TABLE OF CONTENTS

Chapter 13: Drainage

Section 13-1 Drainage Practice

- **13-1-1** Drainage Practice Background
 - 1.1 Introduction
 - 1.2 General
 - 1.3 Basic Statewide Practice
 - 1.4 Design Responsibility
 - 1.5 Common Drainage Law
 - 1.6 Statutory Drainage Law

Attachment 1.1 Glossary of Terms

- **13-1-5** Major Drainage Guidelines and Criteria
 - 5.1 Definition
 - 5.2 General Guidelines
 - 5.3 Surface Data Collection

Attachment 5.1 Drainage Data Requirements, Design Aids and Computer Software

Attachment 5.2 Major Drainage Summary Sheet

- **13-1-10** Documentation of Hydrologic/Hydraulic Design
 - 10.1 Introduction
 - 10.2 Bridge and Box Culvert Design
 - 10.3 Stormwater Report Applicability
 - 10.4 Design Documentation
 - 10.5 Stormwater-Drainage-WQ Report Spreadsheet Instructions for Drainage Design

Attachment 10.1 Stormwater-Drainage-WQ Report Spreadsheet: Drainage - Summary Worksheet

Attachment 10.2 Stormwater-Drainage-WQ Report Spreadsheet: Drainage - Data Worksheet

- **13-1-15** Culvert Material Selection Standard
 - 15.1 Application
 - 15.2 Selection Standard
 - 15.3 Special Situations
 - 15.4 Corrosion Concerns About Steel Culvert Pipe
 - 15.5 Abrasion Concerns
 - 15.6 Limited Clearance Installations
 - 15.7 Culvert Selection Justification
 - 15.8 Tied Joints
 - 15.9 Height of Cover for Culvert Pipes
 - 15.10 Roughness Coefficient for Culvert Pipe

Attachment 15.1 Potential for Bacterial Corrosion of Zinc Galvanized Steel Culvert Pipe (Map)

- **13-1-17** Storm Sewer Material Selection Standard
 - 17.1 Application
 - 17.2 Selection Standard
 - 17.3 Approved Materials
 - 17.4 Special Situations
 - 17.5 High Groundwater and Buoyancy of Thermoplastic Pipe
 - 17.6 Storm Sewer Pipe Connections
 - 17.7 Height of Cover for Storm Sewer
 - 17.8 Roughness Coefficient for Storm Sewer

- **13-1-20** Large Drainage Conduit
 - 20.1 Introduction

- **13-1-21** Precast Box Culverts
 - 21.1 Introduction

- **13-1-25** Fill Height Tables
25.1 Design Criteria
25.2 Design Methods
25.3 Cut Ends
25.4 Multiple Structures
25.5 Abrasive or Corrosive Conditions

Attachment 25.1 Storm Sewer Fill Height Table for Concrete Pipe
Attachment 25.2 Fill Height Table-Corrugated Steel, Aluminum, Polyethylene, Polypropylene and Reinforced Concrete Pipe, HS20 Loading, 2-2/3in x 1/2in Corrugations
Attachment 25.3 Fill Height Tables: Corrugated Steel Pipe, 3 in x 1in Corrugations; and Structural Plate Pipe, 6in x 2in Corrugations
Attachment 25.4 Fill Height Tables: Corrugated Steel Pipe Arch, 2-2/3in x 1/2in Corrugations; and Corrugated Steel Pipe Arch, 3in x 1in Corrugations
Attachment 25.5 Fill Height Table, Structural Plate Pipe Arch, 6inx2in Corrugations
Attachment 25.6 Fill Height Tables: Corrugated Aluminum Pipe, 3in x 1in Corrugations; and Aluminum Alloy Structural Plate Pipe, 9in x 2 1/2in Corrugations
Attachment 25.7 Fill Height Table, Corrugated Aluminum Pipe Arch, 2 2/3in x 1/2in Corrugations
Attachment 25.8 Fill Height Table, Aluminum Alloy Structural Plate Pipe Arch, 9in x 2-1/2in Corrugations
Attachment 25.9 Fill Height Table, Reinforced Concrete Arch and Elliptical Pipe (all sizes); and Dimensions for Reinforced Concrete Arch and Elliptical Pipe (English)

13-1-30 Culvert Replacement and Analysis for Perpetuation and Rehabilitation Projects
30.1 Background
30.2 Applicability
30.3 Guidelines for Culvert Replacement on Perpetuation and Rehabilitation Projects
30.4 Culvert Materials on Perpetuation and Rehabilitation Projects
30.5 Culvert Extensions, Endwalls and Traversable Grates on Perpetuation and Rehabilitation Projects
30.99 Resources
Attachment 30.1 Guidelines for Determining a Rural Area
Attachment 30.2 Culvert Sizing Quick Check

Section 13-5 Field Work
13-5-1 Introduction
1.1 Introduction
13-5-5 Survey Data
5.1 Drainage Cross Section for Small Culverts
5.2 Drainage Surveys for Large Culverts and Bridges
5.3 Preliminary Field Review
5.4 Changes in Existing Flow Conditions
5.5 Tail-Water Controls
5.6 Final Field Review

Section 13-10 Hydrology
13-10-1 Design Criteria
1.1 Introduction
1.2 Flood Frequency
1.3 Design Frequency
1.4 Freeboard Considerations
1.5 Use and Design of Overflow Sections
1.6 Probability of Flood Occurrence
1.7 Future Development Effects
1.8 Hydraulic Information on Plans
Attachment 1.1 Flood Design Frequency Selection Chart
Attachment 1.2 Probability of Flood Occurrence (Table)
Attachment 1.3 Probability of Flood Damage Before Payment of 25-Year Mortgage
13-10-5 Methods of Determining Peak Runoff
5.1 Design Discharge
5.2 Discharge Frequency Graph
5.3 Rational Method
5.4 Urban Hydrology for Small Watersheds (TR-55)
5.5 USGS Flood Frequency Equations for Wisconsin
5.6 Gaging Station Data
5.7 Log Pearson Type III Distribution
5.8 Transferring Gaged Discharges
5.9 Comparison of Similar Drainage Basin at Gaged Sites
5.10 Published Watershed Studies
5.11 Field Review Notes, Interviews, and Historical Data
5.12 References

Attachment 5.1 Area Limits for Peak Discharge Methods
Attachment 5.2 Runoff Coefficients (C), Rational Formula; and Runoff Coefficients for Specific Land Uses
Attachment 5.3 Time of Concentration of Small Drainage Basins (Nomograph)
Attachment 5.4 Rainfall Intensity-Duration-Frequency Curves
Attachment 5.5 Contour Map for Example Problem
Attachment 5.6 Runoff Curve Numbers for NRCS TR-55 Method
Attachment 5.7 TR-55 Graphical Discharge Method (Example)
Attachment 5.8 Discharge Frequency Graph (Example)

13-10-10 Hydrograph Development and Routing
10.1 Development
10.2 Procedure
10.3 NRCS Triangular and Curvilinear Dimensionless Unit Hydrograph Methods
10.4 Routing
10.5 Detention Pond Example
10.6 References

Attachment 10.1 Basic Watershed Data Work Sheet
Attachment 10.2 Hydrograph Development Work Sheet
Attachment 10.3 Sample Hydrograph
Attachment 10.4 Headwater Depth Nomograph
Attachment 10.5 Depth-Outflow Graph (example)
Attachment 10.6 Storage Indicator Curve Work Sheet
Attachment 10.7 Storage-Indicator Curve (example)
Attachment 10.8 Stage-Storage Curve (example)
Attachment 10.9 Hydrograph Data Work Sheet
Attachment 10.10 Hydrograph (Example)
Attachment 10.11 Example Problem Illustration

Section 13-15 Hydraulic Design of Culverts
13-15-1 Economic Analysis
1.1 Introduction

13-15-5 Design Criteria
5.1 Introduction
5.2 Culvert Location
5.3 Structure Size Selection
5.4 Allowable Headwater
5.5 Design Freeboard and Headwater-to-Depth Ratio
5.6 Inlet Treatments
5.7 Improved Inlets
5.8 End Protection
5.9 Type, Shape, and Roughness of Culvert
5.10 Design Tail Water
5.11 Allowable Velocity
5.12 Depth of Flow
5.13 Check Discharges
5.12 References

Attachment 5.1 Entrance Loss Coefficients (Ke) for Culverts
13-15-10 Culvert Hydraulics
10.1 Introduction
10.2 Available Design Aids
10.3.........Inlet-Outlet Control
10.4.........Discharge Velocity
10.5.........Improved Inlets
10.6.........Culvert Performance Curve
10.7.........References

Attachment 10.1...Energy Losses Through a Conduit (schematic)
Attachment 10.2...Inlet and Outlet Control Problem Sample Work Sheets
Attachment 10.3...Culvert Hydraulic Performance Curves (examples)

13-15-15.....Special Hydraulics
 15.1.......Introduction
 15.2.......Drainage Disposal by Pumping
 15.3.......Siphons and Sag Culverts
 15.4.......Type of Conduit

Section 13-20 Hydraulic Design of Bridges

13-20-1Design Methods
 1.1.........Definition
 1.2.........Type of Flow
 1.3.........Methods
 1.4.........Additional Literature

Attachment 1.1Types of Flow Encountered at Bridges

Section 13-25 Storm Sewer Design

13-25-1Introduction
 1.1.........Introduction

Attachment 1.1Storm Sewer Design Flow Chart

13-25-5Basic Drainage Area Information
 5.1.........Basic Information Needs

13-25-10Field Drainage Information
 10.1.......Field Information Needs

13-25-15Preliminary Layout of System
 15.1.......Background Information
 15.2.......Inlet Locations
 15.3.......Conduit Location
 15.4.......Standards for Storm Drain Pipe
 15.5.......Manholes
 15.6.......Outfalls

13-25-20Design Discharge
 20.1.......Design Discharge Information

13-25-25Gutter Design
 25.1.......Capacity
 25.2.......Gutter Types
 25.3.......Longitudinal Slopes

Attachment 25.1Gutter Design Nomograph
Attachment 25.2Gutter Design Example

13-25-30Hydraulic Design of Inlets
 30.1.......Inlet Types
 30.2.......Allowable Inlet Capacities
 30.3.......Capacities of Grate Inlets and Combination Inlets on a Continuous Grade
 30.4.......Capacity of Grate Inlets in a Sag
 30.5.......Capacity of Curb Openings in a Sag
 30.6.......Spacing of Inlets on a Continuous Grade
 30.7.......Literature on Inlet Design
 30.8.......References

Attachment 30.1 ...Reduction Factors for Inlets
Attachment 30.2 ...Performance Curves for Slotted CMP Surface Drains

13-25-35Hydraulic Design of Storm Sewers
 35.1.......Background Information
35.2 Design Aids
35.3 Conduit Design - Full Flow
35.4 Pressure Flow
35.5 Energy and Hydraulic Grade Lines (EGL and HGL)
35.6 Hydraulic Standards for Storm Drain Pipe
35.7 References
Attachment 35.1 Manning Roughness Coefficients
Attachment 35.2 Graphic Solution of the Manning Equation
Attachment 35.3 Hydraulic Elements of a Circular Section
Attachment 35.4 Capacity and Velocity Diagram for Circular Corrugated Pipe Flowing Full (n = 0.024)
Attachment 35.5 Capacity and Velocity Diagram for Circular Concrete Pipe Flowing Full (n= 0.013)
Attachment 35.6 Sewer Bend Loss Coefficients
Attachment 35.7 Loss Coefficients for Miter Bends

13-25-40 Design Procedure: Full and Partially Full Flow
40.1 Background Information
40.2 Procedure
Attachment 40.1 Work Sheet for Storm Sewer Design
Attachment 40.2 Full and Partially Full Sewer Design Problem

13-25-45 Design Procedure: Surcharged Full Flow
45.1 Background Information
45.2 Procedure
Attachment 45.1 Energy and Hydraulic Grade Lines for a Properly and Improperly Designed Storm Sewer
Attachment 45.2 Work Sheet for Storm Sewer Design
Attachment 45.3 Example Work Sheet for Sewer Design Problem

Section 13-30 Channels and Road Ditches
13-30-1 Channel Types and Characteristics
1.1 Channel Types
1.2 Roadside Ditches
1.3 Median Ditches
1.4 Toe of Slope and Intercepting Embankments

13-30-5 Channel Characteristics
5.1 Introduction
5.2 Vertical Alignment
5.3 Horizontal Alignment
5.4 Roughness Factors
5.5 Channel Geometry
5.6 Natural Channels

13-30-10 Hydraulic Design of Open Channels
10.1 Introduction
10.2 Types of Flow
10.3 Uniform Flow
10.4 Manning's Roughness Coefficient
10.5 Shear Stress
10.6 Design Parameters
10.7 General Design Procedures
10.8 References

13-30-15 Grass Lined Channels
15.1 Introduction
15.2 Grass Lining Properties
15.3 Manning's Roughness
15.4 Permissible Shear Stress
15.5 Grass Cover Factor
15.6 Permissible Soil Shear Stress
15.7 Grass Lined Channel Design Example
15.9 References
Attachment 15.1 Grass Lined Channel Design Example (Using HEC-15)
13-30-25 Rock Riprap Lined Channels
 25.1Introduction
 25.2Analysis of Slopes Less than or Equal to 20 Percent
 25.3Manning's Roughness (for Rock Riprap Lined Channels)
 25.4Permissible Shear Stress
 25.5Rock Riprap Design Procedure
 25.6Design Example (Using Equations): Riprap Channel (Mild Slope)
 25.7Example Riprap Lined Design for Channel Slopes ≤ 20% Using the WisDOT Spreadsheet
 25.8Additional Design Considerations
 25.9References

Attachment 25.1 Design Example (Using Equations): Riprap Channel (Mild Slope)
Attachment 25.2 Riprap Channel (Mild Slope) WisDOT Spreadsheet Worksheet
Attachment 25.3 Instructions and Example for Riprap Lined Design for Channel Slopes ≤ 20% Using the WisDOT Spreadsheet
Attachment 25.4 Angle of Repose of Riprap in Terms of Mean Size and Shape of Stone
Attachment 25.5 Map of Areas in Wisconsin where Rounded Riprap is Predominantly Available

13-30-30 Rock Riprap Lined Chutes
 30.1Introduction
 30.2Steep Slope Analysis
 30.3Rock Chute Design Spreadsheet
 30.4References

Attachment 30.1 Rock Chute Design Data Spreadsheet and Design Example
Attachment 30.2 Rock Chute Design - Plan Sheet
Attachment 30.3 Rock Chute Design - Construction Detail

Section 13-35 Erosion and Water Pollution Control
13-35-1Special Hydraulic Structures
 1.1Introduction
 1.2Flow Control Gates
 1.3Debris Control Structures
 1.4Detention Basin
 1.5Temporary Sediment Structures

13-35-5Energy Dissipaters
 5.1Introduction
 5.2Riprap Blanket
 5.3Lined Channel Expansions
 5.4Outlet Expansion
 5.5Literature on Energy Dissipaters

Attachment 5.1 Dissipater Limitations
Attachment 5.2 Recommended Configuration of Riprap Blanket Subject to Maximum and Minimum Tail Waters
Attachment 5.3 Culver Outlet Erosion Protection, Lined Channel Expansions
Attachment 5.4 Example Problem, Lined Channel Expansion Design
Attachment 5.5 Typical Outlet Expansion Diagram
Attachment 5.6 Length Requirements for Expanded Pipes

Section 13-40 Subgrade Drainage
13-40-1Underdrains
 1.1Introduction
 1.2Descriptions
 1.3Design Criteria
 1.4Underdrain Conduit Installations
 1.5Material Considerations
 1.6Geotextile Fabric
 1.7Selection of Type
 1.8Construction
Section 13-45 Culvert and Storm Sewer Rehabilitation and Replacement

13-45-1Background
 1.1Introduction
 1.2Design Responsibility and Coordination
 1.3Definitions

13-45-5Design Considerations
 5.1Introduction
 5.2Evaluation
 5.3Hydraulics
 5.4Structural Condition
 5.5Cleaning and Verification of Clearance
 5.6Environmental
 5.7Safety
 5.8Access
 5.9Traffic

13-45-10Culvert Rehabilitation by Sliplining
 10.1Introduction
 10.2Types of Sliplining
 10.3Sliplining Materials
 10.4Slipliner Design Considerations

Attachment 10.1Culvert Liner Hydraulic Check

13-45-15Other Culvert Repair and Rehabilitation Practices
 15.1Introduction
 15.2Invert Paving
 15.3Cured in Place Pipe Liner (CIPP)
 15.4Centrifugally Cast and Spray-on Liners
 15.5Pre and Post Installation Inspection of Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners
 15.6Design Requirements for Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners
 15.7Cost Considerations for Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners

13-45-20Trenchless Installation of New or Replacement Culvert Pipe and Storm Sewer
 20.1Introduction
 20.2Environmental Considerations
 20.3Geotechnical Considerations
 20.4Trenchless Construction Methods

13-45-99Resources and References
 99.1Resources
 99.2References