Section 13-1 Drainage Practice

13-1-1 Drainage Practice Background
 1.1 Introduction
 1.2 General
 1.3 Basic Statewide Practice
 1.4 Design Responsibility
 1.5 Common Drainage Law
 1.6 Statutory Drainage Law

Attachment 1.1 Glossary of Terms

13-1-5 Major Drainage Guidelines and Criteria
 5.1 Definition
 5.2 General Guidelines
 5.3 Surface Data Collection

Attachment 5.1 Drainage Data Requirements, Design Aids and Computer Software

Attachment 5.2 Major Drainage Summary Sheet

13-1-10 Documentation of Hydrologic/Hydraulic Design
 10.1 Introduction
 10.2 Bridge and Box Culvert Design
 10.3 Stormwater Report Applicability
 10.4 Design Documentation
 10.5 Stormwater-Drainage-WQ Report Spreadsheet Instructions for Drainage Design

Attachment 10.1 Stormwater-Drainage-WQ Report Spreadsheet: Drainage - Summary Worksheet

Attachment 10.2 Stormwater-Drainage-WQ Report Spreadsheet: Drainage - Data Worksheet

13-1-15 Culvert Material Selection Standard
 15.1 Application
 15.2 Selection Standard
 15.3 Special Situations
 15.4 Corrosion Concerns About Steel Culvert Pipe
 15.5 Abrasion Concerns
 15.6 Limited Clearance Installations
 15.7 Culvert Selection Justification
 15.8 Tied Joints
 15.9 Height of Cover for Culvert Pipes
 15.10 Roughness Coefficient for Culvert Pipe

Attachment 15.1 Potential for Bacterial Corrosion of Zinc Galvanized Steel Culvert Pipe (Map)

13-1-17 Storm Sewer Material Selection Standard
 17.1 Application
 17.2 Selection Standard
 17.3 Approved Materials
 17.4 Special Situations
 17.5 High Groundwater and Buoyancy of Thermoplastic Pipe
 17.6 Storm Sewer Pipe Connections
 17.7 Height of Cover for Storm Sewer
 17.8 Roughness Coefficient for Storm Sewer

13-1-20 Large Drainage Conduit
 20.1 Introduction

13-1-21 Precast Box Culverts
 21.1 Introduction

13-1-25 Fill Height Tables
25.1 Design Criteria
25.2 Design Methods
25.3 Cut Ends
25.4 Multiple Structures
25.5 Abrasive or Corrosive Conditions

Attachment 25.1 Storm Sewer Fill Height Table for Concrete Pipe
Attachment 25.2 Fill Height Table-Corrugated Steel, Aluminum, Polyethylene, Polypropylene and Reinforced Concrete Pipe, HS20 Loading, 2-2/3in x 1/2in Corrugations
Attachment 25.3 Fill Height Tables: Corrugated Steel Pipe, 3 in x 1in Corrugations; and Structural Plate Pipe, 6in x 2in Corrugations
Attachment 25.4 Fill Height Tables: Corrugated Steel Pipe Arch, 2-2/3in x 1/2in Corrugations; and Corrugated Steel Pipe Arch, 3in x 1in Corrugations
Attachment 25.5 Fill Height Table, Structural Plate Pipe Arch, 6inx2in Corrugations
Attachment 25.6 Fill Height Tables: Corrugated Aluminum Pipe, 3in x 1in Corrugations; and Aluminum Alloy Structural Plate Pipe, 9in x 2 1/2in Corrugations
Attachment 25.7 Fill Height Table, Corrugated Aluminum Pipe Arch, 2 2/3in x 1/2in Corrugations
Attachment 25.8 Fill Height Table, Aluminum Alloy Structural Plate Pipe Arch, 9in x 2-1/2in Corrugations
Attachment 25.9 Fill Height Table, Reinforced Concrete Arch and Elliptical Pipe (all sizes); and Dimensions for Reinforced Concrete Arch and Elliptical Pipe (English)

13-1-30 Culvert Replacement and Analysis for Perpetuation and Rehabilitation Projects

30.1 Background
30.2 Applicability
30.3 Guidelines for Culvert Replacement on Perpetuation and Rehabilitation Projects
30.4 Culvert Materials on Perpetuation and Rehabilitation Projects
30.5 Culvert Extensions, Endwalls and Traverseable Grates on Perpetuation and Rehabilitation Projects
30.99 Resources

Attachment 30.1 Guidelines for Determining a Rural Area
Attachment 30.2 Culvert Sizing Quick Check

Section 13-5 Field Work

13-5-1 Introduction
1.1 Introduction

13-5-5 Survey Data
5.1 Drainage Cross Section for Small Culverts
5.2 Drainage Surveys for Large Culverts and Bridges
5.3 Preliminary Field Review
5.4 Changes in Existing Flow Conditions
5.5 Tail-Water Controls
5.6 Final Field Review

Section 13-10 Hydrology

13-10-1 Design Criteria
1.1 Introduction
1.2 Flood Frequency
1.3 Design Frequency
1.4 Freeboard Considerations
1.5 Use and Design of Overflow Sections
1.6 Probability of Flood Occurrence
1.7 Future Development Effects
1.8 Hydraulic Information on Plans

Attachment 1.1 Flood Design Frequency Selection Chart
Attachment 1.2 Probability of Flood Occurrence (Table)
Attachment 1.3 Probability of Flood Damage Before Payment of 25-Year Mortgage

13-10-5 Methods of Determining Peak Runoff
5.1 Design Discharge
5.2 Discharge Frequency Graph
5.3 Rational Method
5.4 Urban Hydrology for Small Watersheds (TR-55)
FDM Chapter 13 Table of Contents

5.5 USGS Flood Frequency Equations for Wisconsin
5.6 Gaging Station Data
5.7 Log Pearson Type III Distribution
5.8 Transferring Gaged Discharges
5.9 Comparison of Similar Drainage Basin at Gaged Sites
5.10 Published Watershed Studies
5.11 Field Review Notes, Interviews, and Historical Data
5.12 References

Attachment 5.1 Area Limits for Peak Discharge Methods
Attachment 5.2 Runoff Coefficients (C), Rational Formula, and Runoff Coefficients for Specific Land Uses
Attachment 5.3 Time of Concentration of Small Drainage Basins (Nomograph)
Attachment 5.4 Rainfall Intensity-Duration-Frequency Curves
Attachment 5.5 Contour Map for Example Problem
Attachment 5.6 Runoff Curve Numbers for NRCS TR-55 Method
Attachment 5.7 TR-55 Graphical Discharge Method (Example)
Attachment 5.8 Discharge Frequency Graph (Example)

13-10-10 Hydrograph Development and Routing
 10.1 Development
 10.2 Procedure
 10.3 NRCS Triangular and Curvilinear Dimensionless Unit Hydrograph Methods
 10.4 Routing
 10.5 Detention Pond Example
 10.6 References

Attachment 10.1 Basic Watershed Data Work Sheet
Attachment 10.2 Hydrograph Development Work Sheet
Attachment 10.3 Sample Hydrograph
Attachment 10.4 Headwater Depth Nomograph
Attachment 10.5 Depth-Outflow Graph (example)
Attachment 10.6 Storage Indicator Curve Work Sheet
Attachment 10.7 Storage-Indicator Curve (example)
Attachment 10.8 Stage-Storage Curve (example)
Attachment 10.9 Hydrograph Data Work Sheet
Attachment 10.10 Hydrograph (Example)
Attachment 10.11 Example Problem Illustration

Section 13-15 Hydraulic Design of Culverts

13-15-1 Economic Analysis
 1.1 Introduction

13-15-5 Design Criteria
 5.1 Introduction
 5.2 Culvert Location
 5.3 Structure Size Selection
 5.4 Allowable Headwater
 5.5 Design Freeboard and Headwater-to-Depth Ratio
 5.6 Inlet Treatments
 5.7 Improved Inlets
 5.8 End Protection
 5.9 Type, Shape, and Roughness of Culvert
 5.10 Design Tail Water
 5.11 Allowable Velocity
 5.12 Depth of Flow
 5.13 Check Discharges
 5.14 References

Attachment 5.1 Entrance Loss Coefficients (Ke) for Culverts

13-15-10 Culvert Hydraulics
 10.1 Introduction
 10.2 Available Design Aids
Section 13-20 Hydraulic Design of Bridges

13-20-1 Design Methods
 1.1 Definition
 1.2 Type of Flow
 1.3 Methods
 1.4 Additional Literature

Attachment 1.1 Types of Flow Encountered at Bridges

Section 13-25 Storm Sewer Design

13-25-1 Introduction
 1.1 Introduction

Attachment 1.1 Storm Sewer Design Flow Chart

13-25-5 Basic Drainage Area Information
 5.1 Basic Information Needs

13-25-10 Field Drainage Information
 10.1 Field Information Needs

13-25-15 Preliminary Layout of System
 15.1 Background Information
 15.2 Inlet Locations
 15.3 Conduit Location
 15.4 Standards for Storm Drain Pipe
 15.5 Manholes
 15.6 Outfalls

13-25-20 Design Discharge
 20.1 Design Discharge Information

13-25-25 Gutter Design
 25.1 Capacity
 25.2 Gutter Types
 25.3 Longitudinal Slopes

Attachment 25.1 Gutter Design Nomograph
Attachment 25.2 Gutter Design Example

13-25-30 Hydraulic Design of Inlets
 30.1 Inlet Types
 30.2 Allowable Inlet Capacities
 30.3 Capacities of Grate Inlets and Combination Inlets on a Continuous Grade
 30.4 Capacity of Grate Inlets in a Sag
 30.5 Capacity of Curb Openings in a Sag
 30.6 Spacing of Inlets on a Continuous Grade
 30.7 Literature on Inlet Design
 30.8 References

Attachment 30.1 Reduction Factors for Inlets
Attachment 30.2 Performance Curves for Slotted CMP Surface Drains

13-25-35 Hydraulic Design of Storm Sewers
 35.1 Background Information
Section 13-30 Channels and Road Ditches

13-30-1 Channel Types and Characteristics
 1.1 Channel Types
 1.2 Roadside Ditches
 1.3 Median Ditches
 1.4 Toe of Slope and Intercepting Embankments

13-30-5 Channel Characteristics
 5.1 Introduction
 5.2 Vertical Alignment
 5.3 Horizontal Alignment
 5.4 Roughness Factors
 5.5 Channel Geometry
 5.6 Natural Channels

13-30-10 Hydraulic Design of Open Channels
 10.1 Introduction
 10.2 Types of Flow
 10.3 Uniform Flow
 10.4 Manning's Roughness Coefficient
 10.5 Shear Stress
 10.6 Design Parameters
 10.7 General Design Procedures
 10.8 References

13-30-15 Grass Lined Channels
 15.1 Introduction
 15.2 Grass Lining Properties
 15.3 Manning's Roughness
 15.4 Permissible Shear Stress
 15.5 Grass Cover Factor
 15.6 Permissible Soil Shear Stress
 15.7 Grass Lined Channel Design Example
 15.8 References

Attachment 15.1 Grass Lined Channel Design Example (Using HEC-15)
Section 13-35 Erosion and Water Pollution Control

13-35-1Special Hydraulic Structures
 1.1Introduction
 1.2Flow Control Gates
 1.3Debris Control Structures
 1.4Detention Basin
 1.5Temporary Sediment Structures

13-35-5Energy Dissipaters
 5.1Introduction
 5.2Riprap Blanket
 5.3Lined Channel Expansions
 5.4Outlet Expansion
 5.5Literature on Energy Dissipaters

Attachment 5.1Dissipater Limitations
Attachment 5.2Recommended Configuration of Riprap Blanket Subject to Maximum and Minimum Tail Waters
Attachment 5.3Culver Outlet Erosion Protection, Lined Channel Expansions
Attachment 5.4Example Problem, Lined Channel Expansion Design
Attachment 5.5Typical Outlet Expansion Diagram
Attachment 5.6Length Requirements for Expanded Pipes

Section 13-40 Subgrade Drainage

13-40-1Underdrains
 1.1Introduction
 1.2Descriptions
 1.3Design Criteria
 1.4Underdrain Conduit Installations
 1.5Material Considerations
 1.6Geotextile Fabric
 1.7Selection of Type
 1.8Construction
FDM Chapter 13 Table of Contents

Attachment 1.1 Subdrains
Attachment 1.2 Suggested Depth and Spacing of Underdrains for Various Soil Types

Section 13-45 Culvert and Storm Sewer Rehabilitation and Replacement

13-45-1 Background
 1.1 Introduction
 1.2 Design Responsibility and Coordination
 1.3 Definitions

13-45-5 Design Considerations
 5.1 Introduction
 5.2 Evaluation
 5.3 Hydraulics
 5.4 Structural Condition
 5.5 Cleaning and Verification of Clearance
 5.6 Environmental
 5.7 Safety
 5.8 Access
 5.9 Traffic

13-45-10 Culvert Rehabilitation by Sliplining
 10.1 Introduction
 10.2 Types of Sliplining
 10.3 Sliplining Materials
 10.4 Slipliner Design Considerations

Attachment 10.1 Culvert Liner Hydraulic Check

13-45-15 Other Culvert Repair and Rehabilitation Practices
 15.1 Introduction
 15.2 Invert Paving
 15.3 Cured in Place Pipe Liner (CIPP)
 15.4 Centrifugally Cast and Spray-on Liners
 15.5 Pre and Post Installation Inspection of Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners
 15.6 Design Requirements for Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners
 15.7 Cost Considerations for Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners

13-45-20 Trenchless Installation of New or Replacement Culvert Pipe and Storm Sewer
 20.1 Introduction
 20.2 Environmental Considerations
 20.3 Geotechnical Considerations
 20.4 Trenchless Construction Methods

13-45-99 Resources and References
 99.1 Resources
 99.2 References