WisDOT Structural Engineers Symposium
Program Agenda
May 22, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 a.m.</td>
<td>Registration</td>
</tr>
<tr>
<td>8:30 a.m.</td>
<td>Welcome & BOS Director’s Perspective – Scot Becker</td>
</tr>
<tr>
<td>8:45 a.m.</td>
<td>Contract Plans & Fabrication Shop Drawing Review Changes – Najoua Ksontini, Kristin Revello</td>
</tr>
<tr>
<td>9:10 a.m.</td>
<td>Wind Loaded Structures Initiative – Andrew Smith, Mark Maday (CH2M/Jacobs)</td>
</tr>
<tr>
<td>9:30 a.m.</td>
<td>Removing Old Structure Over Waterways – Bill Dreher</td>
</tr>
<tr>
<td>9:45 a.m.</td>
<td>Small Group (table) Discussion – All</td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>Timeliness of Consultant Plan Submittals – Najoua Ksontini</td>
</tr>
<tr>
<td>10:15 a.m.</td>
<td>Break (Beverages and Snacks)</td>
</tr>
<tr>
<td>10:30 a.m.</td>
<td>Automation, Policy, and Standards – Dave Kiekbusch, James Luebke</td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>Complex Structures – Andrew Smith</td>
</tr>
<tr>
<td>11:30 a.m.</td>
<td>SCC Prestressed Girders – Steve Doocy</td>
</tr>
<tr>
<td>11:50 a.m.</td>
<td>Lunch</td>
</tr>
<tr>
<td>12:00 p.m.</td>
<td>Misc. Geotechnical/Structural Topics - Jeff Horsfall (Bureau of Tech Services)</td>
</tr>
<tr>
<td>12:30 p.m.</td>
<td>BOS Overlay Policy, Marquette Interchange PPC Overlays – James Luebke, Jason Sadowski (Michael Baker)</td>
</tr>
<tr>
<td>1:00 p.m.</td>
<td>3D Design & Modeling, BIM for Structures – Danielle DeTennis, Adam Swierczek</td>
</tr>
<tr>
<td>1:30 p.m.</td>
<td>I94 N-S – Frank Pritzlaff (SE Region PM), Aaron Bonk</td>
</tr>
<tr>
<td>2:00 p.m.</td>
<td>Strengthening Program for Local Load Posted Bridges – Alex Pence, Josh Dietsche</td>
</tr>
<tr>
<td>2:30 p.m.</td>
<td>Small Group (table) Discussion – All</td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td>Interactive Survey & Q/A</td>
</tr>
<tr>
<td>3:30 p.m.</td>
<td>Adjourn</td>
</tr>
</tbody>
</table>

Conference Location: University of Wisconsin-Madison Union South
1308 West Dayton Street
Madison, WI 53715

For today’s presentations, agenda, and proof of attendance, please visit:
http://wisconsindot.gov/Pages/doing-bus/eng-consultants/cnslt-rsrces/strct/research.aspx
Welcome - 2018 Symposium

Scot Becker
BOS Director, State Bridge Engineer

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

Perspective Over View

• Welcome
• Agenda Highlight
 • What's new!
 • Continuing Progress

Todays Discussion - Focus Interactive

• Third Symposium – 2014,16,18

• Spend Time Today Discussing Issues, Clarifying Policies, Sharing Innovations, Questions or Concerns
What's New – Fabrication Library

- New Fabrication Improved SharePoint Library Includes Ancillary Structures

What's New – SCC in Prestress Girders

- Self-Consolidating Concrete (SCC) for Prestressed Bridge Girders
- Moving Forward with SCC

What's New – Polyester Polymer Concrete (PPC) Overlay

...
What's New - LRFD Wind Loaded Structures

What's New – St. Croix Bridge

Highlight – Continued Progress

- Structures Asset Management
 - Program Generated by Element Condition
 - Emphasis on Preservation
 - Emphasis on Extending Serviceable Life
What's New – Local Bridge Program Changes

- Local Bridge Program Changes
- Fed State Money Swap
- Replace in Kind Policy
- Minimum Standards Based on Engineering Evaluation

What's New - Local Bridge Strengthening Program

Closing Request

I will repeat myself from 2016 if you recall 😊

- We want your Feedback and Input
- BOS - How are we doing?
- 4th Symposium?
- Innovations?
- Issues?
Goals of presentation

- Discuss current plan submittal review process for various types of submittals and various types of structures
- Discuss changes to review processes for various types of submittals and various types of structures

Stream Crossing and Grade Separation Preliminary Structure Plans

- No review process changes
 - All preliminary plan submittals are reviewed with focus on providing concurrence on Type, Size, and Location
 - Reviewers may provide comments on details contained on the preliminary plans
 - Contact BOS if you need input regarding proposed unusual and non-standard details
Stream Crossing and Grade Separation Final Structure Plans

• No review process changes
 ▪ BOS will perform a Quality Assurance review on a select number of final structure plan submittals
 ▪ Focus of BOS QA review is on structural design adequacy and load capacity
 ▪ Reviewers may provide comments on structural details, constructability and biddability
 ▪ Contact BOS if you need input regarding proposed unusual and non-standard details

Rehabilitation Preliminary Structure Plans

• Review Process changes:
 ▪ BOS will continue to provide comments on preliminary plans for the more complex rehabilitation work such as superstructure replacement, re-decks and joint replacement
 ▪ BOS may not provide comments on preliminary plans for certain types of rehabilitation work such as painting and Polymer overlays
 ▪ Designers will be notified if comments will not be provided

Rehabilitation Final Structure Plans

• Review Process changes:
 ▪ BOS will continue to perform Quality Assurance reviews on a select number of final structure plan submittals for rehabilitation work
 ▪ Contact BOS early if you need input regarding unusual and non-standard rehabilitation structural details
Retaining Wall Preliminary and Final Structure Plans

• Review Process changes:
 - BOS will provide comments only on a select number of retaining wall preliminary and final structure plans
 - Focus will be on non-proprietary retaining walls, plans with unusual or non-standard details and complex geometry
 - Designers will be notified if comments on preliminary plans will not be provided

Sign Structure Preliminary and Final Plans

• Review Process changes:
 - BOS will provide comments only on a select number of sign structure preliminary and final plans
 - Contact BOS if you need input regarding non-standard sign structure details

Questions?
Presentation Goals

• To provide background on the Bureau of Structures Fabrication Initiatives
• Discuss the outcomes of each Fabrication Initiative, and highlight upcoming changes
• Address how these changes may affect you as designers of structures with fabricated items

Bureau of Structures Fabrication Initiatives

Overview

Tier 1
• Began Summer 2014
• Area of Focus
 • Steel Fabrication
• Creation of BOS Teams (Steering and Oversight)
• URS

Tier 2
• Began Winter 2017
• 4 Areas of Focus
 • Prestressed Concrete Girders
 • Retaining Walls
 • Sign Structures
 • Secondary Fabrication Items
• Creation of BOS Teams
• Michael Baker International
Bureau of Structures Fabrication Initiatives

Overview

• Interviews and Surveys were conducted regarding current processes, areas that worked well, and areas where improvements could be made
 - BOS staff
 - WisDOT region staff
 - Consultants
 - Other DOT specifications and processes were researched

• Other DOT specifications and processes were researched

Tier 1 Outcomes

• The creation of the Contractor Certificate of Shop Drawing QC Form, DT 2333 for primary steel members.
 - Checklist based on Section 4 AASHTO/NSBA G1.1 Checklist Items
 - A P.E. is required to review the shop drawing and stamp the form, and a Contractor must sign certifying the review has occurred.

• The creation of the SharePoint Fabrication Library to receive steel shop drawings and fabrication documents

• The requirement of weekly Fabricator Progress Reports for primary steel members

• A reduction in the percentage of steel shop drawing reviews performed
WisDOT Fabrication Quality Assurance Program

Program Goal: To consistently enforce submittal of required documentation and enact Quality Assurance

- Provide electronic submittal requirements for fabrication documents
- Provide guidance for roles and responsibilities for all parties involved
- Ensure department quality assurance and contractor quality control roles
- Modify standard specifications and CMM for clarity and enforcement
- Clarify approved fabricator requirements

The WisDOT Fabrication Library Expansion

The Goal: A single comprehensive library for the submittal of all fabrication documents, accessible to all parties (as appropriate).

In March 2018, the new Fabrication Library went live for our users.

For December 2018 Let and beyond, this will be the mechanism to receive all structure shop drawings and fabrication documents.
Roles and Responsibilities - Reference Guide

Fabrication QA Program
Reference Guide

- Definitions
- Roles & Responsibilities
- SFU Contact Information
- Required Documentation by Structure Type
- Standard Specification References

Is available on the fabrication and Quality Assurance website, and will be referenced in the CMM

QA vs QC

- Although the Department intended to perform QA review of shop drawings, the reality was that we were performing QC in many areas:
 - We reviewed 100% of shop drawings
 - In some cases we were correcting errors, and essentially performing QC for the fabricator and contractor
- The decision was made to realign our processes with QA
 - Reducing the percentages of Department review
 - Look to place the responsibility of shop drawing QC on the contractor and fabricator

The Bureau of Structures has notified WTBA that we will no longer be reviewing all shop drawings.
- The percentages of review, and criteria of selection for each type of shop drawing will be determined by BOS.
- Project staff will be notified when a shop drawing has been selected for review.
- In the Fabrication Library, there is a shop drawing status flag to indicate whether the shop drawing has been selected for review, if it was reviewed and it needs to be resubmitted, or if it has been accepted.
Contractor Certificate of Shop Drawing QC Draft Forms

- Sign Structures and Overhead
- Sign Supports
- Retaining Walls
- Fabricated Bridge Components
- Prestressed Concrete Girders
 - Mesh substitutions are still being evaluated

Check lists are based on commonly found errors on shop drawings.

Modified WisDOT Approved Fabricator List

2018 Standard Specification List: Bridge Metal Secondary Fabrication Item

- Railings
- Bearings
- Expansion Devices
- Structural Steel Diaphragms
New WisDOT Approved Fabricator Lists
Effective with the 2019 Standard Specification

- WisDOT will be creating 2 new Approved Fabricator Lists
 - Primary Steel Members
 - Sign Structures and Overhead Sign Supports
- In order to fabricate these items, the fabricator will need to be on the appropriate APL prior to the Let.
- Fabricator requirements to be added to these lists and the application & renewal process will be clearly defined for all parties.

Fabrication Progress Reports

- The weekly requirement of Fabrication Progress Reports submitted to the Fabrication Library for prestressed girders, fabricated bridge components, sign structures, and overhead sign supports

Upcoming Changes to Retaining Wall SPVs

For the August 1st 2018 PSE

- Changes will include updates to retaining wall system preapproval process information
- Added requirement of Contractor Certificate of Shop Drawing QC for retaining walls
- Adding requirement for Fabrication Library Submittal
- Updated SPVs to be available prior to June 1st for inclusion in August 2018 PSE projects
2019 Standard Specification
Upcoming Changes

• Working to remove cross-referencing across the structure sections, eliminating conflicts
 • Unique requirements (Such as DT2333 for primary steel members) will be included in the specific structure section
 • Under 105.2 Supplemental Plans and Drawings, adding guidance regarding Fabrication Library Submittal Requirements
• Added requirement of Contractor Certificate of Shop Drawing QC
• Requirement of weekly Fabrication Progress Reports

2019 Standard Specification
Upcoming Changes

• Added clarification in 506.3.1 regarding steel primary members
• Renamed secondary fabricated items “fabricated bridge components” and revised definition
• Requirements to use an approved fabricator from the Department’s APL for primary members, sign structures, and overhead sign supports

The Importance of Designer QA/QC
“The Big Picture”

• Consultant Review Unit
 • Performs QA reviews on a percentage of the design plans we receive
• Structural Metals and Fabrication QA Inspection Unit
 • Performs QA reviews on a percentage of the shop drawings we receive

There is a possibility that your design plan and the associated shop drawings may not be reviewed. Any plan errors may not be caught.
The Importance of Designer QA/QC

"The Big Picture"

• RFIs will be the mechanism for the Contractor and Fabricator to clarify possible issues with design plans
• There is a potential increased chance of Errors and Omissions
• Keeping this in mind when preparing design plans, and following your firm’s QA/QC plan will help you avoid any potential issues

Questions?
Wind Loaded Structures Initiative

Andrew Smith/WisDOT
Mark Maday/Jacobs

WisDOT Structural Engineers Symposium
May 22, 2018

Wind Loaded Structure Initiative

• Primary Purpose
 – Transition to LRFD

• While we are at it
 – Process improvement

• Current Challenges
 – Multiple processes but one design spec.
 – Getting plans in HSI

Wind Loaded Structure Initiative

• Wind Loaded Structures Include:
 – Sign Bridge, Cantilever and Butterfly Sign Structures
 – Overhead Sign Supports
 – High Mast Lighting
 – Associated Support Foundations and Anchorages

• Phase 1 - Evaluation:
 – Evaluating Process, Policy, Standards, and Specifications
 – Develop Recommendations for Improvements and Updates
Wind Loaded Structure Initiative
Phase 2 - Implementation

Goals and Anticipated Work Products:
• Clarified / Updated Process
• Increased Uniformity / Consistency
• Transition to LRFD Design
• Design Manual Updates (BM, FDM, CIM)
• Specification Updates (Standard Specifications and / or STSPs)

Team
WisDOT Work Group:
Andrew Smith – PM Andrew.Smith@dot.wi.gov
Alexander Crabtree – Design Alexander.Crabtree@dot.wi.gov
Steve Doocy – Design Steve.Doocy@dot.wi.gov
Jeff Horsfall – Geotechnical Jeffrey.Horsfall@dot.wi.gov
David Nelson – Development David1.Nelson@dot.wi.gov
William Oliva – Oversight William.Oliva@dot.wi.gov
Carla Principe – Fabrication Carla.Principe@dot.wi.gov
Matt Rauch – Traffic Ops Matt.Rauch@dot.wi.gov
Vu Thao – Design Vu.Thao@dot.wi.gov

Team
Jacobs:
Mark Maday Mark.Maday@Jacobs.com
Karl Schmid Karl.Schmid@Jacobs.com
Schedule
Kick-Off: June 2017
Phase 1 Completion: August 2017
• Evaluation of Current Process
• Stakeholder Outreach
• Evaluation of Other DOT Processes
• Develop Recommendations:
 – Improving Uniformity
 – General Standards Updates
 – Transition to LRFD Design
 – Specification Updates
 – Design Software

Schedule
Phase 2 Completion: June 2019
• Design Manual Updates
• Revised Standard Detail Drawings and Insert Sheets
• Standard Specifications, STSP Updates
• Outreach and Training Presentations

Tasks & Progress to Date
Review of Current Process:
• Solicited Input from All WisDOT Regions and Central Office
• Identify What Works; Best Practices
• Identify Areas for Improvement
Tasks & Progress to Date

Stakeholder Outreach:
• Solicited Input From:
 Sign Structures Suppliers / Fabricators
 Contractors
 DOT Designers (BOS)
 Consultant Designers

Tasks & Progress to Date

Review of Other State DOT's:
Received Input from 10 State DOTs:
Florida, Indiana, Iowa, Michigan, Utah, Texas
North Dakota, Michigan, Virginia, Washington
Three States Using LRFD for Sign Structure Design:
Minnesota, Florida, Washington

Tasks & Progress to Date

Initial Recommendations:
Revised / Improved Process
• Clarify Process
• Emphasize Follow Through / Completing All Steps
Improving Uniformity
• Clarification / Concise Direction in BM
• Consistency Between Manuals, Standards and Specifications
General Standard Updates
• Standard for Each Structure Type
• Include Foundations
Current / Upcoming Activity

Recommendations:
• Transition to LRFD Design
• Specification Updates
• Design Software

Phase 1 Completion - Summary Report

It’s Not Too Late!
We Welcome Your Input...
• Any Ideas, Comments or Suggestions?
• Contact Andrew or Any Member of the Work Group

Andrew Smith / WisDOT
Office: (608) 266-0989
Email: Andrew.Smith@dot.wi.gov

Mark Maday / Jacobs
Cell: (414) 975-6129
Email: Mark.Maday@Jacobs.com

Thank You
Questions?
Removing Old Structure Over Waterway

Bill Dreher, P.E.
Structures Design Chief

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI

May 22, 2018

What are the options?
What are the differences?
What are the costs?
How do I choose?

What are the options?
- Standard Specification
- + 3 choices with varying levels of restrictions
Standard Specification

- Section 203 Removing Old Culverts and Bridges
 - 203.3.2.2 Removal Operations:
 Minimize debris falling onto water surfaces and wetlands as the contract specifies in 107.18 or in the special provisions.

Standard Specification

- Section 107 Legal Relations and Responsibility to the Public
 - 107.18 Environmental Protection:
 Take all necessary precautions to prevent pollution of streams...
 Conduct work operations to avoid or minimize erosion of streams...
 Remove existing structures in large pieces, minimizing the number of smaller pieces that drop into the water. Remove all steel and all concrete pieces or other debris larger than 5 inches.

Standardized Special Provisions (STSP’s)

- Designer should coordinate with regional environmental coordinator and DNR to reach consensus on which special to use for the removal.
Standardized Special Provisions (STSP’s)

• The lowest level of care is for situations where there is little choice but to drop the structure into the waterway.
• The highest level of care requires a debris capture system to prevent virtually all debris from falling into the waterway.

STSP 203-015: Removing Old Structure Over Waterway

• Use this special provision where it is not possible to remove the structure without dropping it, or a portion of it, into a waterway or wetland; and that waterway or wetland is not highly environmentally sensitive.

STSP 203-015: Removing Old Structure Over Waterway

• This special provision is typically appropriate for removing the following structure types:
 • Slab spans, voided slabs
 • Cast-in-place girder bridges
 • Earth-filled bridges
 • Some large truss bridges
Standardized Special Provisions (STSP’s)

- **STSP 203-015: Removing Old Structure Over Waterway**
 - Remove all reinforcing steel, all concrete, and all other debris that falls into the waterway or wetland.
 - Remove large pieces of the structure within 36 hours.
 - The contractor may leave limited amounts of small concrete pieces scattered over the waterway floor or wetland only if the engineer allows.

- **STSP 203-020: Removing Old Structure Over Waterway With Minimal Debris**
 - Use this special provision where it is possible to remove the structure without dropping it, or a portion of it, into a waterway or wetland, and that waterway or wetland is not highly environmentally sensitive.

- **STSP 203-020: Removing Old Structure Over Waterway With Minimal Debris**
 - This special provision is typically appropriate for removing all structure types except for the following:
 - Slab spans, voided slabs
 - Cast-in-place girder bridges
 - Earth-filled bridges
 - Some large truss bridges
Standardized Special Provisions (STSP’s)

• STSP 203-020: Removing Old Structure Over Waterway With Minimal Debris
 • This special provision will likely be used for most removals.

 • Remove the existing structure in large sections.
 • Prevent all large pieces and minimize the number of small pieces from entering the waterway or wetland.

• STSP 203-020: Removing Old Structure Over Waterway With Minimal Debris
 • Remove all reinforcing steel, all concrete, and all other debris that falls into the waterway or wetland.
 • The contractor may leave limited amounts of small concrete pieces scattered over the waterway floor or wetland only if the engineer allows.
Standardized Special Provisions (STSP’s)

- STSP 203-025: Removing Old Structure Over Waterway With Debris Capture System
 - Consider using this special provision where a waterway or wetland is highly environmentally sensitive.
 - Consult with the department’s regional environmental coordinator to determine if the affected waterway or wetland is highly environmentally sensitive and if this special provision is appropriate.

- STSP 203-025: Removing Old Structure Over Waterway With Debris Capture System
 - Remove the existing structure in large sections.
 - Due to the very sensitive nature of the waterway name, provide a debris capture and containment system that removes and controls all debris, including fine particles and slurry, from entering the waterway or wetland.
How Do I Choose?

- Review all 3 specials and coordinate with regional environmental coordinator and DNR to reach consensus on which special to use for the removal.
- The special provision language is intended to be a reasonable starting point; however, it may need to be expanded to address additional DNR or other concerns.

How Do I Choose?

- For unique or difficult removals, consult with the contracting community to assess costs and the feasibility of a particular removal technique.
- Consult with the department’s regional environmental coordinator to determine if the affected waterway or wetland is highly environmentally sensitive and which special provision is appropriate.
- Don’t make the decision w/o good information!
Timeliness of Consultant Plan Submittals

Najoua Ksontini, P.E.
Consultant Review and Hydraulics Supervisor

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

BOS Plan Submittal Timeline Expectations

• Preliminary Structure Plans:
 ▪ Project schedule should allow for a minimum of 60 days for BOS review. Adequate time for comment resolution, design, and final plan preparation prior to final plan submittal will determine the date that preliminary plans need to be submitted.

 ▪ For the purpose of tracking, BOS considers preliminary plan submittals to be late if received less than 3 months prior to the PS&E date.

• Final Structure Plans:
 ▪ BOS requires that final structure plans, structural computations, and other pertinent documents are submitted 2 months prior to project PS&E date.
Trends in Preliminary Plans Submittal Timeliness

- Includes all types of structures: bridges, culverts, retaining walls, and sign structures.

<table>
<thead>
<tr>
<th>Year</th>
<th>Late</th>
<th>On Time</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>47</td>
<td>233</td>
<td>280</td>
</tr>
<tr>
<td>2013</td>
<td>106</td>
<td>354</td>
<td>460</td>
</tr>
<tr>
<td>2014</td>
<td>64</td>
<td>348</td>
<td>412</td>
</tr>
<tr>
<td>2015</td>
<td>31</td>
<td>288</td>
<td>319</td>
</tr>
<tr>
<td>2016</td>
<td>33</td>
<td>288</td>
<td>321</td>
</tr>
<tr>
<td>2017</td>
<td>72</td>
<td>441</td>
<td>513</td>
</tr>
</tbody>
</table>

On Time vs. Late:
- Late = received less than 3 months prior to PSE date

Trends in Final Structure Plans Submittal Timeliness

- Includes all types of structures: bridges, culverts, retaining walls, and sign structures

<table>
<thead>
<tr>
<th>Year</th>
<th>Late</th>
<th>On Time</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>117</td>
<td>163</td>
<td>280</td>
</tr>
<tr>
<td>2013</td>
<td>105</td>
<td>355</td>
<td>460</td>
</tr>
<tr>
<td>2014</td>
<td>119</td>
<td>293</td>
<td>412</td>
</tr>
<tr>
<td>2015</td>
<td>54</td>
<td>265</td>
<td>319</td>
</tr>
<tr>
<td>2016</td>
<td>74</td>
<td>247</td>
<td>321</td>
</tr>
<tr>
<td>2017</td>
<td>166</td>
<td>347</td>
<td>513</td>
</tr>
</tbody>
</table>

On Time vs. Late:
- Late = received less than 2 months prior to PSE date

Late Final Plan Submittals by Structure Type

- In 2017, about 166 late final structure plan submittals.
- Evenly divided:
 - new bridges or culverts.
 - rehabilitation bridges or culverts.
 - retaining walls.
 - sign structures.

- Bridges/Rehab, 38
- Bridges/New, 29
- Culverts/New, 11
- Culverts/Rehab, 2
- Retaining/Noise Walls, 44
- Sign Structures, 42
- Total Late Submittals in 2017: 166
Why are past-deadline final plan submittals concerning to BOS

• We have a limited number of reviewers
• We have limited review time
• When plans are late, we have less time to work through issues with the designer
• We would like to provide input and QA reviews to as many submittals as possible
• Number of final structure plan submittals average about 120 per PS&E

On-Time Plan Submittal Improvement Form

• In March 2016, BOS implemented a new policy requiring designers to submit a form documenting the reasons for past-deadline final structure plan submittals.
• BOS categorized the reasons for past-deadline final structure plan submittals.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval/Permit/Decision Delay</td>
<td>32</td>
<td>19%</td>
</tr>
<tr>
<td>Design Issue with New Design Information</td>
<td>12</td>
<td>7%</td>
</tr>
<tr>
<td>Accelerated Schedule/Scope Change</td>
<td>10</td>
<td>6%</td>
</tr>
<tr>
<td>Roadway Design/Construction Changes</td>
<td>8</td>
<td>5%</td>
</tr>
<tr>
<td>Designer Delays</td>
<td>14</td>
<td>8%</td>
</tr>
</tbody>
</table>

Total of 166 late submittals in 2017
Next Steps

- Designers: Please continue to communicate with BOS when project schedules are accelerated or advanced.
- BOS: Will discuss with Regional offices impact of accelerated schedules on structure review timelines.

Questions?
New standards in past two years

- 9.01 – Structure Backfill Limits and Notes
- 9.02 – Structure Backfill Limits and Notes 2
- 9.03 – Wing Fill Sections at Wing Tips
- 13.08 – Pier Cap Reinforcement Details
- 14.11 – MSE Wall – Panel and Block Facing
- 14.12 – MSE Wall – Wire Faced 1
- 14.13 – MSE Wall – Wire Faced 2
- 17.03 – Edge of Deck Flashing
- 27.10 – Steel Expansion Bearing Details
- 30.22 – Conduit Details and Notes
- 40.40 & 40.41 – Moved A4 abutments to Bridge Rehabilitation

Notable Bridge Manual text changes

- Extensive rewrite of Chapter 45 – Bridge Rating (January 2017)
 - Entire chapter rewritten
 - More logical order
 - Better guidance for when and how to load rate bridges
 - Four new rating examples for LFR
 - Reinforced Concrete Slab
 - Single Span Prestressed Girder
 - Two Span Prestressed Girder
 - Two Span Steel Girder
Bridge Manual text changes (continued)

AASHTO 3.8 – Wind Load: WL and WS

• Extensive update to Chapter 13 – Piers, including examples (July 2017)
 • Wind speeds for various limit states
 • Wind pressure is a function of the wind speed, exposure condition and bridge elevation above the ground or water surface
 • WisDOT policy items to simplify wind loading for most bridges

MASH 2016

Required for all lets after December 31, 2019

• 42SS parapet required for:
 • All Interstate structures
 • All STH and USH with a posted speed ≥ 45 mph
• Railings Type ‘M’ and Types ‘NY 3’ and ‘NY 4’ are TL-2
 • Good for most local and collector roads with design speeds ≤ 45 mph
• Trying to get Type ‘M’ and Types ‘NY 3’ and ‘NY 4’ to TL-3
 • If TL-3 can’t be achieved, then a new railing (could be TL-4)
Bridge Maintenance and Bureau of Project Development Coordination

- Maintenance Items
- Erosion Issues
- Design Considerations

Bridge Maintenance Coordination

- Discuss Issues
 - Wing Wall Grading
 - Slope Paving Repairs
 - Approach Details
 - Design Considerations
BPD Coordination

- Curb Usage
 - Recommended Increased Usage

BPD Coordination

- Drainage Features
 - Curb Details
 - Flumes (efficiencies, location, etc.)
 - Alternative drainage features

BPD Coordination

- Approach Details
 - Construction Details
 - Site Specific Requirements
Parapets

- Fillet Detail
 - Drainage
 - Damage

Past Detail

Updated Detail

- Embankment Fills
 - Drainage
 - Damage

Wing Length

- Past Issues
 - Insufficient Embankment Fills
 - Beam Guard Embedment
 - Erosion Wing Tips
Wing Length

• Updates
 • 2:1 Slope + 2.0 ft (roundup)
 • 2 ft berm (section detail)

Structural Approach Slabs

• Past Issues
 • Excessive Settlemets

• Updates
 • Usage
 • Guidance

Structural Approach Slabs

• Current Usage
 • Required: IH and USH Bridges
 • Recommended: >3500 AADT
 • Not Required: Buried Structures & Culverts
 • Not Used: Rehabilitation Projects
 • Design exceptions considered on a project-by-project basis.
Structural Approach Slabs

• Guidance:
 • The geotechnical engineer should evaluate approaches for settlement susceptibility and provide recommendations for mitigating settlements prior to approach placement.
 • Structural approach slabs are not intended to mitigate excessive approach settlements.

Structural Backfill

• Material Changes
• Payment of Quantities
• Past Maintenance Issues
 • Slope Stabilities
 • Erosion Issues

• Updates
 • Material
 • Geotextile
 • Pay Limits
 • Payment

Backfill placed beyond pay limits or exceeding plan quantities shall be incident.
Structural Backfill

- Pay Limits
 - Not Necessarily Representative of Actual Limits
 - Payment Purposes Only
 Backfill placed beyond pay limits or exceeding plan quantities shall be incident
 - Excavation Limits – Contractor’s Responsible

Precast Piers

- Past Usages
 - Research Projects – Required
 - Rawson Avenue - Required
 - IH 39/90 – Contractor’s Option (noted allowance)
 - Sign Structure Column – Contractor Requested

Precast Piers

- Current Policy
 - Pier configurations shall be determined by providing the most efficient cast-in-place concrete pier design, unless approved otherwise. When the cast-in-place design can accommodate a precast option, include the noted allowance.
Conduit

- Updates
 - Standards (30.21 & 30.22)
 - WBM Updates
 - Design Guidance

Local Program bridges

- Railings and parapets to be MASH compliant:
 - Chapter 30 of Bridge Manual gives a MASH TL value for all railings and parapets

- Local road design speed versus posted speed (or no posted/statutory speed)
 - Will be working with Bureau of Project Development to provide guidance
Bridge drainage

- Desirable to maintain 0.50% profile for drainage, with solid parapets (WisDOT preference)
 - Investigating exceptions to the 0.50% criteria, especially for shorter bridges.

Future updates

- July Bridge Manual updates
 - Text with regards to AASHTO 8th Edition (Examples in January 2019)
 - Renumbering of Section 5 Concrete Structures (461 references in BM!)
 - New method for prestressed girder shear
 - New steel girder simplified field splice design procedure
 - ½" filler adjacent to ½" bearing pads
- Other
 - Insert sheets are being cleaned up – available as ready
 - Insert sheet(s) with available cells

Automation

- WiSAMS – Wisconsin Structures Asset Management System
 - Automated system to assist with determining the most appropriate course of action for structure maintenance, and eventual replacement, during its life cycle
 - Planners like it, bridge maintenance staff is a little more skeptical…
- Data Warehouse/Business Intelligence
 - Centralized location for all data related to WisDOT structures
 - Used to support important business activities
- BIM for Bridges and Structures
MSE Wall Specifications

- Updates
 - Pay Limits (Plan Values)
 - Shop Drawing Submittal

Shear Design – PS Girders

- Simplified Procedure removed from AASHTO LRFD 8th Edition for Prestressed Sections

\[V_c = \text{the lesser of } V_p \text{ and } V_r \]
\[V_p = 0.02 \sqrt{f_{ck} A_f} + V_s + \frac{V_M}{M_{min}} \geq 0.06 \sqrt{f_{ck} A_f} \]
\[V_r = \left(0.06 \sqrt{f_{ck}} + 0.38 f_{p}' \right) A_f + V_s \]
Shear Design – PS Girders

• Update: Use General Procedure

\[V_s = 0.0316 \beta \sqrt{f} \cdot \phi \cdot d \]

\[\beta = \frac{4.5}{(1 + 720c_s)} \]

\[\phi = \frac{(V_s + 0.15V' + V'' - 0.05N)F}{E_A + E_d} \]

• Software Updates: In-House (in progress)

Shear Design – PS Girders

• Update: Use General Procedure

• Software Updates: In-House (in progress)

CIP Piles

• Additional Detail (Std. 11.01)
• End Plate Detail For CIP Piling
• Specifications
• Welds watertight (2019 spec)
• Agg. size (2020 spec?)
Overlay Guidance

- Past Usages
- Overlay Systems
- Summary of Updates
- Polymer Overlays

Questions?
Answers??
My Favorite Complex Structures

Andrew Smith
Load Rating Engineer

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

The “Home Sweet Home” Bridge

Category: Movable Bridge

- First Movable Bridge constructed with ABC techniques.
- Bridge operator lives on site

Bridge over Achievement Gap

Category: Box Girder Bridge

- Built by Red Neck and Sons
- Cost: 4 bottles of whiskey
- No children were hurt during construction
My Favorite Complex Structures

Andrew Smith
Load Rating Engineer

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

A Band of Complex Misfits

What is Considered Complex?

WisDOT Bridge Manual 45.3.11

By Type (inherent):
• Steel Rigid Frames
• Bascule-type Movable
• Truss Arches
• Over Arches
• Cable Stayed (or suspension)
• Stay Box Girder

By Geometry:
• Curvature
• High Skew
• Misc...
By Type

Complex Structures

By Geometry:
Curvature

See LRFD 4.6.1.2.4 and Curved Steel Girder Guide Spec 4.2.

- Curvature is uncontrolled.
- Bearing planes are not skewed more than 10 degrees from vertical.
- The deflections of the girders are controlled.

By Geometry: High Skew (2nd Tier)

\[\Delta \text{skew} > 20^\circ \]
What is required if a structure is categorized “complex”?
Generally... That these complexities are considered in a Load Rating Analysis

Specifically (45.3.11)...
1. Refined analysis is required
2. Must consider certain load effects (e.g. from curvature and skew)
 • Already in national guidance
3. Submit Refined Analysis Rating Form (on website)
 • Flexible format – provide key information
What constitutes “refined” analysis?

- National resources: AASHTO, FHWA “Manual of Refined Analysis” (in-progress), NSBA G13.1
- Generally considered to be FEA (2D vertical/horizontal, PEB, 3D)
 - Chp 45 not dictating how to perform refined analysis
 - May depend on project requirements
- Refined ≠ Complex
 - A 3D FE model can arguably be more efficient in some situations (e.g. stringer → floorbeam → girder)

What is required if a structure is categorized “complex”?

Generally... That these complexities are considered in a Load Rating Analysis

Specifically (45.3.11)...
1. Refined analysis is required
2. Must consider certain load effects (e.g. from curvature and skew)
 - Already in national guidance
3. Submit Refined Analysis Rating Form (on website)
 - Flexible format – provide key information

Torsion

- Caused by eccentric loading (i.e. structure on a horizontal curve)
- Torque is imparted to girders
- Results in additional normal and shear stresses (on top of those imparted from primary bending)
- Box girders and plate girders handle this differently
Load Shifting

- Global overturning resisted by force couples
- Additive effect to some girders, relieving effect to others
- Analogous to overturning (moment, eccentric load) in pile groups
- If curve is slight enough, the effects of curvature on the gravity loads (i.e. "load shifting") can be neglected – see LRFD 4.6.1.2.4

Flange Lateral Bending

- Flange Lateral Bending due to curvature effects must always be accounted for per LRFD
- Effects of Skew on f_l are more variable and difficult to predict.
 - Investigate effects with discontinuous cross-fractions with skews greater than 20°
- f_l due to skew determined by:
 1. Directly (3D FEM)
 2. Approximate eqns. and recommended values – see C6.10.1

What is required if a structure is categorized “complex”?

Generally... That these complexities are considered in a Load Rating Analysis

Specifically (45.3.11)...:

1. Refined analysis is required
 - Design of new "complex" structures will be "refined" by default
2. Must consider certain load effects (e.g. from curvature and skew)
 - Analysis performed per LRFD
3. Submit Refined Analysis Rating Form (on website)
 - Flexible format - provide key information
In addition to this form, submit electronic analysis files (e.g., .MDX, .bdb).

Analysis File Summary (Fill Out for Each Analysis File Submitted)

- **Analysis Type:**
 - ☐ Grid/Grillage
 - ☐ Plate & Ecc. Beam
 - ☐ 3D FEM
 - ☐ Other (describe below)

- **Analysis Program:**
 - ☐ MDX
 - ☐ AASHTOWare
 - ☐ CSI Bridge
 - ☐ LARSA
 - ☐ Other

- **Program Version:**

- **File Name:**

- **File Description:**
 Describe the purpose of the file. Example: This file is used for the Wis-SPV rating using single lane distribution.

Analysis Assumptions:
Highlight key assumptions in modeling. This section may be submitted with a separate document containing assumptions that are not directly related to the analysis of the structure. Example: The bridge has a parabolic arch shape with a span of 100 feet, and a live load of 20 kips is applied to the main span.

Summary of Results:
Summarize results. Provide a table of results for service load reactions, moment, shear, and/or stress output for members at 10th points (minimum) for the appropriate load cases. Provide a table of capacities at each 10th point, such that load ratings can be directly computed with appropriate load and/or resistance and impact factors. Provide example or typical calculations.

Your own template is fine...

...But please fill it with meaningful information.

Why is this “complex” distinction important?
What are the benefits?

- Consistency
 - In analysis assumptions
 - Among engineers
- Repeatability/Documentation
 - Refined Analysis Rating Form
 - For timely responses in permitting requests
 - Scoping, Posting, Damage

Performing a load rating on a complex structure?

Please contact rating unit:

Andrew Smith
Andrew.Smith@dot.wi.gov
608-266-0889

Josh Dietsche
Joshua.Dietsche@dot.wi.gov
608-266-8053
Self-Consolidating Concrete for Prestressed Girders
Steven Doocy, P.E.

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

Introduction

• Research
• Test Girder
• Specification
• Implementation

Research Team

• Researchers
 • South Dakota State University
• Industry
 • County Materials
 • Spancrete
• WHRP Team
 • WisDOT
 • UW-Madison
Research

• Goals
 • Develop mixture and testing requirements to supplement the Std. Spec.

• Results
 • Strength
 • Camber
 • Transfer length
 • Losses due to creep and shrinkage

Test Girder

B-40-858
Test Girder

B-40-858

- 28 – 36W girders, 41'-9" long
- County Materials donated a girder (cast 29 total girders; 28 normal concrete, 1 SCC) for proof of concept
- If SCC girder met specifications, we would install it on the bridge

Test Girder

Conventional Pour
Test Girder

SCC Pour

Specification

• SPV for SCC
 • Concise SPV was developed with WisDOT Materials section
 • Specified testing, material and construction information for SCC.
Implementation

B-17-223/224

• Looked for longer structure with deeper girders
• 10 – 54W girders @ 127' long (twin structures)
• 223 – mandatory SCC
• 224 – optional SCC

Implementation

• Cost??
Implementation

Current Data

Camber
• Actual = 4.00''
• Plan = 4.28''

Compressive Strength
• $f'_{c} (actual) = 7,900$ psi
• $f'_{c} (plan) = 6,800$ psi
• $f'_{c} (actual) = 12,500$ psi
• $f'_{c} (plan) = 8,000$ psi

Success!!

• Started with a little research
• Lead to a SPV
• Implemented on twin structures

Future cases......
• Use for all girders
• Complex concrete pours/light rebar cages
• Substructures
• Other?

Questions
Miscellaneous Geotechnical/Structural Topics

Jeff Horsfall

BTS – Geotechnical Engineer

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI

May 22, 2018

Communications

"Well, Elvis... I think we've been building the ding-dong-bell for the cat!"

Geotechnical/Structural Topics

- Geotechnical Manual
- Consultant Submittals
- Pre-boring in Consolidated Material (Intermediate GeoMaterial-IGM)
Geotechnical Manual

- Developed in April 2017 and published on the DOTNET

http://wisconsindot.gov/Pages/doing-bus/eng-consultants/cnslt-rsrces/default.aspx

Section 7-1 General
Section 7-2 Foundation Types
Section 7-3 Foundation Analyses and Design
Section 7-4 Subsurface Investigations – All Structures
Section 7-5 Bridges
Section 7-6 Retaining Walls
Section 7-7 Box Culvert, Rigid Frame and Plate Arches
Section 7-8 Ancillary Structures
Consultant Submittals

Special Provisions template gives:

I. SOILS AND SUBSURFACE INVESTIGATIONS

Add gINT soil boring logs and soils laboratory data to the following email addresses.

DOTDTSGeotechnicalgINT@dot.wi.gov
DOTDTSGeotechnicalSirLab@dot.wi.gov

Pre-boring in Consolidated Material
(Intermediate GeoMaterial-IGM)

550.3 Pre-Boring

550.3.9.1 General
(1) Pre-bore holes to the depth the plans or special provisions require. Submit written requests for pre-boring not required under the contract to the engineer for review and approval. Do not impair the capacity of in-place piles or damage adjacent structures by pre-boring operations.

550.3.9.3 Pre-Boring in Rock or Consolidated Materials
(1) For round piles, pre-bore holes at least one inch larger than the pile outside diameter. For other shapes, pre-bore holes at least one inch larger than the greatest diagonal pile section dimension.
(2) Case holes as necessary to prevent introduction of unconsolidated material.
(3) Seat the casing firmly into the rock or consolidated material surface. Clear debris from the pre-bore hole before installing the pile.
(4) Do not blast without the engineer's approval.
Pre-boring in Consolidated Material (Intermediate GeoMaterial-IGM)

Intermediate GeoMaterial-IGM

- Cohesive IGMs exhibited unconfined compression strengths between 10 ksf to 100 ksf

- Cohesionless IGMs exhibited blow counts greater than 50 blows per foot (bpf) using a Standard Penetration Test

Project Illustration

B-13-831/832 USH18/USH 151 over CTH PD

Structure Consultant AECOM

Geotechnical Consultant SOILS & ENGINEERING SERVICES, INC.
Project Team
Foundation Discussion

Options

- H-piles driven using modified Gates (resistance factor = 0.50)
- H-piles driven using Pile Driving Analyzer (resistance factor = 0.65)
- Pre-bored H-piles with a Static Load Test (resistance factor = 0.80)
BOS Overlay Policy

James Luebke
Structural Development Engineer

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

BOS Overlay Policy

Current Bridge Manual

- Bridge Manual
 - Section 40.5 – Deck Overlays
 - Guidelines
 - Methods
 - Miscellaneous Item

3 pages

Overlay Methods

- Active
 - Thin Polymer
 - Low Slump Concrete
- Less Active
 - Polymer Modified Asphaltic
 - Polyester Polymer
 - Asphaltic
- Not Active
 - Asphaltic with Membrane

Thin Polymer Overlay (Preservation)
Concrete Overlay (Relabeling)
Overlay Methods

- Further Developments
 - Polyester Polymer
 - Asphaltic with Membrane
 - Latex Modified Concrete

- Further Guidance
 - WiSAMS (Wisconsin Structures Asset Management System)
 - Bridge Manual
 - Standard Details
 - Specifications

Past Overlay Usages

Graph showing past overlay usages with different overlays.
Past Overlay Usages

- 1970 to 1990 – Concrete Overlays
- 1990 to 2005 – Concrete and Asphaltic Overlays
- 2005 to Present – Concrete and Polymer Overlays

Source: HSI (Ryan Bowers)

Updated Bridge Manual

- Bridge Manual
 - Section 40.5 – Deck Overlays
 - Methods
 - Selection Considerations
 - Background Information

20+ pages

Overlay Advantages, Disadvantages, and Notes
Polyester Polymer Overlay Usage

• Decks in Good Condition
 - NBI rating of 7 or greater
 - Distressed areas < 5%
 - Less than 15 years* old deck

• General Criteria
 - Traffic Restrictions
 - High Traffic (AADT > 20,000)
 - Remaining life > 20 years

Thin Polymer Overlays

• Decks in Good Condition
 - NBI rating ≥ 7
 - Distressed areas < 5%
 - Deck age < 15 years*

• General Criteria
 - Traffic Restrictions
 - High Traffic (AADT > 20,000)
 - Remaining life > 20 years

Overlay Policy

• Overlay Selection
• Resources
 - Region
 - Bridge Manual
 - BOS
 - Coordination

INPUT:
- Structure Type
- Structure Response
- AADT
- Design Speed
- Chloride Content
- Concrete Permeability
- Concrete Cover
- Lane Restrictions
- Rating
- Contract Efficiencies
- Existing Overlay

OUTPUT:
- Low Slump Polymer Overlay
Marquette Interchange
PPC Overlays

Presented by:
Jason Sadowski, PE, SE

Agenda

- Project Overview
- Bridge Preservation
- What is PPC and why use it?
- Marquette Interchange Project
- Construction
- Conclusion

Project Overview

Marquette Interchange Scope
 - PPC overlay
 - Lighting upgrade to LED
 - ITS
 - Splice plate painting

Valley Bridge Scope
 - Concrete overlay
What is Bridge Preservation?

- Extend service life
- Limit traffic impacts
- Optimize life cycle costs
- Cyclical activity

What is PPC and why use it?

Polyester Polymer Concrete
- Binder
- Aggregate
- Sealing Primer

“Gammamethacyloxypropyltrimethoxysilane”
What is PPC and why use it?

Pros
- Impermeable seal
- Fast cure – all temps
- Durability
- Friction

Cons
- Cost ($10-$12 / sf)
- Few local contractors
- Fast cure

Identify the right projects!

<table>
<thead>
<tr>
<th>PPC</th>
<th>Thin Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single course</td>
<td>Two course</td>
</tr>
<tr>
<td>3/4" minimum</td>
<td>3/8" typical</td>
</tr>
<tr>
<td>Impermeable</td>
<td>Mostly impermeable</td>
</tr>
<tr>
<td>20-30 year life</td>
<td>10-15 year life</td>
</tr>
<tr>
<td>2 – 4 hour cure</td>
<td>4 – 14 hour cure</td>
</tr>
<tr>
<td>Shotblast CSP 5</td>
<td>Shotblast CSP 5</td>
</tr>
<tr>
<td>$10-12/sf</td>
<td>$3/sf</td>
</tr>
</tbody>
</table>
Marquette Interchange PPC Specification
- Co-operative effort
- Experience requirements
- Bond critical performance
- ¾“ milling (optional)

Marquette Interchange Structural Design
BOS Criteria
- Preservation project
- Age 10 years +/-
- Avg. NBI 6.7
- Deck distress < 1%
- Chloride profile (5 lb limit at rebar)
- Traffic volume
- Key infrastructure

Typical Chloride Levels
- 1" < 8
- 2" < 1
- 3" < 1

Marquette Interchange Structural Design
- Complex load rating
- Variable cross slopes & super-elevations
- Traffic control
- Joint locations
Marquette Interchange Traffic Control

Staged vs. Full Closure
- 16’ clear zone for PPC equipment
- Min roadway width = 36’ for staged construction

Marquette Interchange Traffic Control

Single Lane Full Closure
- Staged Closure
- Valley Bridge Long Term Closure

PPC Construction Preparation

Milling
- In advance of PPC
- Added PPC quantity
- Profile milling

Shot blasting
- 48’ blaster – 6,000 sf/hr
- Spot cleaning
PPC Construction Placement

- 2,000’ per night
- Place uniform thickness
- Keep the paver moving
- Hardness testing

PPC Construction Spot Repairs

- Sawcut and replace
- Methacrylate sealer to fill cracks

Driving Factors for Utilizing PPC

- Traffic volume
- No joint replacement
- Limited impacts
- Difficulty to re-deck
- Complex structures
- Desire to delay major rehab
Conclusion

- Find the right projects!
- New WBM guidance
- On-going development

Potential Upcoming Southeast PPC Projects

WisDOT Structural Engineers Symposium

Thank You!
3D Design & Modeling, BIM for Bridges and Structures
Danielle De Tennis & Adam Swierczek
BOS Structural Automation Engineer & Design Engineer
2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

What is BIM for Bridges and Structures?

What is our goal with BIM?

• Create an open data exchange between all involved parties for the lifecycle of the structure
 ▪ Software-independent solutions
 ▪ Streamline data exchanges
 ▪ Eliminate data entry errors
BIM in BOS Design

• Preliminary Design
 • Create initial approximate structure geometry
 • Improve geometry coordination with roadway

• Hydrology & Hydraulics
 • Velocity vectors/flowpaths in X and Y direction – more accurate information leads to better bridge sizing, substructure placement and skew
 • Improved accuracy of scour prediction parameters
 • LiDAR and Bathymetry are easily integrated when developing a model
 • Identify conveyance patterns not readily identifiable in 1D models
 • Easier to model complex floodplains
 • Avoid many assumptions inherent to 1D models

• Final Design
 • Single source of truth throughout design
 • Improve process for design iterations and late design changes
 • Improve spatial awareness of structural components
 • Streamline quantity takeoffs
• Move towards 3D model-based shop drawing submittal and review
 ▪ Many fabricators already create 3D models to generate 2D shop drawings. Generating and fixing up these plans take up a lot of time.
 ▪ They are looking into ways to eliminate the need for 2D plans, or move them closer to the end of the process so the plans don’t need to be regenerated so many times.
 ▪ BOS is planning a 3D Fabrication pilot project with a steel structure

• Looking to add 3D models to HSI
 ▪ Models are generated from data already entered in HSI
 ▪ Inspectors can document defects directly on the model
 ▪ Possibility to store design models & as-built models in the future
BIM in BOS Bridge Management
IFC Models Generated from AASHTOWare

BIM in BOS Bridge Management
IFC Models Generated from AASHTOWare

BIM in BOS Standards

- PDF plans with 3D Details by Iowa DOT
- We are looking to adopt 3D details in some of our Standard Details
- BIM “Insert Sheets”
- Standard models for WisDOT PS girder shapes, etc.
IH 94 North South Program Overview

- Current Scope of Work
 - Approximately 19 Miles of Reconstruction in 3 Counties under Accelerated Schedule

- Quantity Highlights
- Staging Concept
- Unique Roadway Elements

IH 94 North South Scope of Work - State

- Work Zone Prep Contract
 - February 2018 Let
- South/Central Packages ($200M - $250M expected)
 - May 22, 2018 Let
- North Package ($175M - $200M expected)
 - August 2018 Let
IH 94 North South
Scope of Work – Local Rehab

- STH 20
 - February 2018 Let, June 2018 Completion
- CTH H
 - March 2018 Let, June 2018 Completion
- CTH A
 - March 2018 Let, June 2018 Completion

IH 94 North South
Scope of Work – Development

- CTH KR
- CTH H
- Braun Road
- STH 11
- International Drive
- Wisconn Valley Way
 - All Construction Slated Between 2018 and 2021

IH 94 North South
Quantity Highlights – South/Central Segments Only

- Common Excavation ~ 844,000 CY
- Roadway Embankment ~ 1,414,000 CY
- Base Aggregate Dense ~ 302,000 CY
- Select Crushed Material ~ 521,000 CY
- Concrete Pavement 12-Inch Special ~ 980,000 SY
- Bridge Deck ~ 76,500 SY
- Retaining Walls ~ 130,000 SF
IH 94 North South Staging Concept (Accelerated)

- Two lanes in each direction (2/2 traffic)
 - 6 months 06/18 to 11/18

- Three lanes in each direction (3/3 traffic)
 - 6 months split bi-directional 12/18 to 05/19
 - 6 months bi-directional 06/19 to 11/19

- Reduces construction from 30 months to 18 months

IH 94 North South Staging Concept (Accelerated)

Stage 2: June – November 2018

Stage 3: December 2018 – May 2019

Stage 4: June – November 2019

IH 94 North South Unique Roadway Elements

- Compressed/Accelerated Construction Schedule
- Stage 3 Construction Through Winter
- Approximately 13' Profile Grade Change at CTH KR/Braun Road
- Multiple Adjacent Public and Private Projects
 - CTH K Crossroads, IH 94 Frontage Roads, Wis 45 Rehab, Wis 20/CTH C Roundabout, Foxconn Development, etc.
- Items Left in Place from Previous Prep Contract
- On Site Batch Plant/Crushing/Staging Locations
IH 94 North South Structures

Aaron Bonk, P.E.
Bureau of Structures Design Supervisor
IH 94 NS Structures Lead

2018 WisDOT Structural Engineers Symposium
University of Wisconsin-Madison Union South, Madison, WI
May 22, 2018

Project Site Overview

- 27 Bridges
- 17 Retaining Walls
- 46 Sign Structures

IH 94 NS Structures Design Delivery Schedule

- Original designs and PS&E's in late 2000's/early 2010's
- Project restarted in 2017 with PS&E's set for early/mid 2018
- Updates to LRFD for Racine/Kenosha County Structures
- Standard Updates (Structural Approach Slabs, Parapet Size/Shape, etc.) for All Structures
IH 94 NS Structures Unique Aspects of Design

- Typical prestress girder and slab span bridges…
 - Except for the condensed delivery schedule and "standards" updates required
- Typical vertical underclearance requirements…
 - Except for 6m requirement near Foxconn site
- Typical pier design…
 - Except for requirement not to preclude contractor precast option
 - Partial depth precast prestressed deck panels required

IH 94 NS Structures Foxconn Area Impacts to Structures

- Full Redesign for 2 Interchanges and 2 Overpasses (14 State Structures and 10± Local Structures Impacted)
- Bridge Configurations In Flux Until Early 2018
- 6m Vertical Underclearance Requirement

IH 94 NS Structures Pier Design

- Construction Schedule Dictated ABC (Precast Pier) Option
- Multi-column Piers Designed as CIP, but not to Preclude Contractor Precast Option
- Chapter 7 Bridge Manual Standards
IH 94 NS Structures
Partial Depth Precast Prestressed Deck Panels

- Construction Schedule Dictated ABC
 (Partial Depth Precast Prestressed Deck Panels for Girder Bridges)
- Bridges Designed to Require Panel Use

- Refined/Updated Chapter 17.10
 Bridge Manual Details
IH 94 North South

Questions?
Strengthening Program for Local Load Posted Bridges

Alex Pence
Rating Engineer – Local System

Josh Dietsche
Supervisor – Bridge Rating/Management Unit

WisDOT Structural Engineers Symposium
Madison, WI

May 22, 2018

Presentation Overview

• Load Postings on the Local System
 • Load Postings
 • SHV Load Posting Evaluation

• Strengthening Program
 • Program Concept
 • Overview of the Local Inventory

• BOS Efforts for Repair and Rehab
 • Assessing Candidate Bridges
 • Repair Methods

Load Postings on the Local System
Load Postings

• Bridges are load posted when analysis shows they can no longer safely carry legal-weight traffic.

• What is “legal weight?”

Load Postings: Federal Bridge Formula

• Federal Bridge Formula (FBF) provides a standard to control spacing of truck axles/weights...to make sure the bridge was designed to support what can legally cross it.

\[W = 500 \left(\frac{L}{N-1} + 12N + 36 \right) \]

Load Postings: Posting Vehicles

• Based on the FBF, AASHTO has an established suite of posting vehicles.

• Wisconsin has two state-specific posting vehicles.
If/when a bridge can no longer carry legal-weight traffic...

SHV Load Posting Evaluation

- FHWA has mandated that states incorporate SHVs into their posting analysis by December 31, 2017

- Why are SHVs an issue?
 - Legal-weight...
 - exceed intended limits of the FB

- What are SHVs?

SHV Load Posting Evaluation: Load Models
So what was the outcome?
- Some new postings
- Some lower load postings

<table>
<thead>
<tr>
<th>Posting Level</th>
<th>Current</th>
<th>SHV</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 ton or greater</td>
<td>372</td>
<td>281</td>
</tr>
<tr>
<td>35 ton</td>
<td>52</td>
<td>34</td>
</tr>
<tr>
<td>30 ton</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>25 ton</td>
<td>17</td>
<td>199</td>
</tr>
<tr>
<td>20 ton</td>
<td>100</td>
<td>249</td>
</tr>
<tr>
<td>15 ton</td>
<td>110</td>
<td>131</td>
</tr>
<tr>
<td>10 ton</td>
<td>71</td>
<td>23</td>
</tr>
<tr>
<td>5 ton</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>Less than 5 ton</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>773</td>
<td>993</td>
</tr>
</tbody>
</table>

Mitigating Load Postings on the Local System

Strengthening Program for Local Load-Posted Structures

Strengthening Program: Overall Concepts
- The SHV evaluation effort highlighted load posting on the local system
- Load postings are implemented for safety purposes...
 - but they restrict the flow of freight
- With support of WisDOT upper management, BOS looks for methods to eliminate postings, when possible
- Strengthening Program For Local Load Posting Structures
Strengthening Program: Overall Concepts

- Work with local owners to implement cost-effective, stream-lined process to repair bridges and remove postings
- BOS to provide engineering and oversight for repairs
- Use local crews (with assistance from WisDOT) to perform repairs

Overview of the Local Bridge Inventory

- The local system is... different... than the state system.
 - Generally older
 - Generally much lower ADT
 - Much higher percentage of single-span
 - More variety of superstructure types
 - Timber
 - Concrete T-girder
 - PS Channel
 - Other...
BOS Efforts for Repair and Rehab

- Want to target “high value” bridges – important for freight & commerce
- Consider life remaining condition
- Not every repair option is feasible for every bridge
- Need to review individually

Best Candidates screening group:
- Rating < 60
- All NBI Conditions 5
- ADT 100 or ADT<100 wy/10+ mi Detour

Brooke Löscher 1/17/2018 Wisconsin Department of Transportation

BOS Efforts for Repair and Rehab

- Timber Slab Bridges
 - Wheel Load Distribution

BOS Efforts for Repair and Rehab

- Timber Slab “Spreader Deck”
BOS Efforts for Repair and Rehab

- Timber Slab – Reduce overburden and add stiffener beams

BOS Efforts for Repair and Rehab

- Bolt additional steel section to existing members
 - Can often be done by state or local crews
 - Relatively inexpensive

Mitigating Load Postings on the Local System

Wisconsin Department of Transportation
BOS Efforts for Repair and Rehab

- Make girder composite with slab
 - Several installation options available; would be site dependent
 - Girder assumed to be non-composite if plans are not available
 - First step: field verify if studs already exist

BOS Efforts for Repair and Rehab

- Concrete bridges
 - Add rebar
 - Add FRP

BOS Efforts for Repair and Rehab

- A. Surface Preparation
- B. Priming and Filling Voids
- C. Locate Strips/Check Surface
- D. Clean and Prepare FRP Strips
- E. Coat Strips with Epoxy
- F. Place Strips
- G. Roll Out to Ensure Total Contact
BOS Efforts for Repair and Rehab

Mitigating Load Postings on the Local System

Shear

Positive Moment

Negative Moment

FRP strips glued to bottom of slab (not always required)

Steel plates anchored to slab

RC slab retrofit
BOS Efforts for Repair and Rehab

• Refined analysis goes above and beyond the routine or traditional methods of analysis
• Often involves a 3D model of structure
• Takes advantage of a more true live load distribution (less simplifications)

BOS Efforts for Repair and Rehab

• Enormous amounts of data
• Processing data takes most of the time
• Processing required to obtain useful information for design or load rating purposes
• Requires more judgment, assumptions; less conservative

BOS Efforts for Repair and Rehab

• Other options (more case-specific):
 • Removing overburden
 • Install external post-tensioning
 • Add additional substructure units
 • New deck
 • Load testing
 • Enhanced inspection for better information (NDE methods)
 • Other…