

November 7, 2023

Division of Transportation Systems Development

Bureau of Project Development 4822 Madison Yards Way, 4th Floor South Madison, WI 53705

Telephone: (608) 266-1631 Facsimile (FAX): (608) 266-8459

NOTICE TO ALL CONTRACTORS:

Proposal #35: 1198-00-79, WISC 2024037 Solon Springs - Superior USH 2 Interchange USH 53 Douglas County

Letting of November 14, 2023

This is Addendum No. 01, which provides for the following:

Special Provisions:

Revised Special Provisions				
Article No.	Description			
8	Resin Binder High Friction Surface Treatment, Item SPV.0180.01			

The responsibility for notifying potential subcontractors and suppliers of these changes remains with the prime contractor.

Sincerely,

Mike Coleman

Proposal Development Specialist Proposal Management Section

ADDENDUM NO. 01 1198-00-79 November 7, 2023

Special Provisions

8. Resin Binder High Friction Surface Treatment, Item SPV.0180.01.

Replace entire article language with the following:

A Description

This special provision describes providing a high friction surface treatment (HFST) composed of aggregate in a resin binder on HMA or concrete pavements.

B Materials

B.1 Resin Binder

Supply a two-part thermosetting resin binder which is compatible with the pavement type, bonds to the pavement surface, holds the aggregate firmly in place in a broad range of climates including below-freezing temperatures, and meets the requirements specified in Table 1. Supply a primer if recommended by the resin binder manufacturer.

Property	Requirements	Test Method*	
Viscosity	7 – 30 poises	ASTM D2556 1-pint specimen	
Gel Time	10-minute minimum	AASHTO M 235M/M 235 Type III	
Ultimate Tensile Strength	2,000 – 5,000 psi @ 7 days	AASHTO M 235M/M 235 Type III	
Elongation at Break	30% - 70% @ 7 days	AASHTO M 235M/M 235 Type III	
Compressive Strength	≥ 1000 psi @ 3 hrs & ≥ 5000 psi @ 7 days	ASTM C579	
Water Absorption	≤ 1.0 % @ 24-hr	AASHTO M 235M/M 235 Type III	
Shore D Hardness	60 – 80 @ 7 days	ASTM D2240** Type 1 precision, Type D method	
Cure Rate	≤ 3 hours (Dry Through Time)	ASTM D1640 50-55 wet mil thickness**	
Adhesive Strength	250 psi @ 24 hours or 100% substrate failure	ASTM D4541**	

Table 1. Resin Binder Properties

* Prepare samples per manufacturer's recommendation; cure two sets of specimens at $73 \pm 2^{\circ}$ F and at $50 \pm 2^{\circ}$ F; and test all specimens at $73 \pm 2^{\circ}$ F

** Conduct testing on applicable pavement type

B.2 Aggregate

Furnish calcined bauxite aggregate that is fractured or angular in shape; resistant to polishing and crushing; clean and free of surface moisture; free from silt, clay, asphalt, or other organic materials; compatible with the resin binder; and meet the properties and gradation requirements in Tables 2 and 3. Check with resin binder manufacturer for any compatibility requirements or concerns. **The calcined bauxite will be delivered to the construction site in clearly labeled packaging; which protects the aggregate from any contaminates on the jobsite and from exposure to rain or other moisture.**

Property	Requirements	Test Method	
Moisture Content	≤ 0.2%	AASHTO T 255	
Fine Aggregate Angularity	≥ 45%	AASHTO T 304, Method A	
LA Wear	≤ 10% loss @ 100 revolutions and ≤ 25% loss @ 500 revolutions	AASHTO T 96	
Freeze-Thaw Soundness	≤ 9% loss @ 50, 16, or 25 cycles using Procedure A, B, or C, respectively	AASHTO T 103	
Aluminum Oxide	≥87%	ASTM C 25	

Table	2.	Aggregate Properties
Tuble	-	Aggregate i reperties

Table 3. Aggregate Gradation (AASHTO T27)

Sieve Size	% Passing by Weight
No. 4	100
No. 6	95-100
No. 16	0-5
No. 30	0-1

B.3 Approval of High Friction Surface Treatment

A minimum of 20 working days before applying HFST, submit product data sheets and specifications from the manufacturer, and a certified test report from an independent laboratory verifying that the resin binder and the calcined bauxite aggregate meet all the requirements specified in Tables 1, 2 and 3. Documents must be dated within three years of project letting date; must be representative of the material used on the project.

If resin binder has not been previously used in Wisconsin, also submit a list of at least five reference projects where the resin binder has been used for similar applications and in locations that have similar climatic conditions as Wisconsin. Supply a description of the projects along with contact information of the facility owner.

If the engineer requests, provide samples of the resin binder and aggregate for department testing before applying HFST.

C Construction

C.1 General

The contractor will provide documentation showing HFST application experience from at least three previous projects completed for WisDOT or other agencies.

Conduct a meeting with the resin binder manufacturer representatives before applying HFST to establish procedures for maintaining optimum working conditions and coordination of the work. Submit recommended application procedures, including quality control practices, to the engineer for approval. Ensure that a resin binder manufacturer representative is on site to provide technical assistance and quality assurance during surface preparation and for application of HFST.

Ensure that the resin binder components maintain their original properties during storage and handling. Store all aggregate in a dry environment and protect from contaminants on the job site.

C.2 Pavement Surface Preparation

C.2.1. Pavement Surface Repair

Remove visibly unsound or disintegrated areas of the pavement surface as the plans show or the engineer directs.

Check with resin binder manufacturer to ensure that products used for pavement repairs or patches are compatible with the resin HFST. **Ensure that any new concrete or repairs are fully cured before placing the HFST.** Allow a minimum 30-day curing time after placing new asphalt or concrete pavement before installing the HFST.

C.2.2 Surface Preparation

Cover and protect utilities, drainage structures, expansion joints on bridge decks, and other structures within or adjacent to the application location to prevent materials from adhering to or entering those structures. Remove pavement markings that are within the treatment area. Cover existing pavement markings adjacent to the application if they are to remain in place.

Pretreat all joints and cracks, or any portion of cracks, that are greater than ¹/₄ inch wide, with the mixed binder resin system specified herein. Once the binder resin in the pretreated area has galled, the installation may proceed.

Completely remove any grease, oil or other deleterious materials resting on the pavement surface with a mild detergent solution, rinsed with clean potable water, and dried using a hot compressed air lance. Ensure the pavement surface has no curing compound, loosely bonded mortar, pavement marking, or other foreign matter resting on the pavement surface.

Sufficiently clean HMA pavement surface using mechanical sweepers and high-pressure air wash with sufficient oil traps, just before applying HFST. Mechanically sweep all surfaces to remove dirt, loose aggregate, debris, and deleterious material. Vacuum sweep or air wash using a minimum of 180 cfm of clean and dry compressed air, all surfaces to remove all dust, debris, and deleterious material. Maintain air lance perpendicular to the surface and the tip of the air lance within 12 in. of surface.

Clean concrete pavement surface by shot blasting and vacuum sweeping. Shot blast all surfaces to remove all curing compound, loosely bonded mortar, surface carbonation, and deleterious material. After shot blasting, vacuum sweep or air wash, with a minimum of 180 cfm of clean and dry compressed air, all surfaces to remove all dust, debris, and deleterious material. Maintain air lance perpendicular to the surface and the tip of the air lance within 12 in. of the surface.

If the engineer requires additional verification of adequate surface preparation of the pavement, test the bond strength according to ASTM D4541. The surface is acceptable if the tensile bond strength is greater than or equal to 250 psi, or failure is in the substrate. Repeat cleaning, and testing, if needed, until passing test results are obtained or the surface is acceptable to the engineer.

Keep vehicles and unnecessary equipment off the cleaned surface; only allow HFST application equipment on the clean surface. Apply HFST as soon as possible after pavement surface preparations are completed.

C.3 Application of the HFST

Do not apply the HFST if any of the following exists:

- Pavement surface is wet, damp, or has received rainfall in the previous 24 hours.
- Pavement surface is not sufficiently clean.
- Ambient air or pavement surface temperature is below 50° F or below the manufacturer's recommendations
- If the anticipated weather conditions would prevent adequate curing of the HFST.

- Rain is predicted before HFST completion or proper cure is achieved.
- Pavement preparation is inadequate or didn't pass pull-off test.

Close treatment areas to traffic until HFST is completely cured and pavement surface has been vacuumswept.

Construct HFST to the full width of the existing pavement surface, or as the plans show. Extend the HFST application 2 to 3 feet onto the shoulders if application site is on a curve where no rumble strip exists. If the rumble strip exists, apply HFST only on the main lane not on the shoulder.

Apply a primer to the pavement surface if recommended by the resin binder manufacturer, and according to their application recommendations. Abide by the established quality control practices and adhere to any additional manufacturer recommendations for HFST application.

Blend and mix the resin binder components at the manufacturer's specified ratio using equipment capable of providing the desired results.

Apply the resin binder uniformly over the pavement surface manually or with automated equipment at a uniform thickness of 50-65 mils (25-32 ft2/gal). Use enough resin to cover the pavement surface and sufficiently embed half the thickness of the aggregate; do not apply so much that it covers the aggregate and creates a slick surface. Adjust application rate, as needed, based on the pavement surface type, profile, and condition.

If using automated equipment, the binder resin system manufacturer shall approve the use of automated continuous application device with their material. Ensure that the equipment features positive displacement, volumetric metering, and can store, mixing, heating, monitoring, and distributing the binder components at the proper mix ratio. Adjust the pressure and the speed of the equipment to achieve the proper application thickness. Coverage rate is based upon expected variance in the surface profile of the pavement. Do not contaminate the wet binder or allow the binder material to separate or cure, and impair bonding of the aggregate.

Immediately after applying the resin binder, distribute a sufficient quantity of dry calcined bauxite aggregate to completely cover the resin binder by hand broadcasting or by using a standard chip spreader or equivalent machine. Ensure aggregate is placed within five minutes of the resin binder placement, before it begins to cure. When broadcasting, sprinkle or drop the aggregate onto the resin binder vertically. Do not distribute aggregate in a way that will cause it to roll in the resin binder before coming to a rest; do not push the aggregate into position with a broom or any other hand tool. If using a chip spreader, the machine shall follow closely behind the crew or equipment applying the resin binder. Immediately cover any visible wet or bare spots, or areas with excessive binder, with additional calcined bauxite aggregate before the resin binder begins to set.

Allow the HFST to properly cure, adhering to manufacturer recommendations for minimum cure times at applicable temperatures.

After the HFST is fully cured, remove excess loose surface aggregate by sweeping, blowing, or vacuuming. Do not tear or otherwise damage the surface. Excess calcined bauxite aggregate that is recovered by a vacuum sweeper can be reused if clean, uncontaminated and dry. Remove and replace damaged areas or areas with excess or insufficient aggregate coverage. Uncover pavement markings and repair damages that occur by covering and uncovering markings. Clean expansion joints, utilities, and drainage structures of all debris before opening to traffic.

Additionally, within 3 to 7 days after opening to traffic, the contractor shall vacuum sweep the pavement surface to remove loosened aggregate from the high friction surface area, the shoulders, and any other areas within and immediately adjacent to the HFST site.

D Measurement

The department will measure Resin Binder High Friction Surface Treatment by the square yard acceptably completed.

E Payment

The department will pay for measured quantities at the contract unit price under the following bid item:						
ITEM NUMBER	DESCRIPTION	UNIT				
SPV.0180.01	Resin Binder High Friction Surface Treatment	SY				

Payment for Resin Binder High Friction Surface Treatment is full compensation for testing materials; for surface preparation; for providing the HFST; for cleanup including uncovering and restoration of pavement markings; and for vacuum sweeping and disposing of excess material after the completion and again 3 to 7 days after completion.

The department will pay for pavement repairs, and traffic control separately under other contract bid items or, absent the appropriate bid items, as extra work.

END OF ADDENDUM