Sight Distance Values ${ }^{5}$

$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \\ & \text { MPH } \end{aligned}$	SIGHT DISTANCE - FEET							
	STOPPING SIGHT DISTANCE	DECISION SIGHT DISTANCE ${ }^{1}$					$\begin{aligned} & \text { PASSING } \\ & \text { SIGHT } \\ & \text { ISTANCE } 3,4 \end{aligned}$	
		AVOIDANCE MANEUVER ${ }^{2}$						
		A	B	c	D	E		
25	155	---	---	---	---	---	450	
30	200	220	490	450	535	620	500	
35	250	275	590	525	625	720	550	
40	305	330	690	600	715	825	600	
45	360	395	800	675	800	930	700	
50	425	465	910	750	890	1030	800	
55	495	535	1030	865	980	1135	900	
60	570	610	1150	990	1125	1280	1000	
65	645	695	1275	1050	1220	1365	1100	
70	730	780	1410	1105	1275	1445	1200	
75	820	875	1545	1180	1365	1545	1300	

Notes

1 From Table 3-1, page 3-4, 2018 GDHS. (GDHS hyperlink is only available to WisDOT staff.)

2 Avoidance maneuver A:
Avoidance maneuver B:
Avoidance maneuver C :
Avoidance maneuver D:
Avoidance maneuver E:

Stop on rural road $-\mathrm{t}=3.0 \mathrm{~s}$
Stop on urban road $-\mathrm{t}=9.1 \mathrm{~s}$
Speed/path/direction change on rural road - t varies between 10.2 and 11.2 s
Speed/path/direction change on suburban road - t varies between 12.1 and 12.9 s
Speed/path/direction change on urban road - t varies between 14.0 and 14.5 s

3 See Chapter 3 of the Wisconsin Traffic Engineering, Operations and Safety Manual (TEOpS) for No passing zone standards.
4 See Attachment 5.8 for vertical curve design for Passing Sight Distance.
5 See Attachment 5.2 for Sight Distance Category Application

Sight Distance Categories - Application and Sight Distance Boundaries

Category	Locations to Apply	Sight Distance Boundaries (SDB)	
		Begin	End
1	Default - All locations not in Category 2	End limit of Category 2	Begin limit of Category 2
2	Mainline approach to an Interchange entrance ramp where there is a continuous auxiliary lane to the next downstream interchange exit (See Example 1)	At a distance $=$ DSD-C ${ }^{1}$ from the entrance ramp gore of the upstream interchange ${ }^{2}$	At the entrance ramp gore of the upstream interchange ${ }^{2}$
	Crossroad approach to an Interchange ramp terminal where the posted speed is 40 mph or less	At a distance $=$ DSD-C ${ }^{1}$ from the CL of the ramp terminal intersection	At the CL of the ramp terminal intersection
	Lane drop on a non-freeway or non-expressway	At a distance $=$ DSD-C ${ }^{1}$ from the start of the lane drop	At the end of the lane drop
	Railroad / highway at-grade crossings (See Example 2)	At a distance = DSD-C ${ }^{1}$ from the stop bar upstream from the RR tracks	At the stop bar upstream from the RR tracks
	High speed multilane highway approach to an intersection with a right turn but no left turn in the direction of travel (See Example 3)	At a distance $=$ DSD-C ${ }^{1}$ from the back of the design queue ${ }^{3}$	At the CL of the intersection
	Approach to an intersection where a thru lane becomes a "turn only" lane		
	Two-lane highway or non-high speed multi-lane road approach to an Intersection with an unusual configuration, including multiple right-turn lanes or multiple left-turn lanes		
	Side road approach to an at-grade intersection with a bypass roadway or expressway		
	High-speed 2-lane rural highway approach to an isolated stop sign, traffic signal, or roundabout where such control is unexpected because it is not typical		

Mainline thru lane that becomes an "exit only" lane at an interchange (See Example 4)	At a distance = DSD-C ${ }^{1}$ from the begin taper to exit ramp	At the exit ramp gore ${ }^{2}$
Mainline approach to an interchange exit ramp (See Example 1)	At a distance = DSD-C ${ }^{1}$ from the begin taper to exit ramp	At the exit ramp gore ${ }^{2}$
Mainline approach to an interchange entrance ramp, except an entrance ramp where there is a continuous auxiliary lane to the next downstream interchange exit. (See Example 5 for entrance ramp)	At a distance = DSD-C ${ }^{1}$ from the entrance ramp gore ${ }^{2}$	At the end taper from entrance ramp
Mainline approach to an Interchange with unusual features, e.g., multiple entrance or exit points; short weaving sections	At a distance = DSD-C ${ }^{1}$ from the 1st upstream feature, i.e., begin taper to exit ramp, or entrance ramp gore ${ }^{2}$	At the last downstream feature, i.e., the exit ramp gore, or the end taper from entrance ramp ${ }^{2}$
High-speed multilane highway approach to an intersection with a left turn in the direction of travel (See Example 6)	At a distance = DSD-C ${ }^{1}$ from the back of the design queue ${ }^{3}$	At the CL of the intersection
Crossroad approach to an interchange ramp terminal intersection where the posted speed is 45 mph or greater	At a distance = DSD-C ${ }^{1}$ from the CL of the ramp terminal intersection	At the CL of the ramp terminal intersection
Lane drop on freeways or expressways	At a distance = DSD-C ${ }^{1}$ from the start of the lane drop	At the end of the lane drop
Approach to a major fork on a freeway or expressway	At a distance = DSD-C ${ }^{1}$ from the start of widening	At the point of divergence
Approach to a branch connection on a freeway or expressway	At a distance = DSD-C ${ }^{1}$ from the point of convergence	At the end of lane reduction [or, if there is no lane reduction, at the point of convergence]

Notes

1. DSD-C = Decision Sight Distance Avoidance Maneuver C (see Table 3-3, page 3-8, 2018 GDHS) (GDHS hyperlink is only available to WisDOT staff.)
2. Gore $=$ "painted nose" as defined on page 10-114 and as depicted in Figure 10-63, 2018 GDHS
3. Check queue lengths for the thru, left turn, and right turn movement, and use whichever is furthest from the intersection. See FDM 11-25-1, FDM 11-25-5, and FDM 11-25-10 for guidance on queue length requirements. Also, confer with region traffic staff.

Example 1:

(CATEGORY 2 Sight Distance) Mainline approach to an interchange entrance where
there is a continuous auxiliary lane to the next downstream interchange exit
AND
(CATEGORY 2 Sight Distance) Mainline approach to an interchange exit ramp (Eastbound (EB) shown)

Legend

I
I = SDB = Sight Distance Boundary **

* DCD-C = Decision Sight Distance Avoidance Maneuver C (See Table 3-3, Page 3-8, 2018 GDHS)
** see p. 2-3 of this Attachment

Example 2:

(CATEGORY 2 Sight Distance) Railroad / Highway at-grade crossing
(Eastbound (EB) shown - Westbound (WB) similar)
(Drawing adapted from MUTCD FIG 8B-6)

Legend

I
= SDB = Sight Distance Boundary **

* DCD-C = Decision Sight Distance Avoidance Maneuver C
(See Table 3-3, Page 3-8, 2018 GDHS)
** see p. 2 of this Attachment

Example 3:

(CATEGORY 2 Sight Distance) High speed multilane highway approach to and intersection with a right turn but no left turn in the direction of travel (applies to Eastbound (EB) but not Westbound (WB))

Legend

=SDB = Sight Distance Boundary **

* DCD-C = Decision Sight Distance Avoidance Maneuver C (See Table 3-3, Page 3-8, 2018 GDHS)
** see p. 2 of this Attachment

Example 4:

(CATEGORY 2 Sight Distance) Mainline thru lane that becomes "exit only" lane at an interchange (Eastbound (EB) shown)

Legend

I
I = SDB = Sight Distance Boundary **

* DCD-C = Decision Sight Distance Avoidance Maneuver C (See Table 3-3, Page 3-8, 2018 GDHS)
** see p. 3 of this Attachment

Example 5:

(CATEGORY 2 Sight Distance) Mainline approach to an interchange entrance ramp (Eastbound (EB) shown)

Legend

।
= SDB = Sight Distance Boundary **

* DCD-C = Decision Sight Distance Avoidance Maneuver C (See Table 3-3, Page 3-8, 2018 GDHS)
** see p. 3 of this Attachment

Example 6:

(CATEGORY 2 Sight $\mathrm{D}_{\mathbf{2}}$ ance) High speed multilane highway approach to an intersection with a left turn in the direction of travel
(applies to both Eastbound (EB) and Westbound (WB))

Legend

I
I = SDB = Sight Distance Boundary **

** see p. 3 of this Attachment

Maximum Grades (\%) for Rural Highways by Functional Classification ${ }^{1}$

RURAL ARTERIALS ${ }^{2}$						
	DESIGN SPEED					
TYPE OF TERRAIN ${ }^{5}$	20 MPH	30 MPH	40 MPH	50 MPH	60 MPH	70 MPH
LEVEL	-	-	-	4	3	3
ROLLING	-	-	-	5	4	4

RURAL COLLECTORS ${ }^{3}$						
	DESIGN SPEED					
TYPE OF TERRAIN ${ }^{5}$	20 MPH	30 MPH	40 MPH	50 MPH	60 MPH	70 MPH
LEVEL	7	7	7	6	5	-
ROLLING	10	9	8	7	6	-

RURAL LOCAL ROADS ${ }^{4}$						
	DESIGN SPEED					
TYPE OF TERRAIN ${ }^{5}$	20 MPH	30 MPH	40 MPH	50 MPH	60 MPH	70 MPH
LEVEL	8	7	7	6	5	-
ROLLING	11	10	10	8	6	-

Notes:
1
For Max. Grades under Urban Conditions refer to:

- Arterials: 2018 GDHS, Table 7-4a, Page 7-38; (GDHS hyperlink is only available to WisDOT staff.)
- Freeways: 2018 GDHS, Table 8-1, Page 8-5;
- Interstate: AASHTO Interstate Design Standards 2016, Page 3;
- Collectors: 2018 GDHS, Table 6-7, Page 6-15; and
- Local Streets: 2018 GDHS, Section 5.3.1.5, Page 5-15

2	See 2018 GDHS, Table 7-2, Page 7-6 See 2018 GDHS, Table 8-1, Page 8-5 See AASHTO Interstate Design Standards 2016, Page 3 for Interstates
3	See 2018 GDHS, Table 6-2, Page 6-4
4	See 2018 GDHS, Table 5-2, Page 5-4
5	See Highway Capacity Manual, $7^{\text {th }}$ Edition (Chapter 12-3) for a discussion of terrain types

Object Height	When $S>L$	When $S<L$
24 -inches	$\mathrm{L}=2 \mathrm{~S}-\frac{2158}{\mathrm{~A}}$	$\mathrm{~L}=\frac{\mathrm{AS}}{}{ }^{2}$

L= Length of Vertical Curve (feet)
$\mathbf{S}=$ Sight Distance (feet) (either SSD or DSD value, depending on category)
$K=L / A$; $L=K x A$

Crest Vertical Curves - Sight Distance, Object Height and Minimum Length Criteria

Design Speed (V) (mph)	Category	DECISION DIGHT DISTANCE ${ }^{\text {B }}$			STOPPING SIGHT DISTANCE ${ }^{\text {B }}$			$\begin{gathered} \text { Min. VC } \\ \text { L= } \\ 3 \times V \\ \text { (feet) }{ }^{\text {D }} \end{gathered}$	Category ${ }^{\text {A }}$	Design Speed (V) (mph)
		Sight Distance (feet) ${ }^{\text {c }}$	obj. hgt. (inches)	* Kcr	Sight Distance (feet) ${ }^{\text {c }}$	obj. hgt. (inches)	* Kcr			
25	2	375	24	66	155	24	12	75	1,2	25
30	2	450	24	94	200	24	19	90	1,2	30
35	2	525	24	128	250	24	29	105	1,2	35
40	2	600	24	167	305	24	44	120	1,2	40
45	2	675	24	212	360	24	61	135	1,2	45
50	2	750	24	261	425	24	84	150	1,2	50
55	2	865	24	347	495	24	114	165	1,2	55
60	2	990	24	455	570	24	151	180	1,2	60
65	2	1050	24	511	645	24	193	195	1,2	65
70	2	1105	24	566	730	24	247	210	1,2	70
75	2	1180	24	646	820	24	312	225	1,2	75
80	2	1260	24	736	910	24	384	240	1,2	80
85	2	1340	24	833	1010	24	473	255	1, 2	85

A See section "Stopping Sight Distance (SSD); Decision Sight Distance (DSD)" in text for definitions and criteria for Sight Distance Categories
B $\operatorname{SSD}=$ Stopping Sight Distance
DSD = Decision Sight Distance for Avoidance Maneuver C
(GDHS hyperlink is only available to WisDOT staff)
C DSD Avoidance Maneuver C, See Table 3-3, Page 3-8, 2018 GDHS/SSD, See Table 3-1, Page 3-4, 2018 GDHS
D Minimum length of crest vertical curve $=$ the greater of either ($\mathrm{Kcr} \times \mathrm{A}$), OR a distance in feet equal to $3 \times$ the design speed in $\mathrm{mph}(3 \times \mathrm{V})$

$\mathbf{L}=$ Length of Vertical Curve (feet) $\quad \mathbf{S}=$ Sight Distance (feet) (either SSD or DSD required, depending on $\mathbf{A}=$ Algebraic Grade Difference (Percent) K = L/A ; L=KA

Sag Vertical Curves - Sight Distance and Minimum Length Requirements

Design Speed (V) (mph)	Category	DECISION SIGHT DISTANCE		STOPPING SIGHT DISTANCE		$\left\lvert\, \begin{array}{\|r} \text { Min. VC } \\ L= \\ 3 \times V \\ (\text { feet }) \\ \hline \end{array}\right.$	Category A	Design Speed (V) (mph)
		Sight Distance (feet)	Ksag	Sight Distance (feet) ${ }^{\text {c }}$	Ksag			
25	2	375	83	155	26	75	1,2	25
30	2	450	103	200	37	90	1,2	30
35	2	525	124	250	49	105	1,2	35
40	2	600	144	305	64	120	1,2	40
45	2	675	165	360	79	135	1,2	45
50	2	750	186	425	96	150	1,2	50
55	2	865	219	495	115	165	1,2	55
60	2	990	254	570	136	180	1,2	60
65	2	1050	271	645	157	195	1,2	65
70	2	1105	287	730	181	210	1,2	70
75	2	1180	308	820	206	225	1,2	75
80	2	1260	331	910	231	240	1,2	80
85	2	1340	353	1010	260	255	1,2	85

A See section "Stopping Sight Distance (SSD); Decision Sight Distance (DSD)" in text for definitions and criteria for Sight Distance Categories
B $\quad \mathrm{SSD}=$ Stopping Sight Distance
DSD = Decision Sight Distance for Avoidance Maneuver C
(GDHS hyperlink is only available to WisDOT staff)
C See DSD Avoidance Maneuver C, See Table 3-3, Page 3-8, 2018 GDHS/SSD, See Table 3-1, Page 3-4, 2018 GDHS
D Minimum length of sag vertical curve $=$ the greater of either (KSAG \times A), OR a distance in feet equal to $3 x$ the design speed in mph ($3 \times \mathrm{V}$)

Passing Sight Distance for Crest Vertical Curves

When $S>L$	When $S<L$
$L=2 S-\frac{2800}{A}$	$L=\frac{A S^{2}}{2800}$

$L=$ Length of Vertical Curve (feet)
A = Algebraic Grade Difference (Percent)
S = Sight Distance (feet)

Design Speed (mph)	AASHTO Passing Sight Distance	Minimum Crest K Value to achieve PSD
25	450	72
30	500	89
35	550	108
40	600	129
45	700	175
50	800	229
55	1000	289
60	1100	357
70	1200	432
75	1300	514
80	1400	604

Source: A Policy on Geometric Design of Highway and Streets, $7^{\text {th }}$ Edition, AASHTO 2018

Design Controls for Stopping Sight Distance (SSD) on Horizontal Curves

Design Controls for Decision Sight Distance for Avoidance Maneuver C (DSD-C) on Horizontal Curves

Profile and Cross Sections of Two-Lane Highway to the Right

*ANGULAR BREAKS MUST BE APPROPRIATELY ROUNDED, SUGGESTED VERTICAL CURVE LENGTH IN FEET = DESIGN SPEED IN MPH (FOR EXAMPLE 50-FT FOR 50 MPH) (SEE 2018 GDHS, FIGURE 3-8 AND SECTION 3.3.8.7 FOR ADDITIONAL GUIDANCE)

NOTES
(1) When normal shoulder is greater than superelevation, retain normal shoulder slope
(2) High-side shoulder slope $=$ FLAT at section B-B

V.C. $=$ Vertical Curve	R.C.	$=$ Remove adverse crown slope (section C-C)	
P.C.	$=$ Beginning of Horizontal Curve	N.C.	$=$ Normal crown slope (\%)
e	$=$ Rate of superelevation (\%)	L	$=$ Minimum length of Runoff
X	$=$ Tangent runout		

See FDM 11-10 Exhibit 5.1 for definitions, equations and values for L, X, and T.

Superelevation Transition of Divided Highway Curve to the Right

NOTES:
(1) When Normal shoulder slope IS GREATER THAN SUPERELEVATION, retain normal shoulder slope.
(2) HIGH SIDE SHOULDER SLOPE = FLAT at SECTION b-b

Profile and Cross Sections of Divided Highway Curve to Right

*ANGULAR BREAKS MUST BE APPROPRIATELY ROUNDED, SUGGESTED VERTICAL CURVE LENGTH IN FEET = DESIGN SPEED IN MPH (FOR EXAMPLE 50-FT FOR 50 MPH) (SEE 2018 GDHS, FIGURE 3-8 AND SECTIONS 3.3.8.7 \& 3.3.8.8 FOR ADDITIONAL GUIDANCE)

NOTES:

Superelevation rotation is about median edges of pavement.
N.C. $=$ Normal crown slope, (\%)
R.C. = Remove adverse crown slope superelevate at normal crown slope retain slope on both shoulders.
P.C. $=$ Beginning of Horizontal Curve
V.C. $=$ Vertical Curve
e = Rate of superelevation (\%)
$L=$ Minimum length of Runoff
$X=$ Tangent runout
See FDM 11-10 Exhibit 5.1 for definitions, equations and values for L, X, and T.

Example Intersection Layouts

* Posted Speed (mph)	** Distance "Avt" (feet)	Distance "Bvi" (feet)	
		THRU movement possible from sideroad	*NO THRU movement possible from sideroad ("T" intersection)
25	90	90	75
30	105	105	75
35	120	120	75
40	135	135	75
45	150	150	75
50	165	165	75
55	180	180	75
65	210	210	75

Example 1	4-LEG INTERSECTION (THRU MOVEMENT POSSIBLE ON SIDEROAD)
GIVEN	POSTED SPEED IS 55 MPH ON THE MAJOR ROAD POSTED SPEED IS 45 MPH ON THE SIDEROAD
SOLUTION	READING FROM THE TABLE: DISTANCE Avt ON MAJOR ROAD $=180$ FT DISTANCE Bvt ON SIDEROAD $=150 \mathrm{FT}$
Example 2	T INTERSECTION (NO THRU MOVEMENT POSSIBLE ON SIDEROAD)
GIVEN	POSTED SPEED IS 55 MPH ON THE MAJOR ROAD POSTED SPEED IS 45 MPH ON THE SIDEROAD
SOLUTION	READING FROM THE TABLE: DISTANCE Avt ON MAJOR ROAD $=180$ FT DISTANCE Bvt ON SIDEROAD $=75 \mathrm{FT}$

* Use the posted speed of the Major Highway to determine distance "A" se the posted speed of the sideroad to determine distance "B".
** Based on distance traveled in 2 seconds at Posted speed +5 mph .
*** Based on distance traveled in 2 seconds at 25 mph because vehicle approaching intersection on sideroad has to slow down to make a turn.
NO THRU Movement means either existing or proposed.

NOTES:

Distances are approximate and may be adjusted to fit site conditions.
These guidelines are for the Vision Triangle only, and are not to be interpreted as Intersection Sight Distance (ISD) or Stopping Sight Distance (SSD) requirements.
The Vision Triangle must be free of all obstructions.

Example computation of Intersection Sight Distance for Cases B1, B2, and B3

Given

- Mainline: 4-lane divided bi-directional road (2 lanes in each direction); design speed $=50$ mph ; tangent alignment; lane width = 12 feet; median width $=30$ feet; shoulder width $=10 \mathrm{ft}$
- Side road: arterial; grade $<3 \%$; design speed $=$ 40 mph
- Intersection: type B1 with 12 ft wide right turn lane

Find

- Design vehicle for intersection sight distance
- Required Intersection Sight Distances for both a passenger car and for the design vehicle

Solution

- From FDM 11-10 Table 5.1 the design vehicle for an arterial is a combination truck.
- Intersection Sight Distance to the LEFT is the greater of that required for Case B2-Right turn from the minor road, and Case B3-Crossing maneuver from the minor road.
- Intersection Sight Distance to the RIGHT is the greater of that required for Case B1 - Left turn from the minor road, and Case B3-Crossing maneuver from the minor road.

Intersection Sight Distances (ISDs) to LEFT			Intersection Sight Distances (ISDs) to RIGHT	
Case B2	Case B3	PASSENGER CAR	Case B1	Case B3
8.0	7.0	UPPER MINIMUM time gap $(\mathrm{sec})^{\mathrm{A}}$	10.0	7.0
590	515	UPPER MINIMUM ISD (feet) ${ }^{\text {A }}$	735	515
19	19	Vehicle length (feet) ${ }^{\text {B }}$	19	19
NA	NA	Vehicle length +6 ' $<$ Median width?	Yes	Yes
Cross 12-ft right turn lane	Cross 12-ft right turn lane	ADJUSTMENT description	None	None
0.5	0.5	Additional time (sec) ${ }^{\text {C }}$	--	--
35	35	Additional ISD (feet)	--	--
625	550	Total ISD (feet)	735	515
625		Controlling ISD (feet)	735	
14.5 ft from the edg 26.5 ft from the e	e of right turn lane= dge of travel lane.	Side road decision point location	11.0 feet from the med travel	an edge of the far side lanes
Case B2	Case B3	COMBINATION TRUCK (DESIGN VEHICLE)	Case B1	Case B3
12.0	13.0	UPPER MINIMUM time gap $(\mathrm{sec})^{\mathrm{A}}$	13.0	13.0
885	960	UPPER MINIMUM ISD (feet) ${ }^{\text {A }}$	960	960
Greater than 55 ft	Greater than 55 ft	Vehicle length (feet) ${ }^{\text {B }}$	Greater than 55 ft	Greater than 55 ft
NA	NA	Vehicle length +6 ' $<$ Median width?	No	No
Cross 12-ft right turn lane	Cross 12-ft right turn lane	ADJUSTMENT description	Cross an additional 54feet $=4.5$ lanes (12' right turn lane $+12^{\prime}$ travel lane $+30^{\prime}$ median)	$\begin{aligned} & \text { Cross an additional 66- } \\ & \text { feet }=5.5 \text { lanes }\left(12^{\prime}\right. \\ & \text { right turn lane }+2 \times 12^{\prime} \\ & \text { travel lanes }+30^{\prime} \\ & \text { median) } \end{aligned}$
0.7	0.7	Additional time (sec) ${ }^{\text {c }}$	$0.7 \times 4.5=3.15$	$0.7 \times 5.5=3.85$
50	50	Additional ISD (feet)	230	285
935	1010	Total ISD (feet)	1190	1245
	1010	Controlling ISD (feet)		1245
14.5 ft from the edge of right turn lane=26.5 ft from the edge of travel lane.		Side road decision point location	14.5 ft from the edge of right turn lane $=26.5 \mathrm{ft}$ from the edge of travel lane.	
A See FDM 11-10 Table 5.2.				
B See Figure 2-23, Page 2-76 2018 GDHS (GDHS hyperlink is only available to WisDOT staff.)				
C See FDM 11-10 Table 5.2, Notes B \& C				

