<table>
<thead>
<tr>
<th>Section 13-1 Drainage Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-1-1 Drainage Practice Background</td>
</tr>
<tr>
<td>1.1 Introduction</td>
</tr>
<tr>
<td>1.2 General</td>
</tr>
<tr>
<td>1.3 Basic Statewide Practice</td>
</tr>
<tr>
<td>1.4 Design Responsibility</td>
</tr>
<tr>
<td>1.5 Common Drainage Law</td>
</tr>
<tr>
<td>1.6 Statutory Drainage Law</td>
</tr>
<tr>
<td>Attachment 1.1 Glossary of Terms</td>
</tr>
<tr>
<td>13-1-5 Major Drainage Guidelines and Criteria</td>
</tr>
<tr>
<td>5.1 Definition</td>
</tr>
<tr>
<td>5.2 General Guidelines</td>
</tr>
<tr>
<td>5.3 Surface Data Collection</td>
</tr>
<tr>
<td>Attachment 5.1 Drainage Data Requirements, Design Aids and Computer Software</td>
</tr>
<tr>
<td>Attachment 5.2 Major Drainage Summary Sheet</td>
</tr>
<tr>
<td>13-1-10 Documentation of Hydrologic/Hydraulic Design</td>
</tr>
<tr>
<td>10.1 Introduction</td>
</tr>
<tr>
<td>10.2 Bridge and Box Culvert Design</td>
</tr>
<tr>
<td>10.3 Stormwater Report Applicability</td>
</tr>
<tr>
<td>10.4 Design Documentation</td>
</tr>
<tr>
<td>10.5 Stormwater-Drainage-WQ Report Spreadsheet Instructions for Drainage Design</td>
</tr>
<tr>
<td>Attachment 10.1 Stormwater-Drainage-WQ Report Spreadsheet: Drainage - Summary Worksheet</td>
</tr>
<tr>
<td>Attachment 10.2 Stormwater-Drainage-WQ Report Spreadsheet: Drainage - Data Worksheet</td>
</tr>
<tr>
<td>13-1-15 Culvert Material Selection Standard</td>
</tr>
<tr>
<td>15.1 Application</td>
</tr>
<tr>
<td>15.2 Selection Standard</td>
</tr>
<tr>
<td>15.3 Special Situations</td>
</tr>
<tr>
<td>15.4 Corrosion Concerns About Steel Culvert Pipe</td>
</tr>
<tr>
<td>15.5 Abrasion Concerns</td>
</tr>
<tr>
<td>15.6 Limited Clearance Installations</td>
</tr>
<tr>
<td>15.7 Culvert Selection Justification</td>
</tr>
<tr>
<td>15.8 Tied Joints</td>
</tr>
<tr>
<td>15.9 Height of Cover for Culvert Pipes</td>
</tr>
<tr>
<td>15.10 Roughness Coefficient for Culvert Pipe</td>
</tr>
<tr>
<td>Attachment 15.1 Potential for Bacterial Corrosion of Zinc Galvanized Steel Culvert Pipe (Map)</td>
</tr>
<tr>
<td>13-1-17 Storm Sewer Material Selection Standard</td>
</tr>
<tr>
<td>17.1 Application</td>
</tr>
<tr>
<td>17.2 Selection Standard</td>
</tr>
<tr>
<td>17.3 Approved Materials</td>
</tr>
<tr>
<td>17.4 Special Situations</td>
</tr>
<tr>
<td>17.5 High Groundwater and Buoyancy of Thermoplastic Pipe</td>
</tr>
<tr>
<td>17.6 Storm Sewer Pipe Connections</td>
</tr>
<tr>
<td>17.7 Height of Cover for Storm Sewer</td>
</tr>
<tr>
<td>17.8 Roughness Coefficient for Storm Sewer</td>
</tr>
<tr>
<td>13-1-20 Large Drainage Conduit</td>
</tr>
<tr>
<td>20.1 Introduction</td>
</tr>
<tr>
<td>13-1-21 Precast Box Culverts</td>
</tr>
<tr>
<td>21.1 Introduction</td>
</tr>
<tr>
<td>13-1-25 Fill Height Tables</td>
</tr>
</tbody>
</table>
Section 13-15 Hydraulic Design of Culverts

13-15-1 Economic Analysis
 1.1 Introduction

13-15-5 Design Criteria
 5.1 Introduction
 5.2 Culvert Location
 5.3 Structure Size Selection
 5.4 Allowable Headwater
 5.5 Design Freeboard and Headwater-to-Depth Ratio
 5.6 Inlet Treatments
 5.7 Improved Inlets
 5.8 End Protection
 5.9 Type, Shape, and Roughness of Culvert
 5.10 Design Tail Water
 5.11 Allowable Velocity
 5.12 Depth of Flow
 5.13 Check Discharges
 5.14 References

Attachment 5.1 Entrance Loss Coefficients (Ke) for Culverts

13-15-10 Culvert Hydraulics
 10.1 Introduction
 10.2 Available Design Aids
Section 13-20 Hydraulic Design of Bridges

13-20-1 Design Methods
1.1 Definition
1.2 Type of Flow
1.3 Methods
1.4 Additional Literature

Attachment 1.1 Types of Flow Encountered at Bridges

Section 13-25 Storm Sewer Design

13-25-1 Introduction
1.1 Introduction

Attachment 1.1 Storm Sewer Design Flow Chart

13-25-5 Basic Drainage Area Information
5.1 Basic Information Needs

13-25-10 Field Drainage Information
10.1 Field Information Needs

13-25-15 Preliminary Layout of System
15.1 Background Information
15.2 Inlet Locations
15.3 Conduit Location
15.4 Standards for Storm Drain Pipe
15.5 Manholes
15.6 Outfalls

13-25-20 Design Discharge
20.1 Design Discharge Information

13-25-25 Gutter Design
25.1 Capacity
25.2 Gutter Types
25.3 Longitudinal Slopes

Attachment 25.1 Gutter Design Nomograph
Attachment 25.2 Gutter Design Example

13-25-30 Hydraulic Design of Inlets
30.1 Inlet Types
30.2 Allowable Inlet Capacities
30.3 Capacities of Grate Inlets and Combination Inlets on a Continuous Grade
30.4 Capacity of Grate Inlets in a Sag
30.5 Capacity of Curb Openings in a Sag
30.6 Spacing of Inlets on a Continuous Grade
30.7 Literature on Inlet Design
30.8 References

Attachment 30.1 Reduction Factors for Inlets
Attachment 30.2 Performance Curves for Slotted CMP Surface Drains

13-25-35 Hydraulic Design of Storm Sewers
35.1 Background Information
<table>
<thead>
<tr>
<th>Section</th>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-30-1</td>
<td>Channel Types and Characteristics</td>
<td></td>
</tr>
<tr>
<td>13-30-5</td>
<td>Channel Characteristics</td>
<td></td>
</tr>
<tr>
<td>13-30-10</td>
<td>Hydraulic Design of Open Channels</td>
<td></td>
</tr>
<tr>
<td>13-30-15</td>
<td>Grass Lined Channels</td>
<td></td>
</tr>
</tbody>
</table>
FDM Chapter 13 Table of Contents

Attachment 15.2...Grass Lined Channel Design WisDOT Spreadsheet Worksheet
Attachment 15.3...Grass Lined Channel Design Example (Using WisDOT Spreadsheet)
13-30-25.....Rock Riprap Lined Channels
 25.1......Introduction
 25.2......Analysis of Slopes Less than or Equal to 20 Percent
 25.3......Manning’s Roughness (for Rock Riprap Lined Channels)
 25.4......Permissible Shear Stress
 25.5......Rock Riprap Design Procedure
 25.6......Design Example (Using Equations): Riprap Channel (Mild Slope)
 25.7......Example Riprap Lined Design for Channel Slopes ≤ 20% Using the WisDOT Spreadsheet
 25.8......Additional Design Considerations
 25.9......References
Attachment 25.1......Design Example (Using Equations): Riprap Channel (Mild Slope)
Attachment 25.2......Riprap Channel (Mild Slope) WisDOT Spreadsheet Worksheet
Attachment 25.3......Instructions and Example for Riprap Lined Design for Channel Slopes ≤ 20% Using the WisDOT Spreadsheet
Attachment 25.4......Angle of Repose of Riprap in Terms of Mean Size and Shape of Stone
Attachment 25.5......Map of Areas in Wisconsin where Rounded Riprap is Predominantly Available
13-30-30.....Rock Riprap Lined Chutes
 30.1......Introduction
 30.2......Steep Slope Analysis
 30.3......Rock Chute Design Spreadsheet
 30.4......References
Attachment 30.1......Rock Chute Design Data Spreadsheet and Design Example
Attachment 30.2......Rock Chute Design - Plan Sheet
Attachment 30.3......Rock Chute Design- Construction Detail

Section 13-35 Erosion and Water Pollution Control
13-35-1......Special Hydraulic Structures
 1.1......Introduction
 1.2......Flow Control Gates
 1.3......Debris Control Structures
 1.4......Detention Basin
 1.5......Temporary Sediment Structures
13-35-5......Energy Dissipaters
 5.1......Introduction
 5.2......Riprap Blanket
 5.3......Lined Channel Expansions
 5.4......Outlet Expansion
 5.5......Literature on Energy Dissipaters
Attachment 5.1......Dissipater Limitations
Attachment 5.2......Recommended Configuration of Riprap Blanket Subject to Maximum and Minimum Tail Waters
Attachment 5.3......Culver Outlet Erosion Protection, Lined Channel Expansions
Attachment 5.4......Example Problem, Lined Channel Expansion Design
Attachment 5.5......Typical Outlet Expansion Diagram
Attachment 5.6......Length Requirements for Expanded Pipes

Section 13-40 Subgrade Drainage
13-40-1......Underdrains
 1.1......Introduction
 1.2......Descriptions
 1.3......Design Criteria
 1.4......Underdrain Conduit Installations
 1.5......Material Considerations
 1.6......Geotextile Fabric
 1.7......Selection of Type
 1.8......Construction
Section 13-45 Culvert and Storm Sewer Rehabilitation and Replacement

13-45-1 Background
 1.1 Introduction
 1.2 Design Responsibility and Coordination
 1.3 Definitions

13-45-5 Design Considerations
 5.1 Introduction
 5.2 Evaluation
 5.3 Hydraulics
 5.4 Structural Condition
 5.5 Cleaning and Verification of Clearance
 5.6 Environmental
 5.7 Safety
 5.8 Access
 5.9 Traffic

13-45-10 Culvert Rehabilitation by Sliplining
 10.1 Introduction
 10.2 Types of Sliplining
 10.3 Sliplining Materials
 10.4 Slipliner Design Considerations

Attachment 10.1 Culvert Liner Hydraulic Check

13-45-15 Other Culvert Repair and Rehabilitation Practices
 15.1 Introduction
 15.2 Invert Paving
 15.3 Cured in Place Liner (CIPP)
 15.4 Centrifugally Cast and Spray-on Liners
 15.5 Pre and Post Installation Inspection of Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners
 15.6 Design Requirements for Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners
 15.7 Cost Considerations for Cured in Place Pipe Liners (CIPP), Cast, and Spray-on Liners

13-45-20 Trenchless Installation of New or Replacement Culvert Pipe and Storm Sewer
 20.1 Introduction
 20.2 Environmental Considerations
 20.3 Geotechnical Considerations
 20.4 Trenchless Construction Methods

13-45-99 Resources and References
 99.1 Resources
 99.2 References