Date: 1/14/2021

To: Region Systems Planning and Operations Sections

From: Rebecca Szymkowski, PE, PTOE, RSP1
Traffic Supervisor - BTO

Subject: 2019 Statewide Average Crash Rates

Statewide Average Crash Rates and Upper Control Limits

Table 1 shows the Wisconsin statewide average crash rates for the five-year period from January 1, 2015 to December 31, 2019. Crashes involving deer were removed from the dataset before completing the calculations.

Table 1 includes the statewide average crash rates for the State Trunk Highway network broken out by Meta-Manager Peer Group. The Meta-Manager Peer Groups are intended to represent a group of roadway segments throughout the state with similar characteristics (i.e. number of lanes, type of access, presence of median, etc.). These are often referred to as reference populations. Each year, the peer groups are created by combining Meta-Manager roadway segments that have the characteristics which define each group. Other minor modifications are made to the Peer Groups so these crash rates should not be compared to previous statewide average crash rates.
Previous statewide average crash rate summaries can be found here:

Calculating Statewide Average Crash Rates and Upper Control Limits

To assist with screening for potential safety issues, WisDOT provides statewide average crash rates and UCLs for 12 different categories of state roadways and 2 categories of non-state roadways. The following instructions are provided so segment crash rates are calculated and compared using consistent methodologies. In addition, information is provided to assist users in taking the appropriate actions based on the results of the comparisons.

There are six steps involved with calculating and comparing segment crash rates and UCLs:

1. Identify Segments
2. Determine Total Number of Crashes and KAB Crashes
3. Calculate AADT
4. Calculate Crash Rates and KAB Crash Rates
5. Calculate Crash Rate UCLs and KAB Crash Rate UCLs
6. Compare Crash Rates and KAB Crash Rates to UCLs and Choose Action

Detailed instructions for each of the six steps are provided below:

Step 1: Identify the roadway segments on your project. If multiple Peer Groups exist on your project, crash rates and UCLs should be calculated for each Peer Group by combining adjacent segments of the same Peer Group per the example in Figure 1.

- Segments 0.1 miles or less should be excluded from crash rate comparisons unless combined with other segments.
- Segments should not exceed 5 miles in length. If necessary, break a long segment into segments less than 5 miles.

Figure 1: Combining Adjacent Peer Groups

<table>
<thead>
<tr>
<th>Start of Project</th>
<th>End of Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER GROUP 430 (0.6 MILES)</td>
<td>PEER GROUP 440 (1.0 MILES)</td>
</tr>
</tbody>
</table>

Segments to calculate crash rates and thresholds
1. Peer Group 430 (0.6 miles)
2. Peer Group 440 (1.0 miles)
3. Peer Group 430 (1.1 miles) - resulting from combining 0.4 and 0.7 mile segments
Step 2: Determine the total number of crashes for each segment on your project and the sum of KAB crashes (K-Level, A-Level, and B-Level). Severity definitions are provided on page 6.

The total number of crashes should include all reportable non-deer related crashes occurring on the roadway, including crashes on intersecting public streets within a distance of 250 feet from the roadway (see Figure 2 for an illustration of the areas where crashes should be included). Crashes occurring on private driveways should not be included in crash rate calculations.

IMPORTANT: Divided roadways (i.e., Peer Groups 110, 120, 130, 210, 220, 310, and 320) should have each direction of travel analyzed separately to be consistent with the methods used to calculate the statewide average crash rates. AADT volumes should be determined for each direction of travel on divided roadways.
Crash Severity

The severity of a crash is based on the most severe injury to any person involved in the crash. Crash severity is based on the KABCO injury severity scale according to the following definitions:

Fatal (K) = Any injury from a traffic crash which results in death within 30 days of the crash.

A-level = Suspected Serious Injury – Any injury other than fatal which results in one or more of the following:
- Severe laceration resulting in exposure of underlying tissues/muscle/organs or resulting in significant loss of blood, broken or distorted extremity (arm or leg), crush injuries, suspected skull, chest or abdominal injury other than bruises or minor lacerations, significant burns (second and third degree burns over 10% or more of body), unconsciousness when taken from the crash scene, or paralysis.

B-level = Suspected Minor Injury – Any injury that is evident at the scene of the crash other than fatal or serious injuries.
- Examples include lump on the head, abrasions, bruises, minor lacerations (cuts on the skin surface with minimal bleeding and no exposure of deeper tissue/muscle).

C-level = Possible Injury – Any injury reported or claimed which is not fatal, suspected serious or suspected minor injury.
- Examples include momentary loss of consciousness, claim of injury, limping, or complaint of pain or nausea. Possible injuries are those which are reported by the person or are indicated by his/her behavior, but no wounds or injuries are readily evident.

O-level = Property Damage Only / No Apparent Injury - No reason to believe that the person received any bodily harm from the motor vehicle crash. There is no physical evidence of injury and the person does not report any change in normal function.

A reportable crash is any crash that results in an injury or fatality. Additionally, a reportable crash is a crash in which damage to an individual's property totals more than $1,000 or damage to government property (e.g. traffic control devices, guardrail, etc.) totals more than $200.
Step 3: Identify or calculate the AADT for each segment on your project (see Step 1 for instructions about combining adjacent segments with the same Peer Group). If multiple AADTs exist within the same Peer Group, use *Equation 1* to calculate a pro-rated AADT. AADT volumes should be determined for each direction of travel on divided roadways.

<table>
<thead>
<tr>
<th>Equation 1: Pro-Rated AADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro-rate AADTs when combining adjacent segments of the same Peer Group that have varying AADTs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L_1</th>
<th>L_2</th>
<th>L_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER GROUP 430</td>
<td>PEER GROUP 430</td>
<td>PEER GROUP 430</td>
</tr>
<tr>
<td>AADT$_1$</td>
<td>AADT$_2$</td>
<td>AADT$_i$</td>
</tr>
</tbody>
</table>

$$\text{AADT}_{\text{pr}} = \frac{L_1 \times \text{AADT}_1 + L_2 \times \text{AADT}_2 + L_i \times \text{AADT}_i}{L_1 + L_2 + L_i} = \text{Pro-Rated Annual Average Daily Traffic}$$

$L_1 = \text{Length of Segment #1 (miles)}$

$\text{AADT}_1 = \text{Annual Average Daily Traffic of Segment #1}$

$L_2 = \text{Length of Segment #2 (miles)}$

$\text{AADT}_2 = \text{Annual Average Daily Traffic of Segment #2}$

$L_i = \text{Length of Segment #i (miles)}$

$\text{AADT}_i = \text{Annual Average Daily Traffic of Segment #i}$

Notes:

1. If multiple AADTs are provided for a particular segment (e.g., Year 2016 AADT$_1 = 5,000$ and Year 2018 AADT$_1 = 6,500$), use engineering judgment to calculate an AADT that best represents the five-year average.

2. Engineering judgment should be used when determining where AADT counts begin and end. Roadway characteristics that affect traffic volumes are typically good places to define AADT limits. For example, major intersections, driveways to traffic generating businesses, and transitions in surrounding land uses (e.g., urban to rural) are commonly used as start/stop points for AADTs.
Step 4: Calculate segment crash rates (see **Equation 2**) and KAB Crash Rates (see **Equation 3**) for each segment on your project (see Step 1 for instructions about combining adjacent segments with the same Peer Group).

<table>
<thead>
<tr>
<th>Equation 2: Segment Crash Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment Crash Rate = (\frac{C \times 100,000,000}{AADT \times L \times Y \times 365}) = Crashes per 100 million vehicle miles traveled (HMVMT)</td>
</tr>
<tr>
<td>C = Number of crashes in five-year period (years 2015-2019)</td>
</tr>
<tr>
<td>AADT = Annual Average Daily Traffic (if AADT varies along the roadway, see Equation 1)</td>
</tr>
<tr>
<td>L = Length of segment (miles)</td>
</tr>
<tr>
<td>Y = Number of years analyzed (5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equation 3: KAB Crash Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAB Crash Rate = (\frac{C_{KAB} \times 100,000,000}{AADT \times L \times Y \times 365}) = KAB Crashes per HMVMT</td>
</tr>
<tr>
<td>C_{KAB} = Sum of K-level, A-level, and B-level crashes in five-year period (years 2015-2019)</td>
</tr>
<tr>
<td>AADT = Annual Average Daily Traffic (if AADT varies along the roadway, see Equation 1)</td>
</tr>
<tr>
<td>L = Length of segment (miles)</td>
</tr>
<tr>
<td>Y = Number of years analyzed (5)</td>
</tr>
</tbody>
</table>
Step 5: Calculate crash rate and KAB Crash Rate UCLs for each segment on your project per the formulas provided in Table 1. Example calculations are provided below:

<table>
<thead>
<tr>
<th>Example UCL Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Two-Lane Highway</td>
</tr>
<tr>
<td>AADT = 4,500</td>
</tr>
<tr>
<td>Length = 2.0 Miles</td>
</tr>
<tr>
<td>Crash Rate = 70 crashes per 100 MVM</td>
</tr>
<tr>
<td>KAB Crash Rate = 50 KAB crashes per 100 MVM</td>
</tr>
<tr>
<td>Classification: Peer Group (420) Rural 2-lane Highway with 2,000 < AADT ≤ 7,000</td>
</tr>
</tbody>
</table>

Example UCL Calculations for Peer Group (420) – See Table 1 to find equations for UCLs

\[
Crash\ Rate\ UCL = 79.58 + 523.42 \sqrt[5]{\frac{79.58}{AADT \times L \times Y}}
\]

\[
\begin{align*}
Crash\ Rate\ UCL &= 79.58 + 523.42 \sqrt[5]{\frac{79.58}{4,500 \times 2.0 \times 5}} \\
&= 101.59\ Crashes\ per\ 100\ MVM
\end{align*}
\]

\[
KAB\ Rate\ UCL = 18.77 + 523.42 \sqrt[5]{\frac{18.77}{AADT \times L \times Y}}
\]

\[
\begin{align*}
KAB\ Rate\ UCL &= 18.77 + 523.42 \sqrt[5]{\frac{18.77}{4,500 \times 2.0 \times 5}} \\
&= 29.46\ KAB\ Crashes\ per\ 100\ MVM
\end{align*}
\]

Results: The segment’s crash rate of 70 crashes per 100 MVM is less than the crash rate UCL of 101.59, but the segment’s KAB Crash Rate of 50 crashes per 100 MVM is higher than the KAB Crash Rate UCL of 29.46. See Step 6 for how to interpret these results and what actions are suggested.
Step 6: Compare your segment’s crash rate and KAB Crash Rates to the calculated UCLs. Use the flowchart in Figure 3 to determine what action should be taken.

Figure 3: Action Flow Chart

<table>
<thead>
<tr>
<th>Segment Crash Rate > Crash Rate UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
</tr>
<tr>
<td>KAB Crash Rate > KAB Crash Rate UCL</td>
</tr>
</tbody>
</table>

Yes

No

Actions:
1. Further investigation is needed to understand possible contributing factors and if roadway safety improvements could reduce crashes.
2. Identify any significant crash concentration locations (e.g. intersections or short sections of highway) or other crash patterns that might exist and explain the possible causes of the crashes. If no patterns are found, that should be stated so it is known that the crashes were examined.

Action:
1. Identify any significant crash concentration locations (e.g. intersections or short sections of highway) or other crash patterns that might exist and explain the possible causes of the crashes. If no patterns are found, that should be stated so it is known that the crashes were examined.
Local Road Crash Rates

Table 2 includes statewide average crash rates for local roads which are broken into Urban Street and Rural County Trunk Highways. The Urban Street category includes urban city streets, rural city streets and urban county trunk highways.

The local road crash rates and KAB segment crash rates have been consolidated to a five-year average for two peer groups. UCLs are provided to help identify where further analysis might be beneficial.

Table 2: 2015-2019 Statewide Average Crash Rates, KAB Crash Rates, and UCLs for Local Roads

<table>
<thead>
<tr>
<th>Local Road Group</th>
<th>Crash Rate (crashes per HMVMT)</th>
<th>KAB Crash Rate (crashes per HMVMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>UCL</td>
</tr>
<tr>
<td>Urban Streets</td>
<td>343.55</td>
<td>$\pm\sqrt{\frac{343.55}{\text{AADT} \ast \text{L} \ast \text{Y}}}$</td>
</tr>
<tr>
<td>Rural County Trunk Highways</td>
<td>90.91</td>
<td>$\pm\sqrt{\frac{90.91}{\text{AADT} \ast \text{L} \ast \text{Y}}}$</td>
</tr>
</tbody>
</table>

AADT = Average Annual Daily Traffic (vehicles per day)
L = Segment Length (miles)
Y = Years
HMVMT = 100 million vehicle miles traveled
Intersection Crash Rates

WisDOT does not produce statewide intersection crash rates or utilize a specific threshold crash rate for screening potential intersection safety issues. WisDOT is in the process of developing statewide intersection crash data for use in intersection safety analyses. When this information is ready, it will be included in future publications of this document with guidance regarding its use.

If intersection crash rates are calculated, they should be calculated using the crashes that occurred in the past five years within the influence area of the intersection. See **Figure 4** for an illustration of the influence area of an intersection. If operational characteristics of the intersection (such as queueing) appear to be related to the cause of the crash, the crash should be included in the intersection crash rate analysis.

Figure 4: Influence Area of Intersection

![Figure 4](image)

Equation 4 shows the calculation for intersection crash rates.

Equation 4: Intersection Crash Rate

\[
\text{Intersection Crash Rate} = \frac{C \times 1,000,000}{AADT_{ent} \times Y \times 365} = \text{Crashes per 1 million entering vehicles (MEV)}
\]

- **C** = Number of crashes in the time period analyzed (preferably 5 years) within the influence area of the intersection
- **AADT_{ent}** = Annual Average Daily Traffic entering the intersection
- **Y** = Number of years analyzed (preferably 5)
Ramp Crash Rates

Crashes that occurred on ramps at service interchanges **are not** included in the crashes used to calculate the statewide average crash rates for roadways. WisDOT is in the process of developing statewide ramp crash information for use in comparisons. When this information is ready, it will be included in future publications of this document with guidance regarding its use.

Crashes that occurred on ramps at system interchanges (i.e., freeway to freeway) **are** included in the crashes used to calculate the corresponding freeway Peer Group average crash rates. Please see **Figure 5a** for an illustration of service versus system interchanges.

![Figure 5a: Service versus System Interchanges](image)

At service interchanges, the variability in ramp designs and interchange configurations present challenges for conducting consistent analysis. If crash analysis is conducted at a service interchange, it is suggested the analysis be conducted using the segmentation shown in **Figure 5b**.

![Figure 5b: Ramp Detail at Service Interchanges](image)

The definitions shown in **Figure 5b** for speed-change areas and freeway segments are based on definitions in the Enhanced Interchange Safety Analysis Tool (ISETe): User Manual, published May 31st, 2012 through the National Cooperative Highway Research Program (NCHRP). **Figure 5b** also includes guidance about defining ramps and the influence area of intersections, which are definitions specific to WisDOT business practices.