuracy (EEA) Performance Measure
- Construction Cost Index
- Estimator Files
- Bid items that cause inaccurate estimates
- Mobilization
- Bascule Bridge Projects
- Lump sum bid items
- Special Provision Items (SPVs)
Engineering Estimate Accuracy (EEA) Performance Measure

- FHWA/WisDOT Stewardship Agreement (Sept 2010) goal
 - 50% of estimates should be within 10% of low bid
- WisDOT goal
 - 60% of estimates within 10% of low bid
 - 75% of estimates within 15% of low bid
 - Goals tracked in Estimate accuracy report
- WisDOT external MAPSS measurement—
 [Link to website]

Estimate results for last six years
- Includes breakdown by region, number of bidders, funding category, and work type.
- Structure projects make up 30% of the entire program since 2011.
- Available on online:
 [Link to report]

Bridge Project Estimates within 10%

<table>
<thead>
<tr>
<th>Year</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY11</td>
<td>38%</td>
<td>47%</td>
<td>45%</td>
<td>48%</td>
<td>44%</td>
<td>42%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% % of Proposals within 10% of the Low Bid -By Proposal Type and FY-
Construction Cost Index (CCI)

- The Chained Fisher Construction Cost Index
 - Accounts for changes in type and usage of items
 - Eliminates issue of updating the base period
 - Able to accommodate usage for the current year and base year
 - Performs better than fixed-weight indices when prices and quantities are volatile
- The Federal Highway Administration (FHWA) uses a Chained Fisher approach—

The CCI does not include SPVs items.
- If enough is spent on special provision items instead of standard items, there will be a dip in the index.

The CCI does not include Lump Sum items such as Mobilization and Traffic Control Project.
- The WisDOT CCI is consistent with other states.
Estimator Files

- A lot of you are using Estimator for estimating your structures.
- We have made a user guide to merge Estimator files.
- Recommend sharing your Estimator files with project designers along with this user guide.
 - Decrease the chances for errors from reentering items.
 - Decrease the workload with reentering items.

Bid items that cause inaccurate estimates

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item Description</th>
<th>1% or greater</th>
<th>10% or greater</th>
<th>Document</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>502.0100</td>
<td>Concrete Masonry Bridges</td>
<td>59%</td>
<td>7%</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>203.0600</td>
<td>Removing Old Structure Over Waterway With Minimal Debris</td>
<td>43%</td>
<td>5%</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>216.1000</td>
<td>Excavation for Structures Bridges</td>
<td>15%</td>
<td>0%</td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>203.0200</td>
<td>Removing Old Structure</td>
<td>14%</td>
<td>1%</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>509.2500</td>
<td>Concrete Masonry Overlay Decks</td>
<td>46%</td>
<td>3%</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>505.0505</td>
<td>Bar Steel Reinforcement HS Coated Bridges</td>
<td>12%</td>
<td>0%</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>517.1800</td>
<td>Structure Repainting Recycled Abrasive</td>
<td>9%</td>
<td>1%</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>504.0100</td>
<td>Concrete Masonry Culverts</td>
<td>25%</td>
<td>5%</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

Data includes July 2013 to March 2016

Concrete Masonry: New vs. Rehabilitated Structures

- Includes statewide low bids of Concrete Masonry (502.0100) from January 2014 to March 2016
Concrete Masonry Bridges

- Concrete Masonry Bridges is about $100 to $200 more expensive on Rehabilitated Structures
- Lower production rates (higher costs) when work is on the superstructure only.
- Formwork may be more difficult to complete against existing beams, especially when preserving existing concrete girders.
- Staged construction increase costs.
- Prices seem to have lowered since the cement shortage, but can vary according to contractor bidding.
 - Most recent prices show certain contractors bid around $600/CY and others bid $600/CY.
 - It is difficult to always know who is going to bid on your project but the large complex projects will often include Kraemer North America, Lunda and Zenith Tech.

Earthwork Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Estimate</th>
<th>Bid</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.0100</td>
<td>Excavation Common</td>
<td>$148,449,667</td>
<td>$140,538,768</td>
<td>5%</td>
</tr>
<tr>
<td>208.0100</td>
<td>Borrow</td>
<td>$32,900,927</td>
<td>$23,043,401</td>
<td>30%</td>
</tr>
<tr>
<td>206.1000</td>
<td>Excavation for Structures Bridges (structure)</td>
<td>$8,605,129</td>
<td>$18,708,900</td>
<td>-117%</td>
</tr>
<tr>
<td>206.2000</td>
<td>Excavation for Structures Culverts (structure)</td>
<td>$3,567,601</td>
<td>$4,441,862</td>
<td>-25%</td>
</tr>
<tr>
<td>206.3000</td>
<td>Excavation for Structures Retaining Walls (structure)</td>
<td>$1,508,045</td>
<td>$3,218,972</td>
<td>-113%</td>
</tr>
</tbody>
</table>

- Contractors will bid cubic yard earthwork items at a low cost and increase their prices for related lump sum items.
- The total amounts for earthwork is closer when total project costs are considered.
- Designers need to evaluate the total project cost and should not get worried about larger lump sum items or low bids for earthwork.
- The department has a comprehensive Unbalanced bid Analysis that is detailed in CMM 2.10.2.1
 - http://wisconsindot.gov/rdwy/cmm/cm-02-10.pdf#cm2-10.2.1

Mobilization

- Roadway Designers use a percentage of the total estimate.
 - The mobilization tool on the estimating page allows designers to get more specific percentages.

<table>
<thead>
<tr>
<th>Item</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Quartile</td>
<td>6.4%</td>
<td>6.0%</td>
<td>6.3%</td>
<td>6.9%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Median</td>
<td>7.3%</td>
<td>7.1%</td>
<td>7.3%</td>
<td>7.3%</td>
<td>7.3%</td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>8.0%</td>
<td>7.9%</td>
<td>8.1%</td>
<td>8.2%</td>
<td>8.0%</td>
</tr>
<tr>
<td>High</td>
<td>23.4%</td>
<td>23.6%</td>
<td>23.5%</td>
<td>23.6%</td>
<td>23.5%</td>
</tr>
<tr>
<td>Low</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Mobilization

- Structure engineers typically don’t dictate to the roadway designers what percentage to use.
- Could provide recommendations on projects.
 - The project designer should be made aware of project requirements that would increase mobilization costs.
- Specialty bridge projects such as bascule bridge projects, should be using higher than average mobilization prices.

Mobilization: Factors that increase costs

- Complex Design or Construction
- Barges required
- Very large cranes required
- Tall piers
- Long girders
- Staging or number of Mobilizations
- Over freeways and railroads
- Limited work area, such as an urban environment

Bascule Bridges

- WisDOT needs to do a better job estimating these types of projects.

<table>
<thead>
<tr>
<th>Proposal #</th>
<th>Project #</th>
<th>Estimate</th>
<th>Bid</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>20100809017</td>
<td>4908-02-71</td>
<td>$13,299,135</td>
<td>$13,477,696</td>
<td>1.3%</td>
</tr>
<tr>
<td>20110703015</td>
<td>4160-23-71</td>
<td>$3,641,312</td>
<td>$4,811,300</td>
<td>20.5%</td>
</tr>
<tr>
<td>20130611009</td>
<td>4055-15-71</td>
<td>$1,636,166</td>
<td>$1,690,366</td>
<td>-21.8%</td>
</tr>
<tr>
<td>20140408018</td>
<td>7532-05-71</td>
<td>$1,330,488</td>
<td>$1,361,458</td>
<td>4.7%</td>
</tr>
<tr>
<td>20150129040</td>
<td>4900-03-71</td>
<td>$1,377,089</td>
<td>$1,534,911</td>
<td>10.3%</td>
</tr>
<tr>
<td>20150714022</td>
<td>9955-03-60</td>
<td>$1,751,571</td>
<td>$2,808,515</td>
<td>37.4%</td>
</tr>
<tr>
<td>20150811009</td>
<td>4560-20-78</td>
<td>$2,967,450</td>
<td>$2,966,663</td>
<td>0.3%</td>
</tr>
<tr>
<td>20160803027</td>
<td>5105-17-60</td>
<td>$1,740,848</td>
<td>$1,731,835</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
Bascule Bridges

- BPD has started to look into these types of projects more closely.
- WisDOT needs to monitor the number of bascule bridge projects each year.
 - There are only a few contractors for this type of work.
 - Industry has stated that the provisions for these specialty bridges are so stringent, that the cost of the items continue to rise.

Lump Sum Items

- Many of the following points come directly out of AASHTO: Practical Guide to Cost Estimating.
- Lump sum items should only be used when an item of work can be easily defined but not all the components or details can be clearly determined.
- The more breakdown of a lump-sum item there is, the greater the likelihood that an accurate lump-sum estimate can be developed.
 - Easier to verify estimate prices with similar items.
 - Use units that reduce risk from the contractor.

Lump Sum Items

- Using lump-sum items typically transfers the unknowns to the contractor.
 - Girder Surface Repair in linear feet or square instead of each unit. Contractor is then paid for work completed instead of bidding higher price when amount of repair is not
- We need to do a better job of balancing risk between the contractor and the DOT:
 - Risk = Cost
 - Try not to be prescriptive for the means of construction and materials. Specify the requirements for the final item.
- Most lump-sum items are very different from one project to another. Using past bid history is often not a good indicator for future bid price of lump-sum items.
Why we should avoid SPVs

- Bid history is difficult to obtain. Estimate prices are less accurate.
- Contractors have to interpret the SPVs, increasing risk and cost.
- Non-standard items may be in short supply and are more expensive.
- Old special provision items may not reflect changes to General Requirements in the Standard Specifications.
- New special provision items may not have been approved by tech committees.
- WisDOT spends about 25% of its program on special provision items and that is too much.

Why we should avoid SPVs

- If the result for a task is the same for an SPV and a standard bid item, then use the standard bid item.
 - The bid item is consistent for all projects.
 - Bid history is much easier to find.
 - Experience with common items reduces costs and risk.
 - Standard bid items are more available.
- If you must use an SPV, use SPV libraries maintained by the Bureau of Structures.

Feel free to contact us with your ideas to improve WisDOT Estimates.

Thank You!

Fred Schunke, PE
Estimate Engineer
Phone: (608) 266-9626

Scott Lawry, PE
Proposal Mgmt. Chief
Phone: (608) 266-3721

Website:
WisDOT Employees - http://dotnet/consultants/estimates/index.shtm
Consultant – https://trust.dot.state.wi.us/extntgtwy/consultants/estimates/index.shtm
Design and Construction of Post-Tensioned Integral Pier Caps
Randy Thomas, PE
Senior Structural Engineer
CH2M

Learning Outcomes
Today’s talk is on the design and construction of post-tensioned concrete integral pier caps used for steel I-girder bridges on the Zoo IC Project. At the end of the session, you will be familiar with:
- Fundamental design parameters
- Benefits of a collaborative design approach
- Design and detailing considerations affecting constructability and quality of finished product

Presentation Outline
- Introduction
- Case Study: Zoo IC Project
- Design & Detailing Considerations
- Closing
- Questions
Introduction

Definition of Integral Pier Cap
- Cap resides entirely or mostly within the depth of the girder framing
- Integrally connected into girder framing system
- Can be any material (steel, concrete, PT concrete)

Why consider an integral pier cap?
- If site geometry is restrictive
 - Clear span prohibitively long/expensive
 - Pier cap overhangs roadway
 - Project economics and/or roadway geometrics favor a shallow superstructure
- Eliminate joints & bearings
 - As compared to using an inverted Tee Pier
- Common applications
 - Heavily skewed ramps
 - Low level viaducts
Integral Cap Type Selection

- **Steel**
 - Box beam likely required – complicated connections
 - Non-redundant for NBIS condition inspections

- **Mildly Reinforced Concrete**
 - Concern for cracking and corrosion
 - Tends to sag over time (creep)

- **Post-Tensioned Concrete**
 - Internally redundant
 - Small deflections / no sag
 - Clean look, similar to adjacent conventional piers
 - Concern for corrosion of hidden elements – can be mitigated through proper detailing

Construction Sequence

1. Form, pour, and strip columns
2. Build falsework
3. Erect structural steel
4. Tie rebar
Construction Sequence
6. Set side forms

Construction Sequence
8. Strip forms

Construction Sequence
10. Jack strand

Construction Sequence
11

Construction Sequence
12
11. Grout tendons and cast pour-backs

12. Pour deck and parapet

Case Study: Zoo IC Project

Zoo Interchange Project

- 2 Steel I-girder bridges with integral pier caps
- 2 designers
 - BDS
 - CH2M
- 2 construction lets
 - Zoo Core1 FPSE May 2014
 - Zoo Core2 FPSE May 2015
- 2 design schedules
 - Prelim: Concurrent
 - Final: Staggered
Bridge B-40-852 (SW Ramp)
- 3-lane, 3-span, 550-ft long
- 1900-ft radius curve
- 84-in webs
- 1 straddle pier
- Designed by BOS

Bridge B-40-787 (WN/WS Gore)
- 3-lane, 5-span, 750-ft long, 1450-ft radius curve, tapered
- 1 straddle pier, 2 hammerheads, 69-in webs
- Designed by CH2M as part of Forward 45

Zoo IC – Design Schedule
- The Zoo structures design team recognized the potential for collaborative design early in the process
 - Preliminary Plans (Jan 2013)
 - Integral cap locations identified, specifics TBD
 - Design Workshop (May 2013)
 - Review example CH2M designs
 - Establish design criteria, fundamental design decisions, design methodology/tools
 - Final Plans Esubmit – staggered by 1 year
 - B-40-852: Feb 2014 (May 2014 FPSE)
 - B-40-787: Feb 2015 (May 2015 FPSE)
Facilitating Collaborative Design
- Forward 45 advanced the final design of B-40-787 PT integral straddle pier, to match B-40-852 schedule and capture synergies
- Design teams co-located at Barstow project office in Waukesha
- Over-the-shoulder reviews
 - No direct responsibility for checking each other’s work
 - Provide opinion/advice
 - Identify common or similar elements of design
 - Adopt consistent design approach (evolves over time)
 - Trouble shoot together

Benefits of Collaborative Design
- Design Efficiencies - 2 birds with 1(+) stone
 - Selection of analysis tools
 - Approach to detailing
 - Special provisions
- "Incidental" Quality Control
 - 2 design teams offer a degree of independent thought
 - Qualitative comparisons – Why are things different?
 - Quantitative comparisons – proportional gut check on size, qys
- Consistency
 - End products look very similar (uniformity within interchange)
- Constructability
 - Lessons learned during bidding/construction of 1st bridge can be applied to 2nd bridge in real time

Fundamental Design Parameters
- Prestress Type
 - HS Bars: good for short, straight tendons; lower PS losses; shallow blockout
 - HS Strand: higher capacity; easy to curve tendons; higher PS losses; deeper blockout
- Depth of Cap
 - Aesthetics, structural depth, tendon pathways
- Articulation
 - Bearings, hinges, pins?
 - Accommodate PT shortening, cap torsion
- Design Methodology/Tools
- Corrosion Protection Measures
Outcomes of Design Workshop

- PS Type: TBD during final design case-by-case
- Increase vertical clearance to 17'-0" (normally 16'-9")
 - Protect against vehicle collision/repairs
- Articulation
 - Straddle: Use pin detail (rebar cluster)
 - Hammerhead: Use hinge detail (rebar row)
 - Rotational release alleviates constraint forces
- Analysis platform: 3D FEM (LARSA 4D)
 - Irregular geometry; integral framing; staging analysis; time-dependent material effects
- Design PT for zero tension (AASHTO allows LL tension)
 - Section remains uncracked; more difficult for salt to penetrate
 - Keep cap "clamped" tightly at girder/cap interface

Corrosion Protection Measures

- Cap replacement would require major construction
 - Severe traffic impacts
 - Expensive
- Pier Cap
 - Stainless steel rebar
- PT Anchorages
 - Galvanized or plastic fittings
 - Grouted anchor end caps
 - Pour-back
 - Exterior surface protection
- Girders
 - Zinc Metalized
 - Exposed to salt spray

Design and Detailing Considerations
Design and Detailing Considerations

- Holes thru girder webs
 - Lesson Learned: Leave ample room for construction tolerance
 - 7" hole for 4" or 5" duct
 - 1 7/8" hole for #6 rebar
 - Offsets unique for each girder - Double check all dims!

Design and Detailing Considerations

- Duct layout dimensions
 - Clearly distinguish between CL duct and c.g. strand (vertical offset)
 - Craft labor will measure from bottom cap form to bottom of duct, in fractional inches. Requires clear communication between design, fabrication & construction.

Design and Detailing Considerations

- Cap connection to columns
End Anchorages

- Ensure adequate real estate for anchor hardware and rebar spiral
- Ensure shape of jacking pockets provides adequate room for common jacks

Recommend locating X-frames 10' from face of cap

- Provides room for formwork
- Avoids large stresses in x-frames and/or lateral flange bending due to PT shortening (we want PT force in the cap, not the steel)

Concrete Mix for Pier Cap – dense reinforcement

- Use 6” to 8” slump and ¾” max aggregate
- Consider requiring super-plasticizer
- PT duct splices
 - Spec should specify heat shrink seal (don’t want duct tape!)
Feedback from Construction Eng

- Qualifications for supervisor of stressing operations
 - Spec is not clear how the qualifications of the “qualified individual” will be assessed/approved; suggest requiring PTI certification

Feedback from Construction Eng

- Surface treatment on pour backs
 - Suggest using a stainable or custom pigmented sealing product over the non-shrink grout
- Duct Grout
 - Include testing for chloride levels (ASTM C1152)
 - Consider adding specific content requirements for the contractor’s Grouting Plan

Closing
Parting Thoughts

- B-40-787 is currently under construction. Despite its complex geometry, parts are fitting together nicely.
- A collaborative approach can contribute to higher quality, more efficient designs.
- Feedback from the field is essential for improved designs moving forward.

Questions
Wisconsin Structures Asset Management System (WiSAMS)

Philip Meinel
Structures Asset Management Engineer
BOS – Development – Bridge Management Unit

Bridge Management History

- National issue
 - Early 1990s
- Goals:
 - Database for inventory and inspection data
 - Deterioration modeling
 - Network-level asset management/planning

Bridge Management History

- “Pooled-fund” software
 - Pros: Collaboration, eliminate duplication of effort
 - Cons: Can be slow developing…hard to please everyone

- WisDOT moves forward in parallel with BrM
 - HSIS database - 2003
 - WISAMS planning tool - 2015
Implementation

Policy

Data

Structure Asset Management

Implementation
• Wisconsin Structures Asset Management System (WiSAMS)

Policy – WisDOT Bridge Preservation Policy
• Bridge Preservation Policy Guide

Inventory and Condition Data
• Highway Structure Information System (HSIS)

HSI Database

• Major upgrade 2014
HSI Database

- Strive for accuracy
 - Inspections
 - Structure Inventory Data forms

Policy

- FHWA and MAP-21
 - No more Sufficiency Rating (SR) driven program
 - Emphasis on justification for infrastructure investment
 - Data- and performance-driven goals and approach

Policy

- WisDOT Bridge Preservation Policy Guide
 - First draft 2015
 - Bridge Maintenance Engineering Judgement & Research
 - Maximize the useful life of bridges in a cost-effective way
Policy

- Preventative Maintenance Agreement
 - Updated in 2016
 - Establishes which maintenance activities are eligible for federal funding
 - More work types are eligible for federal funding

Implementation

- WiSAMS – Wisconsin Structures Asset Management System
 - Systematic network-level analysis
 - Planning tool
WiSAMS

Where is it at?
- Coordination and main development in 2015
- Draft reports released to regions in April 2016
- Production version of reports to be released July 2016
- Exciting list of future refinements and new possibilities

How does it work?
- Data pull
- Work action analysis
- Deterioration model projection
- Recommended work actions

How does it work?
- Rule 4
 - If Substructure NBI < 3, and
 - Deck NBI < 3
 - Then, Replace Structure
- Rules increase in complexity as program runs through the rule sequence (currently about 60 rules)
WiSAMS

How does it work?
- Deterioration models
 - Rule 4

Inventory Data
- Pulled from HSI
- History of past work
- Planning
 - Help prioritize structure work within the region
WiSAMS

- **Do-nothing Scenario**
 - Condition Assessment Index (CAI)
 - See deterioration of CAI value
 - Planning
 - See negative effect of postponing important structure work

<table>
<thead>
<tr>
<th>Year</th>
<th>Age</th>
<th>CAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>62</td>
<td>71.8</td>
</tr>
<tr>
<td>2018</td>
<td>63</td>
<td>70.8</td>
</tr>
<tr>
<td>2019</td>
<td>64</td>
<td>69.6</td>
</tr>
<tr>
<td>2020</td>
<td>65</td>
<td>68.2</td>
</tr>
<tr>
<td>2021</td>
<td>66</td>
<td>66.8</td>
</tr>
<tr>
<td>2022</td>
<td>67</td>
<td>65.0</td>
</tr>
<tr>
<td>2023</td>
<td>68</td>
<td>64.5</td>
</tr>
<tr>
<td>2024</td>
<td>69</td>
<td>64.0</td>
</tr>
<tr>
<td>2025</td>
<td>70</td>
<td>63.5</td>
</tr>
</tbody>
</table>

WiSAMS

- **Improvement Scenario**
 - Primary and possible work to combine
 - Cost & life extension estimates
 - Planning
 - More information early in the process = better decisions

<table>
<thead>
<tr>
<th>Primary Work</th>
<th>Action</th>
<th>CAI</th>
<th>Cost</th>
<th>Life Extension (Yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay Deck - Thin Polymer</td>
<td>79.9</td>
<td>381</td>
<td>310</td>
<td>15</td>
</tr>
<tr>
<td>Paint (Complete)</td>
<td>70.8</td>
<td>110</td>
<td>1125</td>
<td>27</td>
</tr>
</tbody>
</table>

WiSAMS

- **Future Development**
 - Scoping report
 - Eligible work within existing project limits
 - Prioritization factors
 - Criticality, vulnerability, etc.
 - Element defect deterioration modeling
 - Ex. Delaminations (defect 1080) in deck elements
Questions?

Philip Meinel
Structures Asset Management Engineer
BOS – Development – Bridge Management Unit
Philip.Meinel@dot.wi.gov
608-261-2590
Chapter 45 Re-Organization
Structural Engineers Symposium
June 7, 2016

Why does Chapter 45 exist?
- Design isn’t rating, and vice versa
 - Some design considerations aren’t applicable for rating
 - Construction checks
 - Some rating considerations aren’t applicable for design
 - Deterioration
- In 2015 let projects (State and Local):
 - New bridge construction: 54%
 - Bridge rehabilitations: 46%

Purpose of this Effort
- Create better organization
 - Give everything a home
- Document current practice
 - Not much is new…but new to Bridge Manual
This Presentation

- Raise awareness on pending updates
- Give a sense for what to expect
 - Highlight some specific policies/procedures
- DRAFT, DRAFT, DRAFT!!!

Table of Contents

- Better organization
- Better flow
- Easier to find information on specific policies and procedures for your project

Table of Contents

- 45.1 Introduction
- 45.2 History of Load Rating
- 45.3 Load Rating Process
- 45.4 Load Rating Computer Software
- 45.5 General Requirements
- 45.6 Policy and Procedure – Superstructure
- 45.7 Policy and Procedure – Substructure
- 48.8 Policy and Procedure – Culverts
Table of Contents

- 45.9 Documentation and Submittals
- 45.10 Load Postings
- 45.11 Over-Weight Truck Permitting
- 45.12 Construction Loading

Applicability

- 45.1.2 Scope of Use
 - State and Local

45.1.2 Scope of Use

All requirements presented in this chapter are to be followed by WisDOT Bureau of Structures (BOS) staff as well as any consultants performing load rating or load posting work for WisDOT. BOS, local municipalities, and consultants working on their behalf should also follow the requirements of this chapter.

Primary Load Rating References

- 45.1.3 Governing Standards for Load Rating
 - AASHTO Manual for Bridge Evaluation (MBE)
 - Wisconsin Bridge Manual, Chapter 45
 - LRFD design code (LRFR)
 - 2002 Standard Spec (LFR)
When a Rating is Required

45.3.2.1 When a Load Rating is Required (Existing In-Service Bridge)

- Removal and replacement of existing overlay
- Thin epoxy overlay
- Quality control for the rating process
- Review inspection reports for deterioration

What to Load Rate

45.3.3 What Should be Rated
- Example: Steel trusses

Steel truss structures

Primary elements for rating include truss chord members, truss diagonal members, gusset plates connecting truss chord or truss diagonal members, floor beams (if present), and stringers (if present).

Secondary elements include splices, stringer-to-floorbeam connections (if present), floorbeam-to-truss connections (if present), lateral bracing, and any gusset plates used to connect secondary elements.

Load Rating Software

45.4.1 Rating Software Utilized by WisDOT

- Steel girder: SIMON, AASHTOWare BrR
- PS girder: In-house, BrR
- Slab: In-house, BrR
- Truss: BrR
- Other: MDX, CSI Bridge, LARSA, Conspan

Submittal requirements

- Typical
- Complex
Live Loads

- 45.5 General Requirements
- Live load placement
 - Truck on sidewalk
 - Striped lanes

Material Properties

- 45.5.2 Material Structural Properties
- Old information is still there
 - Rebar, concrete, PS strands, structural steel
 - See also AASHTO MBE
- Added information for timber
 - Superstructures (possibly)
 - Substructures (likely)

Policy - Superstructure

- 45.6 WisDOT Policy and Procedure - Superstructure
- Separated by superstructure type
- Example: PS girder superstructures (45.6.1.1)
 - Different girder spacings by span (1&4, 2&3)
 - With a "made-continuous" deck
Policy - Superstructure

- Example: steel girder superstructures (45.6.3.1)
 - Plastic analysis - M_r vs M_p
 - Curvature

Policy - Superstructure

- Example: steel truss superstructures (45.6.3.2)
 - Gusset plates

Policy - Substructure

- 45.7 WisDOT Policy and Procedure - Substructure
 - Separated by substructure type
 - Timber piles (45.7.1)
Load Posting (45.10)

- General clarification
 - What vehicles to use
 - LL factors
 - Distribution factor (multi vs. single)

- SHVs…

Construction Loading (45.12)

- Refer to Wisconsin Standard Specification
 - Section 108.7.3

- “If the engineer directs, submit stamped and signed copies of analyses and associated calculations performed by a professional engineer…”

- “If a PE’s analysis is required…”

Stay tuned…

- Raise awareness on pending updates

- Give a sense for what to expect
 - Highlight some specific policies/procedures

- 45.8 - Policy and Procedure – Culverts
Load Rating Culverts
Structural Engineers Symposium
June 7, 2016

Culverts:
Are Load Ratings Required?
- Wisconsin Bridge Manual:
 - Chapter 36 (Box Culverts), 36.1.2:
 - “Current WisDOT policy is to not rate box culverts. In the future, rating requirements will be introduced as AASHTO is updated to more thoroughly address box culverts.”
 - Chapter 45 (Bridge Rating):
 - Load Rating Summary Form not required for culverts
 - Insert “placeholder” ratings on plans

- FHWA requires documented load ratings for all bridges. But when is a culvert a bridge?

- NBIS-23 CFR 650 Subpart C:
 - Clear distance b/w openings less than half the smaller adjacent opening ≥ 20 feet
Culvert Rating Methods

- 2013 Interim Revisions to MBE
 - Article 6A.5.12 – Rating of RC Box Culverts (LRFR)

- 2016 Interim Revisions to MBE
 - Article 6B.7.1 assigns rating factors of Inventory HS20 & Operating HS33 for concrete culverts with...
 - Fill depths of 2.0 ft or greater with known details, or
 - With unknown components (such as culverts w/o plans)
 - ... if they have been carrying normal traffic for an appreciable period and are in fair or better condition.

Culvert Rating Methods

- MBE does not currently provide explicit direction for other types of culverts.

- Other references:
 - 2002 AASHTO Standard Specifications
 - Current AASHTO LRFD Specifications
 - National Corrugated Steel Pipe Association (NCSPA)
 - Design Data Sheet No. 19 (free download) – Load Rating and Structural Evaluation of In-Service, Corrugated Steel Structures

Ongoing Research

- NCHRP 15-54:
 - Proposed Modifications to AASHTO Culvert Load Rating Specifications
 - Goal Completion Date: July 2018
Ratings Based on Engineering Judgment & Field Evaluation

<table>
<thead>
<tr>
<th>RBI Given</th>
<th>Condition Rating</th>
<th>Overloads</th>
<th>Dynamic CH</th>
<th>Under Traffic Level(s)</th>
<th>Inventory Rating</th>
<th>Operating Rating</th>
<th>MVW</th>
<th>Load Rem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>n/a</td>
<td>n/a</td>
<td>HS20</td>
<td>HS33</td>
<td>190</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+/-</td>
<td>+/-</td>
<td>HS20</td>
<td>HS20</td>
<td>190</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x > 0.5</td>
<td>x > 0.5</td>
<td>HS20</td>
<td>HS20</td>
<td>190</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>+/-</td>
<td>HS20</td>
<td>HS20</td>
<td>190</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x > 0.5</td>
<td>x > 0.5</td>
<td>HS20</td>
<td>HS20</td>
<td>190</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>+/-</td>
<td>HS20</td>
<td>HS20</td>
<td>190</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>+/-</td>
<td>+/-</td>
<td>HS20</td>
<td>HS20</td>
<td>190</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exceptions:

- Postings and Inventory Ratings were not increased based on the new criteria.
- If designed via LRFD, ratings assumed to be Inventory RF1.00, Operating RF1.67, MVW 190k
- If calculated LRFR ratings provided on plans or in submitted calculations, they were not changed.

Exceptions:

- Alternate ratings could be determined through judgment and/or calculations with consideration of:
 - Condition
 - Age
 - Construction Type
 - Redundancy
 - Design Load
 - Live Load History
 - Similar Structures
 - ADTT
- Requires Load Rating Summary Form with written justification submitted by professional engineer.
Ratings for New Culverts

Concrete box culvert requirements:
- Accurate Load Ratings on Plans
- Calculation Submittal
- Per MBE, need not be rated if:
 - Single-span, 8 ft or more of fill
 - Multiple-span, depth of fill exceeds distance b/w faces of end walls

Pipe culvert requirements:
- Plans must include design vehicle (HL-93)
- Load Ratings may be calculated or assigned

Thank you!
Specialized Hauling Vehicle (SHV) Rating
Bria Lange
Development Bridge Rating Engineer
WisDOT – Bureau of Structures

What are SHVs?
- Dump trucks, construction vehicles, solid waste trucks, etc.
- Cause forces exceeding HS20 by up to 22 percent.
- Shorter bridges at higher risk for overstress.
- Four (4) single unit posting vehicles: SU4, SU5, SU6, SU7

Important dates
- December 31, 2017
 - All bridges with shortest span less than 200’
- December 31, 2022
 - All other bridges
SHV rating is NOT required when:

- LFRIA/ASR HS20 Operating RF > 1.2
- LRFR HL-93 Operating RF > 1.0
- LFRIA/ASR AASHTO legal truck Operating RF > 1.35
- LRFR AASHTO legal truck Operating RF > 1.35
 - SU4 and SU5 for all spans
 - SU6 for spans above 70 feet
 - SU 7 for spans above 90 feet

NRL screening tool:

Run Notional Rating Load (NRL):

- Operating RF > 1.0 — Need not to be rated for SHVs

SHV posting analysis

Run four (4) SHV vehicles:

- Operating RF > 1.0 — Posting not controlled by SHVs
Policy and Standards Updates

Dave Kiekbusch, P.E.
Supervisor – Automation, Policy and Standards Unit
WisDOT Bureau of Structures

Updating the Bridge Manual to be Compliant with AASHTO

- Design according to the Bridge Manual. A BOS approval prior to beginning design is required if wanting to implement AASHTO changes prior to Bridge Manual updates.
- 7th Edition, 2016 Interims
 - Published November, 2015
 - Probable Bridge Manual updates by January, 2017
 - Wind speed
 - Increased compressive stress limit for prestressed girders
 - Increase in Fatigue I load factor
 - Strut-and-tie methodology

AASHTO Updates (continued)

 - Likely published later this year, or early next year
 - Updates to Bridge Manual: July, 2017 and beyond!
 - Fairly substantial changes
 - Complete reorganization of Section 5: Concrete Structures
 - Elimination of the simplified method for determining shear resistance of prestressed concrete (no more Vci, Vcw)
 - Changes to bolt shear strength and friction values on the faying surfaces
 - New, simplified field splice design
Future AASHTO Updates

- Every 3 years (2020, 2023, etc.)
- No more interims
 - Meaning no more pink interim sheets!
- BOS is working on generating a work plan for current and future updates, especially with regards to the AASHTO updates being every 3 years
 - Bridge Manual text
 - Bridge Manual standard drawings and insert sheets
 - Bridge Manual design examples
 - In-house software
 - Understanding timeline of proprietary software updates

Aesthetics Policy – BM Chapter 4

- Bridge Manual policy discusses lettings and SMA’s before/after August 15, 2016
 - There may be a newer, sooner date
 - Non-geometric (e.g. rocks) formliner and stain are CSS
 - Staining
 - Initial staining cost can be fairly reasonable
 - Re-staining cost can be very high ($20+/SF when considering traffic control)
 - Plain concrete looks better in 20 years than poorly maintained stain

Aesthetics Policy (continued)

- Any railing/parapet in the Standards is not considered CSS
 - Maintenance of paint will be the responsibility of the community and should be defined in the SMA
- Not yet known the impact to:
 - Current projects under construction
 - Impending major/mega projects

- Stay tuned for updated policy, including a memo from Bill Dreher!
No matter the date, you can use either Type I...

Type II

Type III
AASHTO Manual for Assessing Safety Hardware - MASH 2016

- From Chapter 30 of Bridge Manual:
 Notice: All contracts with a letting date after December 31, 2019 must use bridge rails and transitions meeting the 2016 Edition of MASH criteria for new permanent installation and full replacement.
 BOS understands the urgency of getting approved parapets and railings available for your use!

Anchor bolt conflicts with reinforcement

Anchor bolt conflicts with reinforcement (continued)
Anchor bolt conflicts with reinforcement

- Layout reinforcement with thought to anchor bolt placement
- Provide 4" clear between anchor bolt and rebar
- 5" to 6" clear between bars for tremie and concrete vibration
- Detailing multiple layers is acceptable (use correct structural depth)
Automation, Policy and Standards (Updates)

James Luebke
Development Engineer – APS Unit
WisDOT Bureau of Structures

Piling - Usage

- 2012-2014 Costs Data
 - 75% H-Piles
 - 31% HP12x53
 - 30% HP10x42
 - 14% HP14x73
 - 25% CIP Piles
 - 9% 12 ⅜ x 0.375-Inch
 - 6% 10 ⅜ x 0.365-Inch
 - 10% other CIP Piles

Note:
- Wisconsin has relatively shallow depths with hard bearing layers. Generally making end bearing H-piles an attractive choice.
- Drilled shafts and spread footings represent very few projects, but are becoming more popular.

Note:
- H-piles have the potential to accommodate downdrag forces.

Piling - ASP 6 Updates/2017 Spec.

- 550.5.2 Piling
 - Adjust pay under the Piling Quantity Variation administrative item if total driven length of each size is less than 85 percent of, or more than 115 percent of the contract quantity

<table>
<thead>
<tr>
<th>Percent of Contract Length Driven</th>
<th>Pay Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 85</td>
<td>(85% contract length - driven length) x 20% unit price</td>
</tr>
<tr>
<td>> 115</td>
<td>(driven length - 115% contract length) x 5% unit price</td>
</tr>
</tbody>
</table>
Piling - PDA

- Pile Driving Analyzer (PDA)

- Advantages
 - More accurate method
 - Potential cost savings
 - Provides other useful information

- Limitations:
 - Time (24 hours) for analyses and feedback
 - Subcontractor
 - Savings vary

Note:
PDA has saved the department over $3 million over the past years

Structure Backfill - Quantities

- Issues:
 - Backfill payment disagreements (some cases 2 times)
 - Inconsistencies (bid items and graduations)
 - Units

- Design Considerations:
 - Show pay limits on plans
 - Add notes for payment (backfill pay limits only)
 - Better communicate quantities (roadway and structures)

Granular - Quantities

- Abutments, Walls, Culverts, etc.
- Show pay limits on plans
- Note contractor is responsible for excavation limits
Structure Backfill - Gradations

- Plan Inconsistencies:
 - Structural Backfill
 - Structural Backfill w/ 209.2.2 Gradations
 - Granular Backfill

- 2017 Specifications:
 - Structural Backfill Type A (New Gradations)
 - Structural Backfill Type B (Old Gradations)

Structure Backfill - Units

- 2017 Specifications:
 - Field Disagreements with "CY" Unit

- Added "Tons" Unit

- BOS Recommends "Tons"
 - Unless Region directs otherwise
 - Similar to Structural Approaches Slabs (Base Aggregate)
 - Assume 2.0 tons/CY conversion factor

MSE Walls

- Clearly identify wall payments

- Be careful with "Incidental to MSE Wall" for unknown subgrade improvements
Cofferdams
- Allows substructures to be poured in the dry
- Construction Protection
- Controls Sediment

Abutment – Poured Dry

Cofferdams

Pile Encased Pier – Tremie Poured (Protected)
Cofferdams

Site and structure conditions vary greatly
Ensure quality and minimize field disagreements
Designer Coordination
 - Regional personnel (environmental representative)
 - BOS
 - DNR and others as needed
Design Options
 - Cofferdam & Dewatering
 - Cofferdam (noted: underwater pour allowance)
 - No Cofferdam (noted: underwater pour allowance & Roadway covers erosion control measures)

Cofferdams

Pile Encased Piers:
 - Historically haven’t been required
 - Cofferdams are expensive
 - Better protection than open pile bent
 - Simple forming and pouring operations (compared to a spread footing)
Cofferdams – Plan Preparations

- Cofferdam vs. Excavation for Structures

- Underwater pours
 - Difficult to pour structural concrete underwater
 - Strength and long term durability
 - Recommend note to clarify allowances

- When to Include a Cofferdam bid item?
 - Substructure to be poured in the dry
 - Water depths greater than 5 ft (pile encased subs)
 - Other cases

Slab Pouring Sequence

- Std. 24.11

- Optional
 - Limits pour volume < 600 CY Urban (< 300 CY)
 - Acceptable Continuous Pour

- Required
 - Serviceability (minimize deck cracking and deflections)
 - Stresses (sequential pours)
 - Section properties (sequential stages)
PS Girder - Diaphragm
- Standards 19.34-19.38 Updates
- Length measured from girder ends (1/16)
- Revised notes (7/16)
 - 2017 Standard Spec updates
 - Connection requirements

Concrete Anchors
- Types: CIP, Adhesive, and Mechanical
- Design: New vs. Rehabilitation
- Type S or Type L?
- Field substitutions for Type S anchors
- Mechanical types (Screw vs. Expansion)
- Testing
Concrete Anchors
Mechanical Anchors
- Design Memo – 10/21/15 Moratorium
- Removed from 2017 Specifications
- Bridge Manual Updates – July 2016

Concrete Anchors
Adhesive Anchors
- Updated 2017 Specifications
 - Eliminated Type L and Type S
 - New Bid Items: Adhesive Anchors (Size)
 - Removed proof loads table
- Added CMM Guidance (5-15.7)
 - Added proof load tables
 - Noted railing attachment testing
- Bridge Manual Updates – July 2016

Concrete Anchors
Adhesive Anchors on Plans:
- MASONRY ANCHORS TYPE S X/X-INCH. MIN. EMBED XX" IN CONCRETE.
- ADHESIVE ANCHORS X/X-INCH. MIN. EMBED XX" IN CONCRETE.
Structural Approach Slabs

- **Usage:** All bridges with AADT > 3500
- **Not required on:** Buried structures, Culverts, and Rehabilitation Projects
- **Contact BOS for detail/pour modifications**

Structural Approach Slabs

- **Concrete Pavement Approaches:** See FDM 14-10-15 and SSD 13B2

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Other/Rehabilitation with AADT ≤ 1,500</th>
<th>B/C or Other Reason (1,501 ≤ AADT ≤ 3,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving Path</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Concrete</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Commercial Bridge Design & Rating Software
Andrew Smith, P.E.
Development Engineer
WisDOT – Bureau of Structures

[Diagram]

BOS Software

[Diagram]

Steel Design
Rating
Pier Design
Finite Element Analysis

[Diagram]
In-House Software

- Work Horse for Design and Rating of
 - Prestressed Girders
 - Steel I-Girders*
 - Concrete Slabs
 - Culverts
- Structure types make up ~ 90% State and Local Inventory

* Stepped girder
RC-Pier (LEAP Bridge)

- Multi-Columned and Hammerhead type pier design
- Spread footing or footing on piles

The Good...

- User friendly interface
- Useful for most common pier (multi-column on piles)

 ...
The Bad...

- Tedious to enter loads and modify
- Automated designs not constructible
- Problems with strut-and-tie modeling
- No pile uplift redistribution

Comments on RC-Pier or Substructure Design Software?
AASHTOWare BrR

Very Good...

- “Crowdfunded” software
- "R" for Rating
 - Supports LRFR, LFR, and ASD
- Multiple Structure Types: Common types + Timber, floorsystems, trusses, & more
- BrD version for Design – BOS early stages of evaluation
- 3D analysis capabilities

Comments on AASHTOWare or Other Rating Software?
Steel Design (R & Rating)

- Simon
 - Straight, Line-girder Analysis
 - Long history beginning with WisDOT
 - Many older steel ratings maintained in Simon
 - Shifting to BrR for steel rating
- MDX
 - Curved Girders
 - Steel I and Box (Tub) Girders
 - 2D Grid and PEB methods

The Good...

- Fast
- Prompted for information
- Design and Rating
 - LRFD/R and LFR
 - Curved Steel Structures
 - LL DFs calculated based on relative stiffness
 - Manageable output

The Bad...

- "Bad" as it relates to curved and highly skewed structures
- Simplified cross frame analysis
- Neglects I-girder warping stiffness
- Not rigorous enough for
 - Design of bracing members
 - Predicting deflections accurately
Comments on Simon, MDX or Other Steel Design Software?
CSI Bridge

- BOS preferred Advanced Finite Element Software
- Complicated structure design and/or rating
- Validation of results from other programs
- Avoid posting using refined analysis – see MBE 6A.3.3
- Special evaluations

CSI Bridge

The Good…

- Parametric Bridge Modeling, but also supports general modeling features
- Visually Appealing
- Selectable Data Output… directly to Excel
- Extensive Support (due to relationship to SAP)
- Steel Frame Design

CSI Bridge

The Bad…

- Parametric Bridge Modeling
- Automesh feature not great
- Design feature only works with linked model
- Rating feature only works with certain structure types
- Vehicle Response Component
- Files not backward compatible
- Cannot save file as older version
Comments on CSI Bridge or Other FEA Software?
Types of Movable Bridges

1. Simple Trunnion Bascule Bridge
 - Lawe Street, Appleton
 - Water Street, Milwaukee
 - South 1st Street, Milwaukee

Counterweight
Types of Movable Bridges

Scherzer Rolling Lift

- William Scherzer (January 27, 1858 – July 20, 1893) invented rolling lift bascule bridge (patent filed May 29, 1893, granted in December)
 - In 1897, Albert Scherzer founded Scherzer Rolling Lift Bridge Company (until 1936)
 - 1936 - Hazelet + Erdal
 - 1995 - Dames and Moore
 - 1999 - URS
 - 2014 - AECOM
Types of Movable Bridges

(c) SWING BRIDGE

CP over Kinnickinnick River, Milwaukee

Types of Movable Bridges

(S) RETRACTILE BRIDGE

Borden Ave, Queens, NY

South 1st St. Bascule Bridge
Steel Grid Deck – Half Fill

Concrete Decks

Sidewalk and Railing Systems
Pier Repairs

Counterweight Pit Wall
Spalled Pier Face
Bascula Pier Repair
Completed Repair

Fenders & Protection Cells

Existing Timber Fender
Existing Fender Pier
Rehabilitated Fender Pier

Counterweight & Span Balance

Counterweight
Existing Counterweight with Pocket Space
Shoring
Shore Unbalanced Leaves
Mechanical System

- Existing Machinery
- Cracked Bearing Cover
- Misaligned Brake

New Motors and Supports
New Speed Reducers & Brakes

Rehabilitate Open Gearing
Rehabilitate Bearings
Electrical System
- Dual Power Feeds
- Submarine Cables
- Relays & PLC
- Motors

Remote Operation
- Can operate locally or from KK bridge
- Upgrade communications and console at KK bridge

Traffic Gates
- “Motorist gets a lift in Sturgeon Bay”
Maintaining Navigation

Enhancements

- Solid surface bicycle accommodations
- Concrete stain
- Steel painting
- LED architectural lighting
- Bridge railing

Night Rendering
Questions?
Construction Topics
Bill Dreher
WisDOT Structures Design Chief

Piling
- H Piles for displacement piles
 - H piles tend to drive considerably longer than plan length
 - Work with Geotech engineer

Haunches
- Limit haunch heights – added DL
 - 54W & 72W
502.2.11 Crack and Surface Sealers
- Clarifies materials for crack, deck, and parapet sealing (from the approved products list)
502.2.11 Crack and Surface Sealers
- Crack Sealer?
 Low Viscosity Crack Sealers for Bridge Decks

- Protective surface treatment?
 Concrete Protective Surface Treatment

- Pigmented surface sealer?
 Cure & Seal Compounds for Non-trafficked Surfaces on Structural Masonry
 For use on the inside face and top of parapets
Specification Changes

- **505.5 Payment (Steel Reinforcement)**
 - Eliminates separate bid items for bridges, culverts, and retaining walls
 - 3 new bid items:
 - Bar Steel Reinforcement Structures
 - Bar Steel Reinforcement HS Structures
 - Bar Steel Reinforcement HS Coated Structures

- **513.4 Measurement & 513.5 Payment (Railing)**
 - All railing bid items now measured by linear foot
 - 2018: look for revisions to 513 including addition of galvanized and painted steel railings (Combination Railings Types "C1-C6")

SPV Reduction

- SPV's create variability in plans, specifications, and estimates
- SPV's make up approximately ¼ of contract dollars
- Affects bidding, plan review, and construction
- Develop standard bid items for SPV items that are utilized frequently
SPV Reduction

- BOS
 - SPV to STSP
 - 6 complete
 - 18 sent to BPD
 - 40 ready soon
 - SPV to Historic File
 - 29 complete
 - SPV to Standard Specification
 - 3 complete
 - 4 sent to BPD

Innovative Materials

- Self-Consolidating Concrete (SCC)
 - Eliminate problems associated with vibration
 - Less labor
 - Faster construction
 - Improved quality and durability
 - Higher strength
 - WHRP: prestressed concrete girders
 - Investigate material properties (modulus, shrinkage, creep)
 - Related to time-dependent characteristics, flexural stiffness change, prestress losses

- Polyester Polymer Concrete (PPC)
 - Mixture of aggregate, polyester polymer resin and initiator
 - Placed as a deck overlay using conventional concrete mixing and placement equipment
 - Thickness of ¾” to 1”
 - 4 hour cure time
 - Practically impermeable
 - Expected service life of 20-30 years
 - Estimated cost of placing PPC overlay is $12/SF
Innovative Materials
- Fiber Reinforced Polymer (FRP)
 - Composite material consisting of glass or carbon fibers in resin matrix
 - High strength and stiffness; lightweight and thin
 - Installed relatively quickly; minimizes impact on traffic
 - Corrosion protection (pier columns)
 - Strengthen existing structures (shear and flexure)
 - BM Chapter 40 – July release

Innovative Materials
- Internally Cured Concrete
 - Supplies additional curing water throughout the concrete mixture
 - Uses water absorbed in lightweight aggregate
 - “Curing concrete from the inside out”
 - Prevents early age shrinkage, increases hydration of cementitious materials
 - Lowers the permeability of the concrete

Lead Paint on Steel Girders
- Paint is not a hazardous waste until it is removed from the steel
- If contractor takes possession of steel with paint attached, they are responsible for safe handling and disposal
Lead Paint on Steel Girders

- If paint is removed for repainting, waste must go through DOT disposal process
- Always assume there is lead paint present
- Labeling and Disposal of Waste Material
- Portable Decontamination Facility
- Cleaning by blasting with grit: Negative Pressure Containment and Collection of Waste Materials
- Cleaning by hand or power tools: Containment and Collection of Waste Materials

Staging Considerations

- Staged construction joint locations on plans must allow working room for contractor/field staff
- Work with roadway designers to ensure adequate clearances are provided

Questions
Bridge Deck Construction

FHWA WisDOT Joint Program Review

Joe Balice, P.E.
Bridge Engineer

Review Purpose

• Determine if Standard Specifications are consistently administered throughout the Regions
• Identify best practices/opportunities for improvement

Team Members

• FHWA
• WisDOT
 – NE Region Construction
 – Bureau of Project Development
 – Bureau of Technical Services
 – SE Freeways/SE Region
 – Bureau of Structures: Design/Maintenance
Scope & Methodology

- 2015 Construction Season
 - Full-depth concrete bridge decks & Grade E overlays
 - Four Regions – NE, NC, SE, & SW
 - 22 State and local bridge projects
 - Compare program to neighboring states IL, IA
 - Contractor interviews

Some Observations

- Application of fogging/continuous, wet, curing is not timely – Grade A, HPC
- Inadequate length of finishing machine rails results in unnecessary hand finishing

Curing, Finishing Machine Rails

- HPC doesn’t mean “Hey, Postpone Curing!”
More Observations

- Roles & responsibilities aren’t well understood
 - Inspector Quality Assurance
 - Dry runs not performed in consistent manner
 - No written notification to proceed with deck pour
 - Contractor Quality Control
 - Ineffective contingency plans
 - Unacceptable burlap condition

Dry Runs, Poor Mix Designs, & Holy Burlap!

Observed Best Practices

- Use of stainless steel in decks for Mega/Major projects and complex structures
- Quality Management Plan
 - Material testing and sampling procedures
 - Verification testing program (QV)
 - Independent Assurance (IA)
Recommendations

• Need for training
 – Expand 1-day Bridge Construction Inspection course
 – Refer to WisDOT Construction Critical Inspection guidance
 – Update pre-pour meeting checklist in CMM
 – Inform industry of findings at Bridge Technical Committee meetings

FHWA Final Report mid-June

Take Aways

• Remember C.E.R.T.
 ✔ Cure decks....continuously, timely
 ✔ Extend rails
 ✔ Review contingency plans
 ✔ Take the training
Ancillary Structures
Ben Koeppen – BOS Inspection Engineer
Anthony Stakston – NC Ancillary Program Manager

Program Creation
- Transportation Asset Management Plan (TAM)
 - Required for Pavement and Bridge Structures per MAP-21
 - Each State has to submit a TAM to FHWA to be certified by October 1, 2016

Transportation Asset Management
- TAM is a data driven decision-making framework that includes: Risk, Condition, Prioritization, Network, and Operation effects.
- Mission Statement:
 - The aim is to apply the appropriate treatments and activities at the proper time resulting in extended service life at an optimal life cycle cost.
WisDOT Ancillary Program

- WisDOT took the federal mandate from MAP-21 and expanded it to other areas of operation.
- Asset Management Groups for WisDOT include:
 - Traffic Features (Pavement Marking, Traffic Control Signs, Light Poles, Ramp Meters, etc.)
 - Roadside Facilities (Rest Areas, Waysides, SWEFs, Park & Rides, etc.)
 - Roadway Features (Salt Storage Facilities, Ramp Gates, Culvert Pipes, Cable Barriers, Crash Cushions, etc.)
- Pavement & Bridge Structures
 - Ancillary Structures (Small Bridges, Retaining Walls, Noise Barriers, Overhead Signs, Signal Monotubes, and High Mast Lighting)

Ancillary Program Contacts

- Regional Ancillary Program Managers
 - NC Anthony Stakston
 - NE Brady Rades
 - NW Kyle Harris
 - SE Jason Zemke
 - SW-L David Bohnsack
 - SW-M Shiv Gupta
- Statewide Ancillary Inspection Program Manager
 - Travis McDaniel

Ancillary Program Contacts

- BOS Design Contacts
 - Wind Loaded Structures – Vu Thao
 - Sign Structures – Alex Crabtree, Steve Doocy
 - Noise Walls – Matt Coupar, Jon Resheske
 - Retaining Walls – Emily Kuehne
 - Box Culverts – Danielle DeTennis, Nick Rice

- And many other Bureau and Regional folks that work with these structures.
Ancillary Program Contacts

- Bureau of Structures
- Maintenance & Inspection
- Program Managers

URL:
http://www1.wisconsindot.gov/Pages/doing-bus/eng-consultants/cnslt-rsrcs/strct/inspection-pm.aspx

New Forms

- ID Request Form
 - Standard for all Regions

- Inventory Form(s)
 - Structure Specific (C, R & N, S & G, and L)
 - Updated Directions on Back of Form
 - Consultant Designed – Submit via Esubmit
 - Contractor Designed – Submit to BOS and Regional PM
New/Updated Forms

- Bureau of Structures
 - Maintenance & Inspection
 - Inventory & Rating Forms
- URL:
 http://www1.wisconsindot.gov/Pages/doing-bus/eng-consultants/cnsit-rsrces/strct/inv-forms.aspx

C-Structures (Small Bridges)

- Redefined per 2015 Policy Memo
- Small Bridge Structures require a unique structural design and have a clear opening of 20 ft. or less measured along the centerline of the roadway. This includes:
 - Bridge like structures (i.e. Deck Girders, Flat Slabs, etc.)
 - Box Culverts (with openings 20 ft² or greater)
 - Rigid Frames
 - Arches
 - Structures without a floor slab (including arches on footings)
 - Metal Bolted Plate Structures

- URL:
C-Structures

- Design Considerations
 - Box Culvert wing walls now require epoxy-coated rebar
 - Box Culverts shall be designed for a range of fill (not a single height) [See Bridge Manual 36.5]
 - This range should be detailed on the plans

Walls (Noise and Retaining)

- Noise Barriers are structures constructed to alter the normal noise travel at a site
- Retaining Walls are structures used to provide lateral resistance for a mass of earth or other material to accommodate a transportation facility

Walls (Noise and Retaining)

- Design Considerations
 - Noise Walls
 - If possible, designers should avoid attaching noise barrier to bridge railings [See Bridge Manual 30.3(4)]
 - Retaining Walls
 - Aesthetic and Constructability considerations with top of wall elevations and railings
 - Maintain awareness of right-of-way limits
Wind Loaded Structures

- Presentation by Vu Thao
Wind Loaded Structures

Vu Thao
Structural Design Engineer
SE Region Liaison
Wind Loaded Structures Program Leader
WisDOT / BOS

Wind Loaded Structures

- Sign Structures
 - Sign bridges, overhead sign supports and road side sign supports
- Traffic Signal Structures
 - Monotubes and signal supports (trombone arm)
- Lighting Structures
 - High mast lighting towers
 - Light poles
- Others
 - Camera poles
 - Ramp meter structures

General Commentary

- Design Manual Updates
 - WisDOT Bridge Manual
 - Chapter 39
 - Standard details
 - Standard insert sheets
 - FDM
 - Sections 11-55-20 – design guidance for sign structures
 - Section 15-1-20.10 – plan preparation for overhead sign supports
 - SDD plates for concrete bases
General Commentary

- Construction Specifications Updates
 - Standard Specifications
 - Repair SPV's – to be completed later this summer
 - Construction Materials Manual (CMM)
 - Construction Inspection Checklist for Ancillary Structures, See Attachment 1
 - Major implementation in the construction area
 - Utilizing Direct Tension Indicator (DTI) washer in place of turn-of-the-nut method for H.S. bolt field installation
 - Utilizing turn-of-the-nut installation method for anchor rod
 - Eliminate field ROCAP tests – data provided by H.S. bolt manufacturer only
 - Handling and storage

General Commentary

- Construction Resources
 - Installation Procedures
 - Form DT2322 – Ancillary Structures Pre-installation Verification Test of H.S. Bolts
 - Pre-installation test procedure
 - Installation steps
 - QC & QA requirements
 - Form DT2321 – Anchor Rod Installation Tensioning Record
 - Preparation and installation procedure
 - Verification Torque requirement
 - QC & QA requirements

General Commentary

- Construction Resource Cont’d
 - 2014 Training
 - All Region – DOT staffs and consultants
 - Contractors
Structure Plans (Structural Engineer)
- Structure Types
 - Sign bridges
 - Overhead sign supports
 - Multiple structures
 - Unique structures, structure Mounted, and non-standard foundations
 - DMS roadside sign supports
 - Foundation for high mast lighting tower
- Follow Bridge Design Process
 - Submittals
 - SSR, preliminary and final plans, design computations, PE stamp, structure inventory form, etc...

Contract Plan Development process
- Structure Plans Cont’d
 - Follow Bridge Design Process Cont’d.
 - Exceptions
 - Combined plan for multiple structures of the same type (WisDOT Bridge Manual 6.3.3.3)
 - SSR submittal timing – further discussion
 - BOS Review
 - Optional
 - Sign bridges – preliminary and final plans
 - Overhead sign supports – concentrate on preliminary plans to ensure structure type and size are properly selected

Contract Plan Development process
- Construction Details (Traffic Engineer)
 - Overhead sign supports (contractor design)
 - Standard overhead sign supports
 - Stand alone projects
 - Traffic monotubes (procurement process)
 - High mast lighting towers (contractor design?)
 - Other traffic signal supports and light poles (contractor supplied)
Highlight of Current Design Policy

- Design Specifications for Sign Structures
 - Standard Specifications for Highway Bridges, 17th Edition
 - ASD Design until LRFD conversion project is complete
 - Design Specifications to be noted on plans
 - Material specifications to be note on plans, see latest Section 39.3 of the WisDOT Bridge Manual

Highlight of Current Design Policy

- Design Specifications for Sign Structures Cont’d.
 - Fatigue Requirements
 - All wind loaded structures are designed with fatigue loads except the following structures
 - Four chord full span sign bridges carrying type I and II signs with truss type tower supported on concrete footings
 - Full span overhead sign supports on standard bases

Highlight of Current Design Policy

- Sign Structures and traffic monotubes
 - Utilizing Minnesota four chord steel angle truss configuration for overhead DMS sign bridges
 - DMS roadside sign supports to be shielded, and not supported on break-away
 - No flat washer between faying surface of mast arm connection plates
 - Do not detail construction joint on drilled shaft foundation. Consult BOS for further guidance on drilled shaft with wings.
 - Maximum drilled shaft length is limited to 20-ft.
LRFD Conversion

- BOS will be working on LRFD design conversion plan between late 2016 and early 2019
- Tentative efforts
 - Evaluate each structure type and configuration for economic engineering and selection
 - Provide design guidance for various types of structure
 - Re-write Chapter 39 of the WisDOT Bridge Manual
 - Develop new design software
 - Develop new design standards

THANK YOU
Research Updates
Bill Oliva
WisDOT Structures Development Chief

Our research explores and develops solutions to current and future transportation needs. Research results help shape the practices, policies, and standards used to develop and maintain Wisconsin’s transportation infrastructure.

Sources of research needs and opportunities
- BOS Initiatives (ABC, SCC, & others)
- Bridge Technical Committee – Industry
- Other DOT’s – Pooled Fund (common benefit)
- Structures community & partners
 - Academia
 - FHWA
 - AASHTO
 - TRB (Transportation Research Board)
Research Programs

- Sources of research development
 - Wisconsin Highway Research Program (WHRP)
 - NCHRP – Staff Participation
 - Center for Freight & Infrastructure Research and Education (CFIRE)
 - Transportation Pooled Fund Studies (TPF)
 - Research Programs (IBRD/IBRC/SHRP2) - FHWA

The objectives of this research were to explore the effectiveness and durability of thin polymer overlays with respect to restoring and protecting bridge decks, improving safety, and extending service life.

Research program was performed to study and compare the performance of nine different overlay systems.
The overlay system with an epoxy resin provided the best overall performance.

The polyester multi-lift overlay system delaminated from the concrete surface in all nine specimens utilizing that overlay type.

Goal is to eliminate reflective deck cracking in adjacent box-beam bridges.

Cracking at the shear key locations that reflects to the deck surface.

Provided recommendations on box-beam and shear key geometry, shear key grout, cast-in-place deck slab concrete, transverse post-tensioning.
The objective of this project is to simplify the overload permitting process executed by WisDOT engineers for complex bascule, arch and rigid frame bridges subjected to OSOW vehicles located on critical freight routes in Wisconsin.
A few requests of you

- As practitioners, we are interested in your ideas of needs and opportunity.
- We are also interested in your participation in providing guidance and oversight to structures research.
- Please consider providing ideas or getting involved with WHRP.

WHRP - Structures Technical Oversight Committee

- William Oliva - Chair – WisDOT
- Richard Marx - WisDOT
- Darren Stanke - Zenith Tech, Inc.
- David Pantzaff - Ayres & Associates
- Travis McDaniel - WisDOT
- Adam Dour – Lunda Construction Company
- Professor Mike Oliva - University of Wisconsin
- William Dreher – WisDOT
- Dave Klinkbech - WisDOT
- David Behnneck - WisDOT
- Professor Badiu Wen - Marquette Univ.
- Professor Al Ghorbanpoor - University of Wisconsin-Milwaukee
- Tony Shkurti - FNTB Corporation
- Joe Balice - FHWA Bridge Engineer – Wisconsin Division

Where to find the results of the research:

- http://wisconsindot.gov/Pages/about-wisdot/research/whrp.aspx
Accelerated Bridge Construction
James Luebke
Structures Development Engineer
WisDOT Bureau of Structures

ABC is bridge construction that uses innovative planning, design, materials, and construction methods in a safe and cost-effective manner to reduce the onsite construction time…

-FHWA
WisDOT ABC Projects
2005 - 2016

Overview
- Precast Piers
- GRS Abutments and PS Box Girders
- Bridge Moves - Slides

Precast Piers
- Past Usages:
 - 2013 – (1) Custom Application
 - 2014 – (1) Standardizing
 - 2015 – (3) Standardizing/Institutionalized
 - 2016 – (1) Standardizing/Institutionalized
Current Policy
Evaluation and plan preparations for accommodating a noted allowance for a precast pier option as indicated in this section is only required for I-39/90 Project bridges.

Policy Direction
Stronger guidance for statewide evaluation

Considerations
- Limitations
- Project value
- Geometric compatibility

Standard 7.05
Designer
To determine allowable precast elements

Contractor
Use precast segments at their discretion

In-House Tracking
Geometric Compatibility
Precast Piers - Opportunities

- IH 39/90
 - SHRP2 Projects
 - Numerous noted allowances
- Statewide Precast Piers
- Other Opportunities

ABC Costs – Precast Piers

GRS Abutments

- Updates
GRS Abutments

- Geosynthetic Reinforced Soil (GRS)
 - Reinforcement (Fabric)
 - Backfill
 - Facing Elements

GRS Abutments

- GRS History (2011 – Current)
 - FHWA - Every Day Counts (EDC1, EDC2, & EDC3)
 - Demonstration and AID Grants
 - Actively participating and promoting GRS Technology
 - Standard Details, specifications, and experience
 - New tool and not for every location

FHWA Efforts

- States Constructed GRS Abutments?
 - 5 States (2011)
 - 44+ States (2016)
 - 200+ GRS Structures
 - FHWA EDC 2011-2016
GRS Abutments - Chippewa Co.

Reduced Construction Time

Less Complex Construction Methods

GRS Abutments - Dodge Co.

2016 Construction (February Let)
- Two Single Span Bridges
- Four GRS Abutments
- Prestressed Box Girders
- Cofferdams

PS Box Girders
- Improved shear key
- Composite Details
GRS Abutments – Dodge Co.

Construction Schedule:
- Remove Existing Bridge
- Install Sheet Piling
- Excavate for GRS Ftg.
- Install GRS Ftg. & Abutment
- Install PS Box Girders
- Pour Deck

GRS Abutments – Dodge Co.

Schedule:
- B-14-216 - July
- B-14-217 – August
- Showcase
 - Beginning of August?

GRS Abutments – Dodge Co.

Showcase Tentative Agenda:
- General Overview
- Construction Considerations
- Project Breakdown
- Field Trip to Site
- Wrap-Up Discussion
GRS Abutments – Dodge Co.

Showcase Attendees:
- FHWA and WisDOT
- Consultant Designers
- Local Owners and others

GRS Abutments

WisDOT Future
- WisDOT Lessons Learned (Dodge County)
- Monitor Prestressed Box Girder Projects
- FHWA coordination and updates
- Continue to provide technical support
Accelerated Bridge Construction - Slides

Bill Oliva, P.E.
Structures Development Chief
WisDOT Bureau of Structures

All the benefits of other ABC technologies
Less traffic disruption
Greater safety for motorists and construction workers (shortened work-zone durations)
Greater quality and constructability
May reduced Right-of-Way (FEE) needs

Why Slide in bridge construction?

M-100 Bridge Slide in Poterville
Michigan

Permanent bridge deck will be constructed at the temporary location on temporary abutments
Two-way traffic will be maintained on the temporary road and on new bridge superstructure with temporary abutments
M-100 Bridge Slide

- Original Construction 1940
- Length of Structure 157'
- Width of Structure 40'

M-100 Bridge

Maintenance of traffic
M-100 Bridge

Existing 4-span 200 foot

Proposed 2-span 200 foot prestressed box beam

Demolish the bridge, that’ll be a one-weekend closure of I-96

M-50 Bridge over I-96 Bridge Slide Design – Michigan

- Existing 4-span 200 foot
- Proposed 2-span 200 foot prestressed box beam
- Demolish the bridge, that’ll be a one-weekend closure of I-96