Project and Analyst Information:

Project ID:	6180-30-00
Project Type:	State Highway Rehabilitation Program
	STH 21 and Sand Pit Road
Location:	Town of Omro
Location:	Winnebago
	NE Region
Analyst:	Camie Ferrier
Agency:	Westwood Infrastructure, Inc.
Date:	March 31, 2021

Background Information:

Project Need:	Safety
Project Objective(s):	The project objective is to improve the safety at the intersection of STH 21 and Sand Pit Road.
Additional Information:	The intersection of STH 21 and Sand Pit Road is included in a resurfacing project of STH 21, which begins south of Structure B-70-0051 within the City of Omro and continues to approximately Leonard Point Road.
	The existing form of traffic control is a minor road stop on Sand Pit Road while STH 21 has free flow traffic. The intersection geometry involves EB and WB both having a designated right turn lane while the left turn and through movements share a lane. NB and SB both have a single lane approach. The speed limit is 55 mph on STH 21 and 45 mph on Sand Pit Road.

Existing Crash Information:

Observed Crash History:

Years: 2015 - 2019

Crash Type	Fatal	Injury A	Injury B	Injury C	KABC	PDO	Total
Sideswipe				1	1	1	2
STH 21 Left Turn				1	1		1
Run off Road			1		1		1
STH 21 Rear End while turning left			4	3	7	2	9
Total	0	0	5	5	10	3	13

Injury A – Suspected Serious Injury

Injury B – Suspected Minor Injury

Injury C – Possible Injury

KABC – Fatal (K) and Injury A, B and C

PDO – Property Damage Only

Crash Trends:

Left turning vehicles on STH 21 appear to be a factor in 13 of the 15 crashes. STH 21 through traffic rear ends traffic that is planning to turn left and left turning traffic from STH 21 fails to yield to oncoming traffic.

Contributing Factors:

Currently, left turn lanes do not exist on STH 21. Another factor may be difficulty selecting adequate gaps when crossing or turning left.

Additional Modes of Transportation:

Mode	Need?	Nearby Generators and Existing Facilities	Volume		
Wiode	Yes/No	recarby deficiators and Existing Facilities	#	Unit	
PED/BIKE	Yes	None	N/A		
OSOW	Yes	None		vph	

(add more rows as needed)

Other Information: STH 21 in the area of this project is recommended to be part of the Oshkosh MPO Regional Bicycle & Pedestrian Network as shown in the Appleton (Fox Cities) Transportation Management Area & Oshkosh Metropolitan Planning Organization Bicycle and Pedestrian Plan – 2014.

STH 21 is an OSOW truck route and High Clearance Route. Minimum 20 foot vertical clearance required for new vertical elements such as sign structures, sign bridges, signals and lighting.

Summary Tables:

Descriptions:

Alt.	Traffic Control	Description of Alternative
1	Minor Road Stop Control with	Maintain two-way stop control, with Sand Pit Road being stop controlled.
-	Slotted Left turns on Major Road	Install dedicated left turn lanes on STH 21.
2	Roundabout	Install a roundabout at the intersection of STH 21 and Sand Pit Road.

Costs and Impacts:

Alt.	. Traffic Control	Construction	F	Real Estate I	mpacts	Environmental Impacts		
	. Iranic Control	Cost	# Build	# Acres	Cost	Impact Type	# Acres	
1	Minor Road Stop Control with Slotted Left turns on Major Road	\$1,630,000	N/A	0.07	\$1,400	Wetland	0	
2	Roundabout	\$2,000,000	N/A	0.731	\$34,000	Wetland	0	

Safety Performance:

Alt.	Traffic Control	Analysis Period	KABC	PDO	Total
-	Existing Conditions	2014 -2019	11	4	15
-	Future No-Build	2027-2036	4.918	11.153	16.071
1	Minor Road Stop Control with	2027-2036	2.557	5.800	8.357
1	Slotted Left turns on Major Road	2027-2030	2.557	5.800	8.337
2	Roundabout	2027-2036	2.965	18.645	21.610

Safety performance results are from the Safety Certification Document, dated 8-6-2020, signed 9-14-2020. Analysis method: Interactive Highway Safety Design Model

Recommendation:

Alternative:

Influencing Factors:

Existing & Future No-Build Conditions:

Practical Feasibility:

Public Opinion:	Concerns with safety have been expressed by local officials. A public involvement meeting is scheduled to occur in 2021.
Business Impacts:	None
ROW Impacts:	None
Utility Impacts:	None
Cost Estimate:	\$0
Additional Info:	None

Safety Analysis:

Crash Trend(s) and Contributing Factors:	Left turning vehicles on STH 21 appear to be a factor in 13 of the 15 crashes. STH 21 through traffic rear ends traffic that is planning to turn left and left turning traffic from STH 21 fails to yield to oncoming traffic.
	Currently, left turn lanes do not exist on STH 21. Another factor may be difficulty selecting adequate gaps when crossing or turning left.
Conflict Points:	EB and WB left turns conflicting with opposing through traffic. NB and SB left turns conflicting with EB and WB traffic.
Vulnerable Users:	N/A
Additional Info:	N/A

Safety Performance Measures:

	Analysis Period	KABC	PDO	Total
Existing Conditions	2014 -2019	11	4	15
Future No-Build	2027-2036	4.918	11.153	16.071

Operational Analysis:

Warrant Analysis:	Utilizing traffic counts from October 21, 2019, traffic signal warrants were evaluated for the intersection of STH 21 and Sand pit Road. The signal warrant analysis showed that traffic signals were not warranted at the intersection, therefore a traffic signal alternative was eliminated from consideration.
Queue Impacts:	There are field entrances located on the north leg of Sand Pit Road at approximately 170' north of the intersection. The southbound queue of 165' in 2047 approaches the first field entrance. There is a commercial driveway on the south leg of Sand Pit Road at approximately 185' south of the intersection. The northbound queue does not impact this driveway.
Additional Capacity:	None
Railroad Impacts:	None
Additional Info:	In 2047, the southbound leg experiences a LOS of F in the am and pm peak hours and the northbound leg experiences a LOS of E in the pm peak hour.

Operational Performance Measures:

Year: 2027		Existing Conditions										
AAA Daal	EB				WB		NB			SB		
AM Peak	L/T	-	R	L/T	-	R	-	All	-	-	All	-
# Lanes	1		1	1		1		1			1	
LOS	Α			Α				С			Е	
Delay (s)	7.9			8.8				20.2			37.8	
v/c	0.00			0.01				0.10			0.60	
Queue (ft.)	0			0				7.5			87.5	
Storage (ft.)												
DM D I	EB			WB			NB		SB			
PM Peak	L/T	-	R	L/T	-	R	-	All	-	-	All	-
# Lanes	1		1	1		1		1			1	
LOS	Α			Α				D			Е	
Delay (s)	9.0			8.4				29.5			37.1	
v/c	0.02			0.01				0.28			0.36	
Queue (ft.)	2.5			0				27.5			37.5	
Storage (ft.)												
		_	_	•		•			_	•	•	

Additional Information

Year: 2047 Future No-Build Conditions (Design Year)

		EB	=		WB			NB			SB	
AM Peak	L/T	-	R	L/T	-	R	-	All	-	-	All	-
# Lanes	1		1	1		1		1			1	
LOS	Α			А				С			F	
Delay (s)	7.9			8.9				22.9			69.0	
v/c	0.00			0.01				0.14			0.84	
Queue (ft.)	0			0				12.5			165	
Storage (ft.)												
		EB			WB			NB			SB	
PM Peak	L/T	EB -	R	L/T	WB -	R	-	NB All	-	-	SB All	-
	L/T 1		R 1	L/T		R 1	-		-	-		-
PM Peak							-	All	-	-	All	-
PM Peak # Lanes	1			1			-	All 1	-	-	All 1	-
PM Peak # Lanes LOS	1 A			1 A			-	All 1 E	-	-	All 1 F	-
# Lanes LOS Delay (s)	1 A 9.2			1 A 8.5			-	All 1 E 40.8	-	-	All 1 F 56.9	-

Additional Information

Alt. 1: Minor Road Stop Control with Slotted Left turns on Major Road:

Practical Feasibility:

Public Opinion:	A public involvement meeting is scheduled in 2021.
Business Impacts:	None
ROW Impacts:	0.07 Acres (\$1,400)
Utility Impacts:	Unknown
Cost Estimate:	\$1,630,000
Additional Info:	None

Safety Analysis:

	The addition of slotted left turn lanes on STH 21 would address crashes related to left turning vehicles and rear end crashes.
Geometric Concerns:	Due to the addition of left turn lanes, sideroad cross traffic will have additional travel length to cross STH 21 or turn left onto STH 21.
Additional Info:	None

Safety Performance Measures:

	Analysis Period	KABC	PDO	Total
Existing Conditions	2014 -2019	11	4	15
Future No-Build	2027-2036	4.918	11.153	16.071
Alt. 1: Minor Road Stop Control				
with Slotted Left turns on Major	2027-2036	2.557	5.800	8.357
Road:				

Operational Analysis:

Warrant Analysis:	N/A
Queue Impacts:	There are field entrances located on the north leg of Sand Pit Road at approximately 170' north of the intersection. The southbound queue of 165' in 2047 approaches the first field entrance. There is a commercial driveway on the south leg of Sand Pit Road at approximately 185' south of the intersection. The northbound queue does not impact this driveway.
Additional Capacity:	None
Railroad Impacts:	None
Additional Info:	In 2047, the southbound leg experiences a LOS of F in the am and pm peak hours and the northbound leg experiences a LOS of E in the pm peak hour.

Operational Performance Measures:

Year: 2027	Alt. 1: Minor Road Stop Control with Slotted Left turns on Major Road											
4445	EB			WB			NB			SB		
AM Peak	L	Т	R	L	Т	R	-	All	-	-	All	-
# Lanes	1	1	1	1	1	1		1			1	
LOS	А			Α				С			Е	
Delay (s)	7.9			8.8				20.1			37.6	
v/c	0.00			0.01				0.10			0.60	
Queue (ft.)	0			0				7.5			87.5	
Storage (ft.)	300			300								
DM Daal		EB			WB			NB			SB	
PM Peak	L	Т	R	L	Т	R	-	All	-	-	All	-
# Lanes	1	1	1	1	1	1		1			1	
LOS	Α			Α				D			Е	
Delay (s)	9.0			8.4				29.1			36.6	
v/c	0.02			0.01				0.28			0.36	
Queue (ft.)	2.5			0.0				27.5			37.5	
Storage (ft.)	300			300								

Additional Information

Year: 2047	Alt. 1: Minor Road Stop Control with Slotted Left turns on Major Road
------------	---

ANA Dead		EB	_		WB			NB			SB	
AM Peak	L	Т	R	L	Т	R	-	All	-	-	All	-
# Lanes	1	1	1	1	1	1		1			1	
LOS	Α			А				С			F	
Delay (s)	7.9			8.9				22.8			68.3	
v/c	0.00			0.01				0.14			0.84	
Queue (ft.)	0			0				12.5			165	
Storage (ft.)	300			300								
		EB			WB			NB			SB	
PM Peak	L	EB T	R	L	WB T	R	-	NB All	-	-	SB All	-
	L 1		R 1	L 1		R 1	-		-	-		-
PM Peak		Т			Т		-	All	-	-	All	-
PM Peak # Lanes	1	Т		1	Т		-	All 1	-	-	All 1	-
PM Peak # Lanes LOS	1 A	Т		1 A	Т		-	All 1 E	-	-	All 1 F	-
# Lanes LOS Delay (s)	1 A 9.2	Т		1 A 8.5	Т		-	All 1 E 39.8	-	-	All 1 F 55.2	-

Additional Information

Alt. 2: Roundabout:

Practical Feasibility:

Public Opinion:	A public involvement meeting is scheduled in 2021.
Business Impacts:	Roundabout is designed to accommodate OSOW vehicles. There are no impacts to businesses.
ROW Impacts:	0.731 Acres, \$34,000
Utility Impacts:	Unknown
Cost Estimate:	\$2,000,000
Additional Info:	None

Safety Analysis:

Crash Trend(s) being	The installation of a roundabout at the intersection of STH 21 and Sand Pit Road would
Improved with Alt.:	address right-angle crashes and left turning crashes at the intersection.
Geometric Concerns:	None
Additional Info:	None

Safety Performance Measures:

	Analysis Period	KABC	PDO	Total
Existing Conditions	2014 -2019	11	4	15
Future No-Build	2027-2036	4.918	11.153	16.071
Alt. 2: Roundabout:	2027-2036	2.965	18.645	21.610

Operational Analysis:

Warrant Analysis:	N/A
Queue Impacts:	There are field entrances located on the north leg of Sand Pit Road at approximately 170' north of the intersection. There is a commercial driveway on the south leg of Sand Pit Road at approximately 185' south of the intersection. The southbound and northbound queues do not impact these driveways.
Additional Capacity:	All legs operate at a LOS of A in 2047 for the AM and PM peak hours. This alternative has additional capacity compared to alternative 1.
Railroad Impacts:	None
Additional Info:	All legs operate at a LOS of A in 2047 for the AM and PM peak hours.

Operational Performance Measures:

Year: 2027	Alt. 2: Roundabout
------------	--------------------

AAA Daal		EB	_		WB			NB			SB			
AM Peak	-	All	-	-	All	-	-	All	-	-	All	-		
# Lanes		1			1			1			1			
LOS		А			А			А			А			
Delay (s)		9.3			4.7			5.7			5.0			
v/c		0.536			0.231			0.038			0.153			
Queue (ft.)		93.1			28.6			3.5		16.1				
Storage (ft.)														
DM Dools		EB			WB			NB			SB			
PM Peak	-	EB All	-	-	WB All	-	-	NB All	-	-	SB All	-		
PM Peak # Lanes	-		-	-		-	-	l	-	-		-		
	-	All	-	-	All	-	-	All	-	-	All	-		
# Lanes	-	All 1	-	-	All 1	-	-	All 1	-	-	All 1	-		
# Lanes LOS	-	All 1 A	-	-	All 1 A	-	-	All 1 A	-	-	All 1 A	-		
# Lanes LOS Delay (s)	-	All 1 A 6.7	-	-	All 1 A 8.8	-	-	All 1 A 5.2	-	-	All 1 A 5.6	-		

Additional Information

Year: 2047 Alt. 2: Roundabout

444.0		EB	_		WB		-	NB			SB	
AM Peak	-	All	-									
# Lanes		1			1			1				
LOS		В			Α			А			Α	
Delay (s)		10.6			4.9			6.1			5.6	
v/c		0.587			0.248			0.050			0.201	
Queue (ft.)		105.7			31.2			4.5			21.9	
Storage (ft.)												
		EB			WB			NB			SB	
PM Peak	-	EB All	-	-	WB All	-	-	NB All	-	-	SB All	-
	-		-	-		-	-		-	-		-
PM Peak	-	All	-									
PM Peak # Lanes	-	All 1	-									
PM Peak # Lanes LOS	-	All 1 A	-									
# Lanes LOS Delay (s)	-	AII 1 A 7.3	-	-	All 1 A 9.8	-	-	All 1 A 5.6	-	-	AII 1 A 6.0	-

Additional Information

Attachments:

(Provide attachments outline in FDM 11-25-3 Attachment 3.7 as appropriate)

- 1. Project Location Map
- 2. Aerial Photo
- 3. Traffic Data
- 4. Crash Diagram
- 5. Exhibits
 - a. Existing
 - b. Alternative 1 Left Turn Lane
 - c. Alternative 2 Roundabout
- 6. Safety Certification Document
- 7. Signal Warrants
- 8. Capacity Analysis
 - a. HCS
 - b. SIDRA 9

6180-30-00 STH 21 STH 116 - Leonard Point Rd Winnebago County

Intersection STH 21 & Sand Pit Rd

EN NA SOOLOGIO DATE: 2/24/2021 3:36 PM PLOT BY: CRAIG KNUTH PLOT NAME: PLOT SCALE: 1 IN:200 FT WISDOT/CADDS SHEET 42
LAYOUT NAME - 2 - ICE-618030-STH 21 EXISTING - SAND PIT

ME: N:\3001091.00\REPORTS\\CE\DRAWINGS\\CE-6180300-STH 21.DWG PLOT DATE: 2/24/2021 3:36 PM PLOT BY: CRAIG KNUTH PLOT NAME: PLOT NAME: 1 IN:200 FT WISDOT/CADDS SHEET 42
LAYOUT NAME - 6 - ICE-618030-STH 21 LEFT- SAND PIT

N:\3001091.00\REPORTS\|CE\DRAWINGS\|CE-61803000-STH 21.DWG LAYOUT NAME - 4 - ICE-618030-STH 21 RA - SAND PIT WISDOT/CADDS SHEET 42

9/14/2020

Date

Region Planning Chief

SAFETY CERTIFICATION DOCUMENT

Analyst:Scott A. NelsonDesign ID:6180-30-00Agency:WisDOT DTSD NE RegionHighway:STH 21

Date: August 6, 2020 **Project Title:** Omro – Oshkosh, STH 116 – Leonard Pt Rd

Improvement Concept Code: RSRF10

1. Did the project have Sites of Promise from the system screening?

Yes ⊠

No □

Comments:

PDP ID 4284 – STH 116 to Webster - Crash Rate Flag 2.11, KAB Crash Rate Flag 2.09

PDP ID 4289 - CTH FF to Sand Pit Road - KAB Crash Rate Flag 1.46

PDP ID 4290 - Sand Pit Road to Leonard Point Road - Crash Rate Flag 1.18, KAB Crash Rate Flag 1.79

IX 70 02975 - STH 21 & STH 116 - Total Crash LOSS 4, PSI 3.97, KABC LOSS 4, PSI 0.84

IX_70_02977 - STH 21 & Madison Ave - Total Crash LOSS 4, PSI 2.39

IX 70 02978 - STH 21 & Monroe St - KABC LOSS 4, PSI 0.45

IX 70 02980 - STH 21 & Quincy - KABC LOSS 4, PSI 1.16

IX_70_03026 - STH 21 & McKinley Ave - KABC LOSS 4, PSI 0.45

IX 70 03024 - STH 21 Beckwith Ave - KABC LOSS 4, PSI 0.45

IX 70 03034 - STH 21 & Alder Ave & Goldenrod Dr - Total Crash LOSS 4, PSI 4.27, KABC LOSS 4, PSI 1.43

IX 70 02902 - STH 21 & Rivermoor Rd - Total Crash LOSS 4, PSI 2.84

IX 70 02649 - STH 21 & CTH FF/Reighmoor Rd - Total Crash LOSS 4, PSI 3.21, KABC LOSS 4, PSI 3.76

IX 70 02660 - STH 21 & Sand Pit Rd - Total Crash LOSS 4, PSI 9.04, KABC LOSS 4, PSI 4.10

2. Did relevant crashes remain after the initial Crash Vetting Process?

Yes ⊠

No □

Comments:

PDP ID 4284 – STH 116 to Webster (Segment Identified) – Of the ten crashes in this segment, five crashes remained after vetting. Four WB rear end crashes at the Jefferson St intersection and one at a driveway. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative.

PDP ID 4289 – CTH FF to Sand Pit Road (Segment Identified) – Of the twenty-two crashes in this segment, twelve crashes remain after vetting. Only one segment crash occurred near Potratz Hill, but no safety mitigation strategies are recommended base on this one isolated crash. The remaining crashes will be addressed in the intersection safety flag for the CTH FF/Reighmoor intersection.

PDP ID 4290 – Sand Pit Road to Leonard Point Road (Segment Identified) – Of the thirty-seven crashes in this segment, fourteen remaining after vetting. Nine of these crashes occurred at the Sand Pit Road intersection and will be addressed in the intersection safety flag below. The remaining five crashes involve drifting left of center along this segment. The improvement project will include centerline rumble stripes which should help address this crash trend.

IX_70_02975 – STH 21 & STH 116 (Intersection Identified) – Of the eight crashes at this intersection, five remain after vetting. Four WB rear end crashes at the Jefferson St intersection and one at a driveway. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative.

IX_70_02977 – STH 21 & Madison Ave (Intersection Identified) – One of the seven crashes remain after vetting. The crash involved a WB vehicle yielded to a pedestrian crossing North to South on the East side of the intersection. Another WB tried bypassing WB on right and struck the pedestrian. The crash could be classified as driver error by bypassing the yielding vehicle in front. No safety mitigation strategies are recommended based on this one crash.

IX_70_02978 – STH 21 & Monroe St (Intersection Identified) - Of the four crashes at this intersection three remained after vetting. Two WB rear ends of left turns onto Monroe and one WB rear end turning into Kwik Trip. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative. No other safety mitigation strategies are recommended.

IX_70_02980 – STH 21 & Quincy (Intersection Identified) – Of the three crashes at this intersection, one remained after vetting and it occurred at a driveway near the Quincy St. intersection. A WB rear end of left turning traffic into a driveway near Quincy Ave. No safety mitigation strategies are recommended based on this one crash.

IX_70_03026 – STH 21 & McKinley Ave (Intersection Identified) – Of the four crashes at this intersection, three remain after vetting. Three WB rear end crashes have occurred with left turns onto McKinley Ave. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative. No other safety mitigation strategies are recommended.

IX_70_03024 – STH 21 Beckwith Ave (Intersection Identified) – Of the four crashes at this intersection, no crashes remain after vetting. No safety mitigation strategies are recommended.

IX_70_03034 – STH 21 & Alder Ave & Goldenrod Dr (Intersection Identified) – Of the ten crashes at this intersection, three remained after vetting. Two EB rear end crashes while turning onto Goldenrod and on WB rear end crash while turning onto Alder Ave. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative. No other safety mitigation strategies are recommended.

IX_70_02902 – STH 21 & Rivermoor Rd (Intersection Identified) - Of the four crashes at this intersection, no crashes remain after vetting. No safety mitigation strategies are recommended.

IX_70_02649 – STH 21 & CTH FF/Reighmoor Rd (Intersection Identified) – Of the eleven crashes at this intersection, nine crashes remain after vetting. Six of the nine crashes involved left turning crashes from Hwy 21. One NB left failed to yield to a SB motorist. One SB failed to yield to WB. The remaining crash was not intersection related but the driver drifted off the roadway to the right. Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection.

IX_70_02660 – STH 21 & Sand Pit Rd (Intersection Identified) – Of the eleven crashes at this intersection, eleven crashes remain after vetting. Ten of the eleven crashes involve a left turning vehicle from Highway 21. The specific crash types with the left turns are identified on the collision diagram in Appendix A. The remaining crash was a NB failure to yield to an EB. Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection.

3.	Were possible safety mitigation alternatives identified in the CGA Process?	Yes ⊠	No □
	•		

Comments:

IX_70_02649 – STH 21 & CTH FF/Reighmoor Rd - Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection. Each alternative will target the six mainline left turn crashes that have occurred. Additionally, the two right-angle crashes can be targeted by the roundabout alternative.

IX_70_02660 – STH 21 & Sand Pit Rd - Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection. Each alternative will target the ten mainline left turning crashes that have occurred. Additionally, the right-angle crash will be targeted by the roundabout alternative.

4. Were safety mitigation alternatives analyzed in this project? Yes ⊠ No □

4.1. Provide narrative of existing geometric conditions and describe any geometric features that contributed to the type or severity of the crashes.

IX_70_02649 – STH 21 & CTH FF/Reighmoor Rd – The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to one fatal crash, two suspect minor injury crashes, two possible injury crashes, and one property damage only crash. Based on mainline and sideroad volumes, picking an adequate gap is also challenging on the sideroad which has contributed to some of the other crashes. The remaining crashes resulted in two suspected minor

injuries, and one possible injury crash.

IX_70_02660 – STH 21 & Sand Pit Rd - The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to five suspected minor injuries, three possible injuries, and two property damage only crashes. The remaining right-angle crash resulted in property damage only.

4.2. Provide narrative of crash history, crash trends, and contributing factors that were targeted in the safety mitigation alternatives.

IX_70_02649 – STH 21 & CTH FF/Reighmoor Rd – Of the eleven crashes at this intersection, nine crashes remain after vetting. Six of the nine crashes involved left turning crashes from Hwy 21. One NB left failed to yield to a SB motorist. One SB failed to yield to WB. The remaining crash was not intersection related but the driver drifted off the roadway to the right. The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to one fatal crash, two suspect minor injury crashes, two possible injury crashes, and one property damage only crash. The remaining crashes resulted in two suspected minor injuries and one property damage only crash. The left turn lane alternative will target the left turn crashes and right-angle crashes.

IX_70_02660 – STH 21 & Sand Pit Rd - Of the eleven crashes at this intersection, eleven crashes remain after vetting. Ten of the eleven crashes involve a left turning vehicle from Highway 21. One NB motorist failed to yield to a EB motorist. The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to five suspected minor injuries, three possible injuries, and two property damage only crashes. The remaining right-angle crash resulted in property damage only. The left turn lane alternative will target the left turn crashes. The roundabout alternative will target the left turn crashes and right-angle crashes.

4.3. Provide narrative and the name for each safety mitigation alternative analyzed in SMCP

STH 21 & CTH FF/Reighmoor Rd

Concrete Repair & Overlay – Base case with no geometric improvements.

STH 21 Left Turn Lanes – Add EB and WB left turn lanes on STH 21. Final geometry for EB and WB approaches will consist of a left turn lane, a through lane, and a right turn lane.

Single lane roundabout – Construct a single lane roundabout at the CTH FF/Reighmoor Rd intersection.

STH 21 & Sand Pit Road

Concrete Repair & Overlay – Base case with no geometric improvements.

STH 21 Left Turn Lanes - Add EB and WB left turn lanes on STH 21. Final geometry for EB and WB approaches will consist of a left turn lane, a through lane, and a right turn lane.

Single lane roundabout - Construct a single lane roundabout at the Sand Pit Rd intersection.

4.4. Analysis Results

Analysis Location: STH 21 & CTH FF/Reighmoor Rd

Analysis Method: 2a

	Base	Alt. A	Alt. B	Add/Remove columns
Alternative Name	Concrete Repair & Overlay	STH 21 Left Turn Lanes	Roundabout	
Fatal & Injury	5.806	3.019	2.360	
Property Damage	13.169	6.848	15.651	
Total	18.975	9.867	18.011	
Benefits	-	\$1,653,033.89	\$2,744,853.97	
Net Cost	\$0	\$660,000	\$780,000	
B/C		2.5046	3.5190	

Comments:

Both the left turn lane and roundabout alternative have B/C greater than 1.0 using IHSDM with Wisconsin calibration, crash distribution, model, and economic analysis model data sets. No external CMF's were applied.

Analysis Location: STH 21 & Sand Pit Road

Analysis Method: 2a

	Base	Alt. A	Alt. B	Add/Remove columns
Alternative Name	Concrete Repair & Overlay	STH 21 Left Turn Lanes	Roundabout	
Fatal & Injury	4.918	2.557	2.965	
Property Damage	11.153	5.800	18.645	
Total	16.071	8.357	21.610	
Benefits	-	\$1,400,196.68	\$2,108,056.68	
Net Cost	\$0	\$550,000	\$730,000	
B/C		2.5458	2.8878	

Comments:

Both the left turn lane and roundabout alternative have B/C greater than 1.0 using IHSDM with Wisconsin calibration, crash distribution, model, and economic analysis model data sets. No external CMF's were applied.

4.5. Provide narrative of reasonable and acceptable safety mitigation alternatives for consideration in the project improvement process

STH 21 & CTH FF/Reighmoor Rd

- Alt. A STH 21 Left Turn Lanes The addition of left turn lanes on STH 21 approaching CTH FF/Reighmoor Road should be considered as a feasible alternative for consideration through the NEPA process.
- Alt. B Single lane roundabout A single lane roundabout at the intersection of STH 21 & CTH FF/Reighmoor Rd should be considered as a feasible alternative for consideration through the NEPA process.

STH 21 & Sand Pit Road

- Alt. A STH 21 Left Turn Lanes The addition of left turn lanes on STH 21 approaching Sand Pit Road should be considered as a feasible alternative for consideration through the NEPA process.
- Alt. B Single Lane Roundabout A single lane roundabout at the intersection of STH 21 & Sand Pit Rd should be considered as a feasible alternative for consideration through the NEPA process.

ATTACHMENTS

Include all attachments in the final SCD and submit as a PDF

- A. Project Information
 - a. Project Location/Overview Map
 - b. Crash Diagram(s)
- B. Sites of Promise Documentation
 - a. Meta-Manager spreadsheet
 - b. Intersection Network Screening spreadsheet
- C. Crash Vetting Documentation
 - a. WisTransPortal crash data spreadsheet with vetting comments
- D. Contributing Geometric Analysis Documentation
 - a. Safety Certification Worksheet
- E. Safety Mitigation Certification Documentation
 - a. Layout/Schematic for each alternative
 - b. Cost estimate for each alternative
 - c. IHSDM Crash Prediction Evaluation Report for each alternative
 - d. IHSDM Economic Analysis Report
 - e. Highway Safety Benefit Cost Analysis Tool results

ATTACHMENT A

Project Information

Project Location/Overview Map

SCM ID - 2716 Version - Current 2020-04-08 13:28:01.111

Safety Certification Mapping (SCM) Tool

Design ID Construction ID(s)

6180-30-00

Project Title Project Description

OMRO - OSHKOSH STH 116 - LEONARD POINT ROAD

SCM Comment

Meta Manager Version: 2019-10 Meta Manager Crash Years: 2014-2018 SCM Crash Years: 2014-2018

Sites of Promise

Corridor # Highway Start County End County Start RP End RP

1 WIS 21 EB WINNEBAGO WINNEBAGO 021E162T000 021E170K000

4284: KAB, Crash Rate

4289: KAB

4290: KAB, Crash Rate

SCM ID - 2716 Version - Current 2020-04-08 13:28:01.111

SCM ID - 2716 Version - Current 2020-04-08 13:28:01.111

Corridor # 1: WIS 21 EB - 021E162T000 - 021E170K000

Meta Man	nager Versio	n: 2019-10	Crash Years:	2014-2018	S	CM Cra	ash Yea	rs: 201	4-2018	
PDP ID	Crash	KAB	Int Crash	Int KAB	K	A	В	С	О	TOTAL
4284)	2.1088	2.0873					2	1	7	10
4285									5	5
4286							9	5	22	36
4287						1	3	2	12	18
4288							6	3	13	22
4289		1.4584			1	1	7	7	6	22
4290	1.1763	1.7913			1		13	6	17	37
TOTAL					2	2	40	24	82	

Manner of Collision

PDP ID	NO COLLISION	REAR END	SS OPP	SS SAME	OTHER	TOTAL
4284		9			1	10
4285	1	2		1	1	5
4286	9	20	1		6	36
4287	3	7	1		7	18
4288	12	7		1	2	22
4289	8	8			6	22
4290	10	17	2	1	7	37

ATTACHMENT A

Project Information

Crash Diagram(s)

ATTACHMENT B

Sites of Promise Documentation

Meta-Manager Spreadsheet

_	ISEQNO	TRAF SEG ID	RECKEY	FOS. PROJ. ID	PDP FRM	PDP, TO	РОР	ACSI INTS NM	를 돌			COSTA DESCRIPTION	RATE	<u>RATEFLAG</u> CRASHES	<u>CRASHYR5</u> <u>CRASHYR4</u>	CRASHYR3	CRASHYR1	<u>CPM</u> <u>AKNO</u>	AKPROP AKELAG	RORPROP	RORFLAG	INTELAG	CRSHSPOT SEVINDX SIREDIC	LOP	SFTY TRVL CLS CD	HSTL AADT 5 YR MMGR WTHR CRSH TOT	MMGR INCAP INJ CRSH TOT	MMGR NONINCAP INJ CRSH TOT MMGR PSBL INJ CRSH TOT	MMGR_BIKE_CRSH_TOT	MINGR PED CKSH 101	WI_CNTY_NM_YRS_OTT	MMGR HMVMT	MIMGR INCAP INIY OCCP TOT	MMGR PSBL INJY OCCP TOT	MMGR KAB INJY RT	MMGR KAB CRSH RT	<u>mmgr kab crsh rt fl</u> mmgr drv fl	UCL_CRSH_RT	UCL KAB INJY RT	UCL KAB CRSH RT	ECON RCD OVER RSRF
4311	24840 6	417 10	0988 6180	03071 021E16	62T000 02	21E162T006	0.06 STH 11	.6 WB	U 021E	STH 116 -	- LEONARDS	POINT ROAD	992.654	2.10 2.0) 2 2	2	2 2 3	33.3 0.0	0.0% 0.0	0 0.0% 0	0.00 70.0	% 1.01	1 15	9 18 YES	S 440 92	200 3	0 0	2 1	7 0	0 WINNEBA	GO 5	0.0101	0 0	2 1	198.531 1.7	3 198.531	2.08	472.631 1	.11.316 95.	.274	\$0
						21E162T017			U 021E	STH 116 -	- LEONARDS	POINT ROAD	268.680	0.00 1.0	1 1	. 2	0 1	9.1 0.0	0.0% 0.0	0 40.0% 0	.00 40.0	0.00	0 3		440 92	270 1	0 0	0 0	5 0	0 WINNEBA	GO 5	0.0186	0 0	0 0	0.000 0.0	0.000	0.00	427.027	93.714 79.	.538 \$₄	4,570
4313	24840 8	337 10	0988 6180	3071 021E16	62T017 02	21E162T110	0.93 MADIS	ON AVE	U 021E	STH 116 -	LEONARDS	POINT ROAD	197.493	0.00 7.2	2 4 6	5 5 1	12 9	7.7 0.0	0.0% 0.0	0 5.6% 0	.00 61.1	.% 0.00	0 64		440 107	740 8	0 0	9 5	22 2	1 WINNEBA	GO 5	0.1823	0 0	9 8	49.373 0.0	49.373	0.00	340.621	60.362 49.	.724	\$0
4314	24850 8	337 10	0988 6180	3071 021E16	62T110 02	21E166 000	1.06 INDUST	TRIAL DR	U 021E	STH 116 -	LEONARDS	POINT ROAD	86.636	0.00 3.6	5 2 2	2	6 6	3.4 0.2	5.6% 0.0	0 16.7% 0	.00 66.7	% 1.24	1 33 3	0 11 YE	S 430 107	740 3	0 1	3 2	12 0	0 WINNEBA	GO 5	0.2078	0 1	8 3	43.318 1.0	7 19.252	0.00	117.706	40.545 29.	.869 \$14	4,010
4315	24860 8	337 10	0988 6180	3071 021E16	66 000 02	21E168 000	1.57 RIVERN	MOOR RD	U 021E	STH 116 -	LEONARDS	POINT ROAD	71.492	0.00 4.4	5 2	5	4 6	2.8 0.0	0.0% 0.0	0 40.9% 0	.00 22.7	% 0.00	0 40		430 107	740 8	0 0	6 3	13 0	0 WINNEBA	GO 5	0.3077	0 0	7 8	22.747 0.0	19.498	0.00	113.869	38.447 28.	.118	\$0
4316	24870 6	712 10	0988 6180	3071 021E16	68 000 02	21E169 000	1.02 CTH FF	: 1	U 021E	STH 116 -	LEONARDS	POINT ROAD	106.568	0.00 4.4	1 7 C) 6	5 4	4.3 0.4	9.1% 0.0	0 36.4% 0	.00 54.5	% 1.04	1 63 4	7 11 YES	S 430 110	90 5	1 1	7 7	6 0	0 WINNEBA	GO 5	0.2064	1 6	11 17	87.192 2.1	43.596	1.46	117.775	40.583 29.	.901 \$715	<i>5</i> ,536
4317	24880 6	712 10	0988 6180	3071 021E16	69 000 02	21E170K000	1.35 SAND F	PIT RD	U 021E	STH 116 -	- LEONARDS	POINT ROAD	135.417	1.18 7.4	5 9	7	9 7	5.5 0.2	2.7% 0.0	0 43.2% 1	09 24.3	% 0.00	1 85 3	3 20 YE	S 430 110	90 7	1 0	13 6	17 0	0 WINNEBA	GO 5	0.2732	1 0	20 11	76.858 1.9	7 51.239	1.79 (114.952	39.039 28.	.612 \$404	4,004

ATTACHMENT B

Sites of Promise Documentation

Intersection Network Screening Spreadsheet

B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE Intersection Network Screening Updated: 1/3/2020 2 **SPF Results** 3 KABC Crashes Data Needed for SPFs TOTAL Crashes Safety Certification Worksheet Information (values for entire analysis (values for entire analysis 4 Flagged Major Off Ramp On Ramp Number of Total Years of Crash Data Area LOSS PSI LOSS Observed Predicted Expected Observed Predicted Expected INT IP-Region Location AAD 🕌 AAE 🕌 (TOTAL (TOTAL (KABC) (TOTA 🕌 (KAB) (KABC -(KABC) (KAB Rang 🕌 (YerfNa) LOSS 2 Winnebago URBAN FALSE 25419 IX_70_02378 STH 44 & Wright -0.55 LOSS 2 -0.04 No NE TWSC JNDIVIDED 3254 433 3687 2014 - 2018 1.27 0.72 0.26 0.22 25420 IX_70_0237! USH 45 & STH 44 Winnebago URBAN LOSS 2 -0.47LOSS 2 -0.02 NE FALSE SIGNAL UNDIVIDED 14480 1526 16006 2014 - 2018 23.55 23.08 7.03 7.01 No 23 Winnebago URBAN 25421 IX_70_02446 USH 45 & W Linco LOSS 4 7.92 LOSS 4 1.57 Yes NE FALSE TWSC UNDIVIDED 13976 433 n Π 14409 2014 - 2018 18 8.03 15.95 2.42 3.99 n 25422 IX_70_02482 STH 21 & N Oakwd Winnebago URBAN 19219 11.13 LOSS 3 4.44 LOSS 3 2.21 No NE FALSE SIGNAL DITCH 17184 2035 2014 - 2018 34 28.98 33,41 12 8.92 25423 IX 70 02498 STH 21 & Honey C LOSS 3 0.82 LOSS 2 -0.25No ΝE Winnebago URBAN FALSE TWSC DIVIDED 15824 127 15951 2014 - 2018 4.82 5.65 1.26 25424 IX_70_02517 USH 45 & Scott Av Winnebago URBAN LOSS 4 9.50 LOSS 4 NE FALSE 433 14409 17.54 3.99 1.57 Yes TWSC UNDIVIDED 13976 2014 - 2018 20 8.03 2.42 <mark>25425</mark> IX_70_02521 STH 21 & Creek Si -1.68 -0.34 Winnebago URBAN FALSE 127 15951 2014 - 2018 0.56 LOSS 2 LOSS 2 TWSC DIVIDED 15824 1.81 0.89 No NΕ 3.49 25426 IX_70_02545 USH 45 & W Melv LOSS 3 LOSS 3 Winnebago URBAN 14409 2.23 1.53 0.77 No NE FALSE TWSC JNDIVIDED 13976 433 2014 - 2018 4.96 6.48 1.46 Winnebago URBAN FALSE <mark>25427</mark> IX_70_02547 STH 21 & Emmers LOSS 1 -41.45 LOSS 1 -13.27No NF SIGNAL DITCH 27936 7937 n Π Π Π 35873 5 2014 - 2018 16 60.09 18.64 -5 20.54 7.27 Winnebago URBAN 25428 IX_70_02591 USH 45 & Prosped LOSS 4 4.74 LOSS 4 FALSE TWSC UNDIVIDED 3.99 1.57 Yes NE 433 14409 2014 - 2018 8.03 12.77 2.42 25429 IX 70 02629 STH 116 & W Scott LOSS 2 -0.02LOSS 2 -0.06Winnebago RURAL FALSE TWSC UNDIVIDED 914 2484 2014 - 2018 1.04 1.03 0.30 0.24 No Winnebago URBAN FALSE 25430 IX_70_02639 USH 45 & Saratog LOSS 2 LOSS 2 -0.73 NE TWSC UNDIVIDED 433 14409 0.73 -1.46 No 13976 2014 - 2018 4.96 3.49 1.46 Winnebago URBAN FALSE 25431 | IX_70_02644 STH 21 & Leonard LOSS 4 11.14 LOSS 4 TWSC DIVIDED 15824 4884 20708 9.99 21.13 13 3.14 9.85 6.71 Yes NΕ -5 2014 - 2018 23 25432 IX_70_02648 STH 21 & N Washt LOSS 2 -25.54 LOSS 1 -6.81 No NE Winnebago URBAN FALSE RAB RAISED 27936 6335 34271 5 2014 - 2018 34 60.72 35.18 5 13.74 6.93 0 0 0 Winnebago RURAL 25433 <mark>IX_70_02649STH 21 & CTH FF</mark> 3.21 LOSS 3.76 Yes NF FALSE TWSC JNDIVIDED 11412 457 - 0 - 0 11869 2014 - 20110 5.56 8.77 1.67 5.43 25434 IX 70 02655 STH 21 & Marquar 0.24 0.48 No Winnebago RURAL FALSE TWSC JNDIVIDED 1 11412 110 0 11522 3.61 3.86 0.94 1.42 2014 - 201 30 25435 IX 70 02656 STH 21 & Ramp IH LOSS 3 5.70 LOSS 2 -0.24 No ΝE Winnebago URBAN TRUE RAB RAISED 16850 15900 17700 16000 6300 9600 32750 2014 - 2018 23.97 29.67 4.31 4.08 25436 IX_70_02657 STH 21 & Ramp IH LOSS 2 -8.78 LOSS 3 0.48 No NE Winnebago URBAN TRUE RAB RAISED 2.5 16850 16400 16000 17700 9600 6800 33250 2014 - 2018 15 24.28 15.50 5 4.37 4.85 Winnebago RURAL FALSE 11522 12.65 9.04 LOSS. TWSC **JNDIVIDED** 0.945.04 4 10 Yes 11412 110 2014 - 201 3.61 25438 IX_70_0267£ STH 21 & N Koeller LOSS 1 -38.12 LOSS 1 Winnebago URBAN FALSE RAISED 22218 5265 27483 2014 - 2018 3.53 -6.53 No NE RAB 50.25 12.13 10.05 10 25439 IX 70 02708 USH 45 & W New LOSS 4 26.50 LOSS 4 6.33 Yes NF Winnebago URBAN FALSE SIGNAL INDIVIDED 14576 3894 18470 5 2014 - 2018 60 30.14 56.64 18 9.27 15.60 SIGNAL UNDIVIDED 25440 IX_70_0275(STH 21 & N Westfi Winnebago URBAN FALSE 24037 LOSS 1 -20.78 LOSS 1 -5.72 No NE 20170 3867 5 2014 - 2018 2 25.23 4.44 0 7.58 1.86 25441 IX 70 02757 STH 21 & E Scott LOSS Winnebago RURAL FALSE TWSC UNDIVIDED 10494 0.59 0.14 No 2014 - 201 2.71 25442 IX_70_02765 STH 116 & W Larra LOSS 2 LOSS 2 Winnebago RURAL FALSE TWSC JNDIVIDED 374 0.24 -0.01 -0.06 No NE 1446 1820 2014 - 2018 1.04 1.03 0 0.30 Winnebago URBAN 25443 IX_70_02793 STH 21 & N Eagle LOSS 2 LOSS 2 FALSE 10.42 5.07 -5.35 -1.56 Nο TWSC JNDIVIDED 19010 433 Π 19443 5 2014 - 2018 3.29 1.73 25444 IX_70_02795 STH 21 & N Sawye LOSS 1 -19.16 LOSS 1 -7.07 Winnebago URBAN FALSE SIGNAL RAISED 22498 7428 29926 2014 - 2018 30.06 10.89 9.01 1.94 No NE <mark>25445</mark> IX_70_02797 STH 21 & Punhoql LOSS 1 -8.68 LOSS 1 -2.24 No NE Winnebago URBAN FALSE TWSC JNDIVIDED 19010 433 Π 19443 2014 - 2018 0 10.42 1.74 3.29 1.05 Π Π Π Π <mark>25446</mark> IX_70_02798 STH 21 & High Av LOSS 2 -13.94LOSS 2 -3.66 No NE Winnebago URBAN FALSE SIGNAL RAISED 1.5 22498 2940 25438 2014 - 2018 24 39.30 25.36 12.67 9.01 25447 IX 70 0279; STH 21 & Arboretu Winnebago URBAN LOSS 1 -9.38 LOSS -2.78No NΕ FALSE TWSC UNDIVIDED 22498 433 22931 2014 - 2018 12.01 2.63 3.89 1.11 25448 IX_70_02800 STH 21 & Fox St Winnebago URBAN 0.87 LOSS 1 -5.27LOSS 2 -1.24 NE FALSE TWSC JNDIVIDED 433 19443 1.34 No 19010 2014 - 2018 6.60 2.11 25449 IX_70_02805 STH 21 & Algoma Winnebago URBAN LOSS 1 -16.22 LOSS 1 -4.69 No FALSE SIGNAL RAISED 11550 6242 17792 2014 - 2018 10 28.40 12.18 8.61 3.91 NΕ Winnebago URBAN 25450 IX_70_02805 STH 21 & Rainbow LOSS 2 -3.14 FALSE 22931 0.86 LOSS 2 -1.21 NE TWSC RAISED 22498 433 2014 - 2018 6.90 3.76 2.06 No 25451 IX 70 0282(USH 45 & Annex) LOSS 3 0.64 LOSS 2 -0.27No Winnebago URBAN FALSE TWSC JNDIVIDED 14576 433 15009 5 2014 - 2018 5.15 5.79 1.54 1.26 NF. Π Π Π 25452 IX 70 02851 STH 21 LOSS 4 16.34 LOSS 4 1.57 Yes NE Winnebago URBAN FALSE OTHER RAISED 12418 5860 18278 2014 - 2018 28 8.40 24.74 2.50 4.08 <mark>25453</mark> | X | 70 | 02863 USH 45 & Congre LOSS 4 4.41 LOSS 3 0.75 Yes Winnebago URBAN FALSE TWSC UNDIVIDED 14576 433 15009 2014 - 2018 5.15 9.57 1.54 2.28 LOSS 2 Winnebago RURAL FALSE 5454 IX_70_0287(STH 116 & W Ontal -0.01 LOSS 2 NE TWSC UNDIVIDED 374 1.03 0.30 0.24 -0.06No 1820 2014 - 2018 1.04 LOSS 2 Winnebago URBAN FALSE TWSC JNDIVIDED 15009 2.52 .<mark>5455</mark> IX_70_02891 USH 45 & W Neva LOSS 2 -3.46 -1.56 14576 433 2014 - 2018 8.32 4.86 0.96 No NΕ 0 -0 0 0 -5 0 Winnebago RURAL 2.84 LOSS: FALSE 10494 6.19 0.93 25456 <mark>IX_70_02902 STH 21 & Riverm</mark> 0.06 Yes TWSC UNDIVIDED 10384 110 3,35 0.87 25457 IX_70_0292; STH 116 & W Huro LOSS 4 0.97 LOSS 2 Winnebago RURAL 374 0 0.30 -0.06 Yes ΝE FALSE TWSC JNDIVIDED 1446 0 Ω Ω Π 1820 2014 - 2018 1.04 2.01 0.24 25458 IX_70_02952 STH 21 & Arboretu LOSS 2 -1.76 LOSS 2 -0.09 No NE Winnebago URBAN FALSE TWSC UNDIVIDED 12418 433 0 0 0 0 12851 2014 - 2018 7.27 5.51 2 2.15 2.06 25459 IX 70_02968 USH 45 & W Bent LOSS 3 0.54 LOSS 2 -0.33 No NΕ Winnebago URBAN FALSE TWSC UNDIVIDED 14576 433 0 15009 2014 - 2018 8.32 8.86 2.52 2.20 1.62 0.67 25460 IX 70 02973 STH 21 & Adams A LOSS 2 LOSS 2 NE Winnebago RURAL 12540 5.14 -0.36 -0.95 No FALSE OTHER JNDIVIDED 12166 374 2014 - 2018 5.50

4	A	B	<u> </u>	D	<u>E</u>	F_	G	Н		J	K	L	М	N I	0_	Р	Q	R_L	S	T_U_U	V	W	X	Y_	<u>Z</u> _	AA	AB	AC	AD	AE
1 1	ntersec	tion Netwo	rk Scree	ning																										
<u>'</u>	Updated:		TK SCICC	В																										
3																									SPF Results					
3		Safety Cer	tification	Workshe	et Inform	ation									Data	Neede	d for SPF	ie.							TO	TAL Crashe			ABC Crashe	es
		Salety Cel	uncation	VVOIRSIIC		iation									Date	, receue	. 101 31 1	•								for entire ar		(values	for entire ar	nalysis
4	•									•	•	•	_	•	•	•	•	Inside O	outside	•	•	•	_		_	_neriod)			neriod)	
	INT IP—	Intersection Name	LOSS	PSI	LOSS	PSI	Flagged Location	Region_	County	Area	Ramp	Number	Control	Median	Number	Major	Minor	Ramn F	Ram <u>n</u> (Off Ramp On Ra	mp Number of	Total	Years of	Crash Data	Observed				Predicted	Expected
5	▼	(IX_NAME)	(TOTAL -	(TOTAL -	(KABC)	(KABC)	(Yar/Ne)	T,	▼	Тур	Termir	of Le 🕌	Тур	Турі	of Lai	AAD	AAL	AAL A	AAC 🔻	AAC - AAC	Ramı	AAI 🕌 (Crash [Rang	4101)	(TOTA	(TOTA	(KAB 🕌	(KABI 🔻	(KABC -
		STH 21 & Arboretu	LOSS 2	-1.76	LOSS 2	-0.09	No		Winnebago			4		JNDIVIDEC	2	12418	433	0	0	0 0	0	12851	5	2014 - 2018	5	7.27	5.51	2	2.15	2.06
		USH 45 & W Bent STH 21 & Adams A	LOSS 3 LOSS 2	0.54 -0.36	LOSS 2 LOSS 2	-0.33 -0.95	No No	NE NE	Winnebago Winnebago		FALSE FALSE	4		NDIVIDED	2	14576 12166	433 374	0	0	0 0	U	15009 12540	5	2014 - 2018 2014 - 2018	9	8.32 5.50	8.86 5.14	2	2.52 1.62	2.20 0.67
25460 I	X_70_02375 X_70_02975	STH 21 & Additis A	LOSS 4	3.97	LOSS 4	0.84	Yes		Winnebago		FALSE	3		<u> INDIVIDEC</u>	1	12166	1446	0	0	0 0	0	13612	5	2014 - 2018	10	4.48	8.45	3	1.35	2.19
25462 <mark>I</mark>	X_70_02978	STH 21 & Webster	LOSS 3	1.07	LOSS 2	-0.39	No	NE	Winnebago	RURAL	FALSE	3	TWSC	JNDIVIDED	1	9196	914	0	0	0 0	0	10110	5	2014 - 2018	5	3.37	4.44	0	0.94	0.55
25463 <mark>I</mark>	X_70_02977	STH 21 & Madison	LOSS 4	2.39	LOSS 3	0.02	Yes		Winnebago		FALSE	3		JNDIVIDED.	1	9196	914	0	0	0 0	0	10110		2014 - 2018	7	3.37	5.76	1	0.94	0.97
25464 <mark> </mark> 25465 <mark> </mark>	X_70_02978 X_70_02990	STH 21 & Monroe (STH 21 & Quincy A	LOSS 3 LOSS 3	0.62 0.62	LOSS 4 LOSS 4	0.45 1.16	Yes Yes	NE NE	Winnebago Winnebago		FALSE FALSE	3		JADIVIDEC 33DIVIDAL	- 1	10384 10384	374 374	0	0	0 0	U	10758 10758	5	2014 - 2018 2014 - 2018	4	3.02 3.02	3.64 3.64	, 2	0.72 0.72	1.17 1.88
25466 I		STH 21 & Jackson	LOSS 3	1.25	LOSS 3	0.10	No	NE	Winnebago		FALSE	3		JNDIVIDED	i	10384	374	ő	ő	0 0	ő	10758	5	2014 - 2018	5	3.02	4.28	1	0.72	0.82
25467 <mark>I</mark>	X_70_02982	STH 21 & Van Bur	LOSS 2	-0.65	LOSS 2	-0.25	No		Winnebago		FALSE	3	TWSC	JNDIVIDED	1	10384	374	0	0	0 0	Ō	10758	5	2014 - 2018	2	3.02	2.37	Ó	0.72	0.46
25468 <mark>I</mark>		STH 21 & Harrison	LOSS 2	-2.68	LOSS 2	-0.79	No	NE	Winnebago		FALSE	4		<u> JNDIVIDEC</u>	1	10384	374	0	0	0 0	0	10758	5	2014 - 2018	1	4.86	2.18	0	1.43	0.63
		USH 45 & Stanley STH 21 & Maplewd	LOSS 2	-0.87 -0.65	LOSS 2 LOSS 3	-0.79 0. 10	No No	NE NE	Winnebago Winnebago		FALSE FALSE	3		JNDIVIDEC JNDIVIDEC	2	14576 10384	433 374	0	0	0 0	U	15009 10758	5	2014 - 2018 2014 - 2018	2	5.15	4.28 2.37	1	1.54 0.72	0.75 0.82
		STH 21 & Hollister	LOSS 2	-1.77	LOSS 2	-0.13	No		Winnebago		FALSE	3		NDIAIDEC	2	12418	433	0	0	0 0	0	12851	5	2014 - 2018	2	4.44	2.67	1	1.27	1.15
25472 <mark>I</mark>		STH 21 & Lincoln /	LOSS 2	-0.65	LOSS 2	-0.25	No		Winnebago		FALSE	3	TWSC	JNDIVIDED	1	10384	374	0	Ō	0 0	0	10758	5	2014 - 2018	2	3.02	2.37	0	0.72	0.46
25473 <mark>I</mark>		STH 21 & Beckwith	LOSS 3	0.62	LOSS 4	0.45	Yes	NE	Winnebago		FALSE	3		NDIVIDED	1	10384	374	0	0	0 0	0	10758	5	2014 - 2018	4	3.02	3.64	2	0.72	1.17
25474 <mark> </mark> 25475 <mark> </mark>		STH 21 & McKinle STH 21 & Omreau	LOSS 3 LOSS 2	0.62 -0.65	LOSS 4 LOSS 3	0.45 0.10	Yes No	NE NE	Winnebago Winnebago		FALSE FALSE	3		JNDIVIDED	- }	10384 10384	374 374	U	U	0 0	U	10758 10758	5	2014 - 2018 2014 - 2018	4	3.02 3.02	3.64 2.37	. 2	0.72 0.72	1.17 0.82
25476 <mark>1</mark>	A_70_03027 X 70_03028	STH 21& Onlieau	Missing Data	-0.00 Missing DataN	Missing DataM	lissing Data	Missing Data	NE	Winnebago		FALSE	3		NDIVIDED	- 1	10384	0	0	0	0 0	0	10384		2014 - 2018	1 4	3.02 lissing Dal/l		· 6 ,	0.72 (lissing Dal/li	lissing Data
25477 <mark>I</mark>	X_70_03030	STH 21 & Industria	LOSS 2	-1.12	LOSS 3	0.43	No	NE	Winnebago		FALSE	3		JNDIVIDED	i	10384	914	Ŏ	Ŏ	0 0	Ö	11298	5	2014 - 2018	2	3.66	2.54	2	1.02	1.45
25478 <mark>I</mark>		STH 21 & Alder Av	LOSS 4	4.27	LOSS 4	1.43	Yes	NE	Winnebago		FALSE	4		JNDIVIDED	1	10384	374	0	0	0 0	0	10758		2014 - 2018	11	4.86	9.13	4	1.43	2.86
		STH 21 & Brooke []	LOSS 3 LOSS 3	0.10 1.76	LOSS 2 LOSS 4	-0.79 0.81	No Yes		Winnebago Winnebago		FALSE FALSE	2	TWSC TWSC	JNDIVIDEC RAISED	1	10384 14576	374 433	0	0	0 0	U	10758 15009	5	2014 - 2018 2014 - 2018	5 7	4.86 4.60	4.96 6.36	<u>U</u>	1.43	0.63 2.04
		USH 45 & Hobbs A USH 45 & STH 21	LOSS 3	5.36	LOSS 2	-0.19	No	NE NE	Winnebago			3	SIGNAL	RAISED	2	12418	8010	n	n	0 0	n	20428	5	2014 - 2018	22	15.62	20.98	4	1.23 4.29	4.11
		USH 45 & Plymout	LOSS 1	-2.53	LOSS 2	-0.41	No	NE	Winnebago		FALSE	3		JNDIVIDEC	2	10146	433	Ö	Ö	0 0	Ō	10579	5	2014 - 2018	0	3.68	1.15	Ö	1.00	0.60
		USH 45 & Sherida	LOSS 2	-3.08	LOSS 2	-0.40	No	NE	Winnebago		FALSE	4		NDIVIDED	2	10146	433	0	0	0 0	0	10579	5	2014 - 2018	2	6.13	3.05	1	1.76	1.36
		USH 45 & Crane S USH 45 & Olive St	LOSS 2 LOSS 2	-1.15 -1.84	LOSS 2 LOSS 2	0.00 -0.41	No No	NE NE	Winnebago Winnebago			3		JNDIVIDED	2	10146 10146	433 433	0	0	0 0	0	10579 10579	5	2014 - 2018 2014 - 2018	2	3.68 3.68	2.52 1.84	1	1.00 1.00	1.00 0.60
		USH 45 & Mitchell	LOSS 2	-1.04 -1.15	LOSS 2	-0.41	No No	NE	Winnebago		FALSE	3		NDIVIDED	2	10146	433	n	0	0 0	Ů	10579	5	2014 - 2018	2	3.68	2.52	n n	1.00	0.60
25487 I	X_70_03074	USH 45 & Elmwood	LOSS 3	2.21	LOSS 4	2.19	Yes	NE	Winnebago		FALSE	4		JNDIVIDED	2	11350	2544	Ō	0	0 0	Ō	13894	5	2014 - 2018	16	13.45	15.66	7	3.95	6.14
		USH 45 & Walnut	LOSS 2	-2.19	LOSS 2	-0.50	No	NE	Winnebago			3		JNDIVIDED	2	11350	433	0	0	0 0	0	11783		2014 - 2018	1	4.08	1.90	0	1.14	0.64
25489 I	X_70_0307E	USH 45 & Cedar S	LOSS 2	-0.77	LOSS 3	0.37	No No		Winnebago			3		JNDIVIDEE	2	11350	433	0	0	0 0	0	11783		2014 - 2018	3	4.08	3.31	2	1.14	1.52
		USH 45 & Beech S USH 45 & Liberty \$	LOSS 2 LOSS 2	-2.85 -2.19	LOSS 2 LOSS 2	-1.10 -0.06	No No		Winnebago Winnebago			3		JNDIVIDEC	2	11350 11350	433 433	Π	0	0 0	n	11783 11783		2014 - 2018 2014 - 2018	1	6.74 4.08	3.88 1.90	0	1.97 1.14	0.87 1.08
		USH 45 & Western		-0.77	LOSS 2	-0.50	No	NE	Winnebago	URBAN	FALSE	3		JNDIVIDED	2	11350	433	Ŏ	Ö	Õ Õ	Ö	11783		2014 - 2018	3	4.08	3.31	Ö	1.14	0.64
25493 I	X_70_03080	USH 45 & STH 76	LOSS 4	54.20	LOSS 4	18.72	Yes	NE	Winnebago	URBAN	FALSE	4	RAB	RAISED	2	18786	11905	0	0	0 0	0	30691	5	2014 - 2018	112	55.04	109.24	36	10.00	28.72
		STH 116 & Webste		1.55	LOSS 3	0.12	Yes		Winnebago			3		JNDIVIDED.	1	5000	914	0	0	0 0	0	5914		2014 - 2018	5	2.25	3.80	1	0.63	0.75
		USH 45 & Ontario : USH 45 & Wiscons	LOSS 2 LOSS 3	-2.19 8.83	LOSS 2 LOSS 3	-0.50 0.86	No No		Winnebago Winnebago			ئ 4		JNDIVIDEC	2	11350 11350	433 4579	0 N	0	0 0	0	11783 15929		2014 - 2018 2014 - 2018	36	4.08 25.87	1.90 34.69	9 9	1.14 7.74	0.64 8.61
		STH 116 & Cedar S		-0.44	LOSS 2	-0.11	No		Winnebago			3		JNDIVIDED	1	5000	374	ő	Ö	0 0	Ö	5374		2014 - 2018	1	1.86	1.42	Ö	0.45	0.33
5498 [X_70_03093	STH 21 & STH 116	LOSS 4	5.60	LOSS 3	0.54	Yes	NE	Winnebago	RURAL	FALSE	4	SIGNAL	PCR	1	12166	374	0	0	0 0	0	12540		2014 - 2018	20	12.51	18.11	4	2.94	3.48
25499 1	X 70 03096	STH 116 & Oak St	LOSS 4	1.11	LOSS 2	0.04	Yes	NE	Winnebago	RURAL	FALSE	3	TWSC	<u> JNDIVIDEC</u>	1	2136	374	0	0	0 0	00	2510	5	2014 - 2018	4	1.06	2.17	0	0.26	0.22

ATTACHMENT C

Crash Vetting Documentation

WisTransPortal crash data spreadsheet with vetting comments

RICHED TO THE PROPERTY OF THE	ments VCOX VCOX WCPALIT WCDG WYTH WY	100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-01 100-00-00-01 100-00-00-01 100-00-00-00-00-00-00-00-00-00-00-00-00-	MESIN MENUNCIPI MESIN MENUNCIPI ME	MATERIA MATERI
00 d	\$\frac{1}{2}\$\frac	O REAR ON I RSTH ND WET RAIN O REAR ON I RSTH ND CLR RAVE O REAR ON I RSTH ND CLR RAVE O ANGLON I RSTH ND CLR RAVE E 1 REAR ON N RSTH ND CLR RAVE E 1 REAR ON N RSTH ND CLB	ANA	\$\frac{1}{2}\$ \$\
1 1124 284 NOTINES 204/2015 54 12 Williams and of letter into drivewy 1124 285 (1649-45) (1649-45) (1649-45) (1649-45) (1649-45) (1649-45) 1124 285 (1649-55) (1649-45) (1649-45) (1649-45) (1649-45) 1124 285 (1649-45) (1649-45) (1649-45) (1649-45) (1649-45) (1649-45) 1124 285 (1649-45)	NE 70 WINNERSOO 7055 OMBO C 22 E 1267 0.03 22 W MANN 55 116 FFFFERON CONTROL TO THE CONTROL THE	VES 103 E 1 REAR ON I RSTH ND CLR	NO B 0 1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y 2 CAR MOD E GOSTR NONE 25 40 F B 54/LP CAR MAR E 5/LST NONE 25 40 F B 54/LP 180059172 2 CAR MAR E CASTR NONE 25 40 F B 54/LP 180059172 2 CAR MAR W GOSTR NONE 25 15 MM 54/LP 18024 E 5/LST NONE 25 15/LST NONE 25 15
1 1125 2 2856 ORLXE2 37667045 5W 17 Ped ht by bypassing We whole 1 1125 2 2856 ORLXE2 12 100027 12 100027 1000 1000 1000 100	NE 70 WINNEEDCO 7055 COMED C 21 E 127 C12 21 E MANUST ALADSON, VIEW TO WINNEEDCO 7055 COMED C 21 E 127 C12 E MANUST AND AMBOOGNAVE 22 E 127 C12 E MANUST AND AMBOOGNAVE 22 E 127 C12 E MANUST AND AMBOOGNAVE 22 E 127 C12 E 127 C12 E MANUST AND AMBOOGNAVE 22 MANUST AND AMBOOGNAVE 22 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 MANUST AMBOOGNAVE 22 E 127 C12 E MANUST AMBOOGNAVE 22 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C12 E 127 C12 E MANUST AMBOOGNAVE 22 E 127 C12 E 127 C	VE 0 AMGL ON I R STH NO SHOW SHOW 165 5 I NO ON I R STH NO SHOW SLOR VE E 3 REAR ON N R STH NO CR 'F W 3 REAR ON N R STH NO CR 'F W 3 REAR ON N R STH NO CR 'F O REAR ON N R STH NO CR 'F O REAR ON N R STH NO CLOY 'F 3 REAR ON I R STH NO CLOY 'F E 3 REAR ON I R STH NO CLOY 'F E 3 REAR ON I R STH NO CLOY 'F E 3 REAR ON I R STH NO CR 'F E 3 REAR ON I R STH NO CLOY		1 CAR MINE W OVER NONE 25 20 F 59/LP 362.29 OTHE 24 M B NA 140303464 12000000 C 2 CAR MAN E GOSTR NONE 25 31 F 59/LP CAR MOD N. LTTEN SS 25 25 F 59/LP 1512.00021.12000000 C 2 CAR MOD N. LTTEN SS 25 20 M 59/LP 1512.00021.12000000 C 2 CAR MOD N. LTTEN SS 25 20 M 59/LP 1512.00021.12000000 C 2 CAR MOD N. LTTEN SS 25 20 M 59/LP 17000000000000000000000000000000000000
1 11.16.4 2866	NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.28 21 QUINCY AVI NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.2 21 E MARIN ST NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.3 21 E MARIN ST UNIVERSAGO 7055 OMBO C 21 E 126T 0.3 21 E MARIN ST QUINCY AVI NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.3 9 21 AGCSON AVE NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.3 9 21 AGCSON AVE NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.4 AGCSON AVE NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.4 21 E MARIN ST NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.4 21 E MARIN ST AGCSON AVI NE 70 WINNESSAGO 7055 OMBO C 21 E 126T 0.4 21 E MARIN ST AGCSON AVI AGCSON AVI	E 328 W 2 REAR ON N 8 STH NO CLR E 328 W 4 ANGLON N 8 STH NO CLDY E 0.8KE NO ON I 8 STH NO CLR VE W 1 REAR ON I 8 STH NO CLR VE 0.8MEL ON I 8 STH NO CLR VE 0.8MEL ON I N STH NO CLR	NN C	Y 2 CAR MNR W GOSTR NONE 25 20 M 54/JP CAR UNKN W GOSTR NONE 25 55 F UNKN 344.62[1) 346.32[1) 371.11584 2 CAR UNKN E GOSTR NONE 25 0 N UNKN A CAR MAR E 54/57 NONE 25 55 F UNKN 344.62[1) 346.32[1] 1500.014 2 CAR MOD E GOSTR NONE 25 52 F C 54/JP TRUT MOD 5 LTTRN NONE 25 64 M 54/JP 150078513 1500.014 2 CAR MOD E BUNK NONE 25 22 M 54/JP 46.88[1] 188E MAR E BUNK NONE 25 41 M 54/JP 346.88[1] 170508112 1 BBE MOD W GOSTR SS 22 M 54/JP 46.88[1] 170508112 1 CAR MNR N LTTRN NONE 77 17 M 54/JP 16.88[1] 170508112 2 CAR SNR E GOSTR NONE 25 41 F 54/JP 34/JP 34/
1 11.25 4.285 CHSUNY 12/11/2015 SON 16 1 1125 4.285 CHSPANG 12/12/2015 SOT 15 1 1126 4.285 CHSPANG 12/12/2015 WED 11 1 1126 4.285 CHSPANG 12/12/2015 WED 11 1 1126 4.285 CHSUNS 12/12/2016 WED 11 1 1 1126 4.285 CHSUNS 12/12/2016 SON 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NE 70 WINNESHGO 7055 LOMBO C. 21 E 1827 LO 4.21 E MAIN ST. NE 70 WINNESHGO 7055 LOMBO C. 21 E 1827 LO 4.21 E MAIN ST. NE 70 WINNESHGO 7055 LOMBO C. 21 E 1827 LO 4.21 E MAIN ST. NE 70 WINNESHGO 7055 LOMBO C. 21 E 1827 LO 4.21 E MAIN ST. NE 70 WINNESHGO 7055 LOMBO C. 21 E 1827 LO 4.21 E MAIN ST. MARENDO C. 21 E 1827 LO 40 MAIN ST. MARENDO C. 21 E 1827 LO 42 E 182	NE 0 OBNEX NO ON I 8 STH ND CLR 0 HAZO NI 1 ROTT NO CLDY H AVE 0 REAR ON 1 ROTT NO CLDY H AVE 0 REAR ON 1 ROTT NO CLDY H AVE 0 REAR ON 1 ROTT NO CLDY H AVE 0 ROTT SUPPORT NO CLDY H AVE 0 ROTT SUPPORT NO CLDY CLDY CLDY CLDY CLDY CLDY CLDY CLDY	PD 0 0 Y	2 CMR SWR E GG15R NONE 25 41F SMLP 34LB3 A IRVU SWR N SG15 35 25 86 M SMLP 38C5/3 13103992-13004. 1 CAR MOD E GG15R NONE 25 54F SMLP CAR MOD N GG15R SS 25 18 F SMLP 131039393-13004. 2 TREST LINER E GG15R NONE 25 56 M INNN 346.142 A 346.701 CAR MOD E GG15R NONE 25 20 M SMLP 3410323-130024. 2 TREST LINER E GG15R NONE 25 56 M INNN 346.142 A 346.701 CAR MOD E NEGOV NONE 25 30 M SMLP 34000223-130024. 2 TREST SML WE LITTER NONE 25 76 M INNN 346.142 A 346.701 CAR MOD E NEGOV NONE 25 36 M SMLP 346.051 A 140002723-130024. 2 CAR SWR W LITTER NONE 25 44M M NONE 347.482m b TRUET VANNE W GG15R NONE 25 36 M SMLP 346.141 A 346.141 A 140060923-140024. 2 TREST SWR E GG15R NONE 25 24M M SMLP 346.7821 A 346.7810 N SMLP 346.7821 M B M SMLP 346.241 B 346.141 A 140060923-140024.
1 113.1 4266 OSAVIS \$7.11/2014 TUE 1 0.0 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 9 We rare and left turn onto Michiney 1 113.1 4266 OFFWIT 7/16/2015 SAT 9 We rare and left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS \$7.11/2015 SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 4266 OSAVIS SAT 1 20 We rare and of left turn onto Michiney 1 113.1 426	NE 70 WINNERGO 7055 OMBO C 21 E 1207 0.75 21 E MAINST MCNINET, NE 70 WINNERGO 7055 OMBO C 21 E 1207 0.75 21 E MAINST MCNINET, NE 70 WINNERGO 7055 OMBO C 21 E 1207 0.76 21 E MAINST MCNINET, NE 70 WINNERGO 7055 OMBO C 21 E 1207 0.76 21 E MAINST MCNINET, NE 70 WINNERGO 7055 OMBO C 21 E 1207 0.76 21 E MAINST MCNINET, NE 70 WINNERGO 7055 OMBO C 21 E 1207 0.82 21 E MAINST MC EECOWITH NE 70 WINNERGO 7055 OMBO C 21 E 1207 0.82 21 E MAINST MC EECOWITH MC 70 WINNERGO 7055 OMBO C 21 E 1207 0.82 21 E MAINST MC EECOWITH	WE 0 REAR ON 1 RSTH ND CLDY WE 1 1 REAR ON 1 RSTH ND CLR WE 0 1 REAR ON 1 RSTH ND CLR UNI 0 0 CBNFX ND CM 1 RSTH ND CLR UNI 0 0 CBNFX ND CM 1 RSTH ND CLR UNI 0 0 CBNFX ND CM 1 RSTH ND CLR UNI 0 0 CBNFX ND CM N NSTH ND CLR WE 0 1 E REAR ON N RSTH ND CLR	PD 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	2 CAR VANNE W L'THEN NONE 25 55 M SHUP CAR MOD W GOSTR NONE 25 3F SHUP 140302333 140000000000000000000000000000000000
1 1112 4 286 GHSPW35 1,7777005 TUE 9 1 1112 4 286 GHSPW35 1,7777005 TUE 9 1 1114 4 286 GHSSP45 1,0977015 FHI 16 1 1114 4 286 GHSSP45 1,0977015 FHI 16 1 1114 4 287 GHSSP45 1,0977015 FHI 17 1 1114 4 287 GHSSP45 1,0977015 FHI 17 1 1114 4 287 GHSW25 1,0977015 SM 1 1 18 Face and of left turning whick onto Goldenood	NE 70 WINNEESCO 7055 (OMRO C 21E 1827 0.87 LUNCOUN AVE 21E MANNST NE 70 WINNEESCO 7055 (OMRO C 21E 1827 0.87 21E MANNST WINNEESCO 7055 (OMRO C 21E 1827 0.92 21E MANNST WINNEESCO 7055 (OMRO C 21E 1827 0.92 21E MANNST WINNEESCO 7055 (OMRO C 21E 1827 0.92 21E MANNST NE 70 WINNEESCO 7055 (OMRO C 21E 1827 1.1 21E MANNST NOUSTRAN NE 70 WINNEESCO 7055 (OMRO C 21E 1827 1.1 21E MANNST NOUSTRAN NE 70 WINNEESCO 7055 (OMRO C 21E 1827 1.1 21E MANNST NOUSTRAN NE 70 WINNEESCO 7055 (OMRO C 21E 1827 1.1 22 1E MANNST NOUST	E 0 REAR ON 1 8 STM NO WET CLDY LIGT E E 5 REAR ON 1 8 STM NO WET CLDY MECT 0 REAR ON 1 8 STM NO CLR ON E 0 REAR ON 1 8 STM NO CLR ON E 0 REAR ON 1 8 STM NO CLR	PD 0 0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	1 CAR MINR S GOSTR NONE 25 70 F SM/LP 2 TREUT MOON GOSTR NONE 25 70 F SM/LP 2 TREUT MOON GOSTR NONE 25 10 M SMLD 3 TREUT VANIR W GOSTR NONE 25 11 M SM/LP CAR SMR W GOSTR NONE 25 20 M SM/LP 2 CAR MOON GOSTR NONE 25 11 M SM/LP 2 CAR MOON W GOSTR NONE 25 61 M SMLP 2 CAR MOON W GOSTR NONE 25 61 M SMLP 2 CAR MONN W SM/LT NONE 35 61 M SMLP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 67 M C SM/LP 2 CAR MONN W SM/LT NONE 35 M M SM/LP 2 CAR MONN W SM/LT NONE 35 M M SM/LP 2 CAR MONN W SM/LT NONE 35 M M SM/LP 2 CAR MONN W SM/LT NONE 35 M M SM/LP 2 CAR MONN W SM/LT NONE 35 M M SM/LP 2 CAR MONN W SM/LT NONE 35 M M SM/LP 3 MANN W SM/LT NONE 35 M M SM/LP 3 MANN W SM/LT NONE 35 M M SM/LP 3 MANN M SM/LT NONE 35 M M SM/LP 3 MANN M SM/LT NONE 35 M M SM/LT NO
1 1156 487	NE 70 WINNERGO 7055 OMBO . C. 21 E 1807 1.32 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 21 E 1807 1.32 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 21 E 1807 1.32 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 21 E 1807 1.32 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 21 E 1807 1.32 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 21 E 1807 1.33 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 22 E 1807 1.33 21 EMANS'S OLIZENOS NE 70 WINNERGO 7055 OMBO . C. 22 E 1807 1.33 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 22 E 1807 1.33 21 EMANS'S NE 70 WINNERGO 7055 OMBO . C. 22 E 1807 1.33 21 EMANS'S OLIZENOS NE 70 WINNERGO 7055 OMBO . C. 22 E 1807 1.33 21 EMANS'S OLIZENOS OLIZENOS	0 AMG. ON 1 R579 NO CIR OR 0 AMG. ON 1 R579 NO CIR OR 0 AMG. ON 1 R579 NO CIR OR 1 REAR ON 1 R579 NO CIR OR 0 REAR ON 1 R579 NO CIR OR 0 REAR ON 1 R579 NO CIR OR 0 AMG. ON 1 R579 NO CIR OR 1 AMG. ON 1 R579 NO CIR OR 0 AMG. ON 1 R579 NO CIR	180 C 0 2 V V V V V V V V V V V V V V V V V V	2 CAR MOD Nº GOSTR NONE 45 SOF C SHUP "TRUT MOD Nº GOSTR NONE 25 35 5 MM SHUP MASSIZERS MAGNICE AND Nº GOSTR NONE 25 ADT Nº SHUP MASSIZERS MAGNICE AND Nº GOSTR NONE 25 ADT Nº SHUP MASSIZERS MAGNICE AND Nº GOSTR NONE 25 ADT Nº SHUP MASSIZERS MAGNICE AND Nº STORT NONE 25 ADT Nº SHUP MASSIZERS MAGNICE AND Nº STORT NONE 25 ADT Nº SHUP MASSIZERS MAGNICE AND Nº STORT NONE 25 ADT Nº SHUP MASSIZERS MAGNICE AND Nº STORT NONE 25 ADT Nº SHUP MASSIZERS M
1 1139 427	NE 70 WINNESSCO 7055 OMRO C 21 E 167T 158 21 E MAINST 5 SCHWAR AT NE 70 WINNESSCO 7055 OMRO C 21 E 167T 158 21 E MAINST 5 SCHWAR AT NE 70 WINNESSCO 7055 OMRO C 21 E 167T 159 21 E MAINST 6 SCHWAR AT NE 70 WINNESSCO 7056 OMRO T 21 E 167T 159 21 E MAINST 7 SCHWAR AT NE 70 WINNESSCO 7056 OMRO T 21 E 167T 134 21 E MAINST 5 SCHWAR AT NE 70 WINNESSCO 7056 OMRO T 21 E 167T 134 21 E MAINST 5 SCHWAR AT NE 70 WINNESSCO 7056 OMRO T 22 E 167T 134 21 E MAINST 7 SCHWAR AT NE 70 WINNESSCO 7056 OMRO T 22 E 167T 134 21 E MAINST 7 SCHWAR AT NESSCO 7056 OMRO T 22 E 166T 10 RIVERMOORRO 22 MORTH AT NESSCO 7056 OMRO T 22 E 166T 10 RIVERMOORRO 22 MORTH AT NESSCO 7056 OMRO T 21 E 166T 10 RIVERMOORRO 22 MORTH AT NESSCO 7056 OMRO T 21 E 166T 10 RIVERMOORRO 22 MORTH AT NESSCO 7056 OMRO T 21 E 166T 10 RIVERMOORRO 22 MORTH AT NESSCO 7056 OMRO T 21 E 166T 10 RIVERMOORRO 22 MORTH AT NESSCO 7056 OMRO T 21 E 166T 10 RIVERMOORRO 22 MORTH AT NESSCO 7056 OMRO T 21 E 165T 10 RIVERMOORRO 22 MORTH AT NESSCO	PE 1938 W 3 REAR ON N R STH ND CLR E 1 TFSIGN NO RTSH N R STH ND CLR PE 2224 E 24 DITCH NO ON N R STH ND SNOW SNOW C PE E 26 SSOP ON N R STH ND CLR C	PD 0 0 V V V V V V V V V V V V V V V V V	1 CAR MINR E GOSTR NONE 45 73 F 54/LP 3 TRESA NONE W GOSTR NONE 45 73 F 54/LP 3 TRESA NONE W GOSTR NONE 55 56 M 54/LP 1 CAR MINR E OTHR NONE 55 56 M 54/LP 1 CAR MINR E OTHR NONE 55 56 M 54/LP 1 CAR MINR E OTHR NONE 55 56 M 54/LP 2 CAR MOD W GOSTR NONE 55 28 F 54/LP 2 CAR MOD W GOSTR NONE 55 12 F 54/LP 2 CAR WOD W GOSTR NONE 55 12 F 54/LP 2 CAR WOD W GOSTR NONE 55 12 F 54/LP 2 CAR WOD W GOSTR NONE 55 12 F 54/LP 2 CAR WOD W GOSTR NONE 55 12 F 54/LP 2 CAR WOD W GOSTR NONE 55 12 F 54/LP 2 CAR WOD W GOSTR NONE 55 12 F 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 56 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 2 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CAR WOD W GOSTR NONE 55 60 M 54/LP 3 CA
1.145.5 428 2900CTM28 31 3/13/2028 WED 15 58 fail to yeld to WB 1.146.5 428 CHEGOLT 38 2/13/2027 MON 16 68 mechanical issue lost control 1.146.9 428 CHEGOLT 38 2/13/2026 SVE 18 1.146.7 428 CHEGOLT 38 2/13/2026 FW 13 1.146.7 428 CHEGOLT 38 2/13/2026 FW 13 1.146.9 428 CHEGOLT 38 2/13/2026 FW 13 1.146.9 428 CHEGOLT 38 2/13/2026 FW 13 1.156.9 428 2/13/2026 FW 13 1.156	NE 70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 22 NR-70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 21 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 21 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 21 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 166 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 21 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 22 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 GMRD 7 22 E 167 0.0 24 NR-70 WINNEERGO 7000 G	RED 2	NO B 0 2 V V V V V V V V V V V V V V V V V V	\$ CAR SUR S UR 5 LTTM S5 5 75 M C SMUP 346.22 CAR SUR W GOSTR NONE 55 75 M B SMUP 127222099 1 CAR MOD E NEGOV NONE 55 1F SMUP 346.7272 1 CAR MOD E NEGOV NONE 55 1F SMUP 127222099 1 CAR MOD E NEGOV NONE 55 45 F SMUP 151222099 2 CAL SUR S GOSTR NONE 55 16 M SMUP 178 LTT SUR SMUP 151222099 2 CAL SUR E STOYED NONE 55 16 M SMUP 178 LTT SUR SMUP 178 LTT SUR SMUP 151222099 2 CAL SUR E STOYED NONE 55 16 M SMUP 178 LTT SUR SMUP 178 LTT SUR SMUP 151222099 2 CAL SUR E SMUP 151222099 2 CAL SUR E SMUP 151222099 2 CAR SUR W SLAT NONE 55 17 M SMUP 146.91 A MAG 18 1 M M SMUP 146.91 A M M SMUP 146.91 A M M M M M M M M M M M M M M M M M M
11.507 288 CH258-U	NE 70 WINNERSOO 7000 OMBO T 22 E 107 102 21 REGINADO NE 70 WINNERSOO 7000 OMBO T 22 E 108 0 22 F REGINADO NE 70 WINNERSOO 7000 OMBO T 22 E 108 0 21 F REGINADO NE 70 WINNERSOO 7000 OMBO T 22 E 108 0 21 F REGINADO NE 70 WINNERSOO 7000 OMBO T 21 E 108 0 21 F REGINADO NE 70 WINNERSOO 7000 OMBO T 22 E 108 0 21 F REGINADO NE 70 WINNERSOO 7000 OMBO T 22 E 108 0 21 WB F REGINADO NE 70 WINNERSOO 7000 OMBO T 22 E 108 0 21 WB F REGINADO NE 70 WINNERSOO 7000 OMBO T 21 E 108 0 21 WB F REGINADO NE 70 WINNERSOO 7000 OMBO T 21 E 108 0 21 WB F REGINADO NE 70 WINNERSOO 7000 OMBO T 21 E 108 0 21 WB F REGINADO NE 70 WINNERSOO 7000 OMBO T 21 E 108 0 21 WB F REGINADO NE 70 WINNERSOO 7000 OMBO T 22 E 108 0 71 WINNERSOO 7000 OMBO T 22 E 108 0 72 WINNERSOO 7000 OMB	RRD W 1 SSS ON 1 RSTM NO CIR RRD W 0 RBAA ON 1 RSTM NO CIR RRD W 0 RBAA ON 1 RSTM NO CIR O RBAD CIR	NO. C	F CAR MINR E STORD HONE SS 38 M SHUP 344.822 TRES & VAMME E OVIET HONE SS 53 M SHUP 344.8372 14000000000000000000000000000000000000
1 10.5.1 2099 COXXSC 77/2/2015 TNU 8 We fell askeps and direct right just east of intersection 1.15.6.4 2099 COXXSC 17/2/2015 TNU 8 12 80 as the fell and left WS 1.15.6.4 2099 COXXSC 17/2/2015 WW 1.2 12 80 as the fell and left WS 1.15.6.4 2099 COXXSC 17/2/2015 WW 1.2 12 80 are not of left for two rice directory of the fell and t	NE 70 WANNESSO 7000 OMBO	E 25 CHRIST NO CH N STRIP NO CIA LEGO W 10 ERAA CON N ESTA NO CIA LEGO W 12 REAR CON N ESTA NO CIA LEGO W 13 REAR CON N ESTA NO CIA LEGO W 14 REAR CON N ESTA NO CIA LEGO CON CON CIA LEGO	NO C Y O 1	1 CAR VANN W GOSTR NONE SS 18 M C SMUP ECAR MONE S COSTRE NONE SS 57 F SMUP 2 CAR SMR W GOSTR NONE SS 57 F SMUP 2 CAR SMR W GOSTR NONE SS 27 F SMUP 2 CAR SMR W GOSTR NONE SS 18 F C MMP SMALE1 2 CAR SMR W GOSTR NONE SS 18 F C MMP SMALE1 2 CAR SMR W GOSTR NONE SS 18 F C MMP SMALE1 2 CAR SMR W GOSTR NONE SS 18 F C MMP SMALE1 2 CAR SMR W GOSTR NONE SS 48 F B SMUP 3 CAR SMR W GOSTR NONE SS 48 F B SMUP 3 CAR SMR W GOSTR NONE SS 18 F C MMP 4 CAR SMR W GOSTR NONE SS 18 F B MMP 4 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP 5 CAR SMR W GOSTR NONE SS 18 F B MMP
1 11.70 6.289 CROUND 9700/2015 SUN 6 With drifted left over controlline and 68 11.70 6.289 CROMMANN. INFORMANN 18 With drifted left over controlline and 68 11.70 6.299 CROMMANN. 17.70 6.290 CROMMANN 18 With drift over left of 68 11.70 6.299 CROMMANN 18 11.70 6.299 CROMA	NE 70 WINNERGO 7000 OMBO T 21 E 168 087 21 SAMP PITE NE 70 WINNERGO 7000 OMBO T 21 E 168 107 121 NAMP PITE NE 70 WINNERGO 7000 OMBO T 21 E 168 101 21 SAMP PITE NE 70 WINNERGO 7001 AGOMA 7 21 E 168 101 21 E SAMP PITE NE 70 WINNERGO 7001 OMBO T 21 E 169 0 21 SAMP PITE NE 70 WINNERGO 7000 OMBO T 21 E 169 0 21 SAMP PITE NE 70 WINNERGO 7000 OMBO T 21 E 169 0 21 SAMP PITE NE 70 WINNERGO 7000 OMBO T 7 21 E 169 0 21 SAMP PITE NE 70 WINNERGO 7000 OMBO T 7 21 E 169 0 21 SAMP PITE NE 70 WINNERGO 7000 OMBO T 7 21 E 169 0 21 SAMP PITE NE 70 WINNERGO 7000 OMBO T 21 E 169 0 2	0 W 5 STOW SHADO ON N 8511 NO CR DAWN 8 W 2 STOW SHADO SHADO SHADO CR CR DAWN 9 W 1 DITCH NO CITH N 8511 ND CR 0 0 0 AMG ON 1 8511 ND CR 0 0 0 AMG ON 1 8511 ND CR 0 0 8 EARA ON 1 8511 ND CR 0 0 8 EARA ON 1 8511 ND CR	NN A V 0 5 V Y Y Y N N N N N N N N N N N N N N N N	2 CAR VAVIR W GOSTR NONE 55 18 M & UNKN. CAR VAVIR E GOSTR NONE 55 48 F A SALP 150904076 1500000 1 CAR VAVIR W CONTRA NONE 55 15 18 M E SALP PRANATIREA 186.00001 2 CAR VAR W LTTRN NONE 55 20 M C SHOP PRANATIREA 186.00001 2 TREUT MOD C OVITLY NONE 55 20 M C SHOP PRANATIREA 186.00001 2 CAR NONE E LTTRN NONE 55 20 M C SHOP PRANATIREA 186.00001 2 CAR NONE E LTTRN NONE 55 20 M C SHOP PRANATIREA 186.00001 2 CAR NONE E LTTRN NONE 55 20 M C SHOP PRANATIREA 186.00001 2 CAR NONE E LTTRN NONE 55 20 M C SHOP PRANATIREA 186.00001 2 CAR NONE E LTTRN NONE 55 20 M C SHOP PRANATIREA 186.00001 2 CAR NONE E LTTRN NONE 55 20 M C SHOP PRANATIREA 186.000000000000000000000000000000000000
1 117.1 470 20,055,979 117,070 970 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	NE TO WINNELEGO PORO UNIDO T 2 12 15 150 0 22 5000 PT 10 2 3000 PT 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S O REAR ON 1 RTOWN ND CLDY DARK D O ANGLON 1 RSTH ND CLR D E O REAR ON 1 RSTH ND CLR O REAR ON 1 RSTH ND CLP E 2 REAR ON 1 RSTH ND CLDY E 3 REAR ON 1 RSTH ND CLDY E 4 CULVET NO 1318 RSTH ND CLDY	Hold P. G. 3 . V . V . V . V . V . V . V . V . V	2 CACH SVR W GOSTR KOME 55 61 F 8 54/F 346.8951
1 117.6 4200 C02561 1557.0213 5607, 30 Elever centers dans see 1 117.24 4200 C02561 2757.0213 5607, 10 Elever centers dans see 1 117.34 4200 C02562 1757.0213 5607, 10 Elever dans see	NE 70 WHOMENGO 7000 GMINO 7 22 E 100 6.15 22 6444007 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E 19 REAR ON IN RESTN NO CET AND DAME OF THE PROPERTY OF THE P	M 8	2 THE UT MARK W GOSTIN ROOM SS 624 M 5002 CAR ARM W 50,75 ROOM SS 587 B 5002 SECTION S
1 13.50 AND G19901 MAJ7513 Feb. 1 5 BNM departs or code 1 13.52 Feb. 20170 612775 MAJ7513 Feb. 1 5 BNM departs or code 1 13.52 Feb. 2010 C01000 MAJ7513 SVM 1 10 We have paid the size developer pair content 1 13.52 Feb. 2010 C01000 MAJ7513 SVM 1 10 Bnd many pile finish developer pair content 1 13.52 Feb. 2010 MAJ7513 SVM 1 10 Bnd many pile finish developer pair content 1 13.52 Feb. 2010 MAJ7513 SVM 1 10 Bnd many pile finish developer pair content 1 13.53 AND G19903 MAJ7513 SVM 1 10 Bnd many pile finish developer pair content 1 13.53 AND G19903 MAJ7513 SVM 1 10 Bnd many pile finish developer pair content 1 13.53 AND G19903 MAJ7513 SVM 1 10 Bnd many pile finish developer pair content 1 13.53 AND G19903 MAJ7513 SVM 1 10 Bnd many pile finish developer pair pair contents of pile finish developer pair pair contents of pile finish developer pair contents or pile finish developer pair contents of pile finish de	No. 29 offersion (1921), AGE-MAN 1 22 6 2 189 209 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		79	1 Cam

gement KAB Crash Rate Flag egment KAB & Total Crash Rate Flag tersection Total Crash Rate Flag tersection KAB Crash Rate Flag tersection KAB & Total Crash Rate Flag & Flag detstrian Flag

ATTACHMENT D

Contributing Geometric Analysis Documentation

Safety Certification Worksheet

Safety Certification Worksheet

Analyst: Nelson, Scott A

Design ID: 6180-30-00

Agency: WisDOT DTSD NE Region

Highway: WIS 21 EB

Date of Analysis: 2020-04-08

Project Title: OMRO - OSHKOSH

Meta Manager Version: 2019-10

Project Description: STH 116 - LEONARD POINT ROAD

Meta Manager Crash Years: 2014-2018

Worksheet ID: 2716

		System S	Screening -	Sites of P	romise		Crash Vetting - Sites of Promise	Contributing Ge	ometric Analysis
		S	ee FDM 11-38-10	0.2 for guidance			See FDM 11-38-10.3 for guidance	See FDM 11-38-	10.4 for guidance
Segments:	Meta-Manager								
PDP ID	From RP	RP Description	To RP	Length (PDP_Mile)	Crash Rate Flag (RATEFLAG) (Insert value if ≥ 1.0)	KAB Crash Rate Flag (MMGR_KAB_CRSH_RT) (Insert value if ≥ 1.00)	Summarize the contributing factors for ALL crashes in the flagged segment.	Which geometric features contribute to the type and severity of the crashes?	Possible Countermeasures for Safety Mitigation Process
4284	021E162T000	STH 116 WB	021E162T006	0.06	2.1088	2.0873	5 of 10 crashes remain after vetting. All five crashes are intersection specific. Four WB rear ends of left turning traffic. No left turn lane exists. One NB fail to yield to WB with visibility obstructed by a parked vehicle at the Jefferson intersection.	WB rear end crashes were impacted by having no left turn lane to turn south on STH 116/Jefferson St. or driveways. These four crashes resulted in one type B suspected minor injury, one type C possible injury and two property damage only crashes. The right angle failure to yield crash had no geometric features influencing the crash. The crash resulted in a property damage only crash.	Developing a left turn lane on STH 21 WB at Jefferson or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
4285	021E162T006	WEBSTER AVE	021E162T017	0.11					
4286	021E162T017	MADISON AVE	021E162T110	0.93					
4287	021E162T110	INDUSTRIAL DR	021E166 000	1.06					
4288	021E166 000	RIVERMOOR RD	021E168 000	1.57					
4289	021E168 000	CTH FF	021E169 000	1.02		1.4584	12 of the 22 crashes remain after vetting. Eight of the 12 crashes remaining crashes occurred at CTH FF intersection and are described in the intersections section below. Of the four remaining crashes in this segment, one occurred at Potratz Hill where WB vehicle was rear ended, one drifted left of centerline, and the remaining two were at Sand Pit Road.	For the ten crashes at CTH FF and Sand Pit Road, see the intersections section below. Of the two remaining crashes one drifted left of center and one was a WB rear end crash at Potratz Hill. These two crashes resulted in one type A suspected serious injury and one type B suspected minor injury.	Recommendations at CTH FF & Sand Pit are listed in the inersections section below. Given only one crash at Potratz Hill, no safety mitigation recommended at this intersection. The project is expected to include centerline rumble strips to address the crash that drifted left of center.
4290	021E169 000	SAND PIT RD	021E170K000	1.35	1.1763	1.7913	14 of 37 crashes remain after vetting. Nine of the remaining crashes occurred at the inersection of Sand Pit Road and the details are discussed in the intersections section below. The five remaining crashes all involve vehicles that drifted left of centerline.	For the nine crashes at Sand Pit Road, see the intersections section below. For the five drifting left of center crashes, no geometric features seem to influence these crashes other than no centerline rumble strips are present. These five crashes resulted in one fatal crash, one suspected minor injury, and three property damage only crashes.	Recommendations at CTH FF & Sand Pit are listed in the inersections section below. Centerline rumble stripes are expected to be included in the project to address these left of center crashes.
Intersection	s: Intersection	Network Screening							
INT ID Intersection Name LOSS PSI LOSS PSI Summarize the contributing factors for ALL crashes Which geometric features contribute to Possible		Possible Countermeasures for Safety Mitigation Process							

IX_70_02975	STH 21 & STH 116	LOSS 4	3.97	LOSS 4	0.84	5 of 8 crashes remain after vetting. Four WB rear ends of left turning traffic. No left turn lane exists. One NB fail to yield to WB with visibility obstructed by a parked vehicle.	WB rear end crashes were impacted by having no left turn lane to turn south on STH 116/Jefferson St. or driveways. These four crashes resulted in one type B suspected minor injury, one type C possible injury and two property damage only crashes. The right angle failure to yield crash had no geometric features influencing the crash. The crash resulted in a property damage only crash.	Developing a left turn lane on STH 21 WB at Jefferson or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
17, 70, 00070	OTH 04 9 M/-b-+ A C	1.000.0	4.07	1,000,0	0.00			
IX_70_02976 IX_70_02977	STH 21 & Webster Ave S STH 21 & Madison Ave	LOSS 3	2.39	LOSS 2	0.02	1 of 7 crashes remain after vetting. A WB vehicle yielded to a pedestrian crossing North to South on the East side of the inersection. Another WB tried bypassing WB on right and struck the pedestrian.	Mainly a driver error by passing vehicle resulting in type B suspected minor injury. The width of the crossing is long with two travel lanes and two parking lanes.	Narrowing the STH 21 or creating bump-outs at the Madison Street intersection may have reduced the likehood of this collision. This was determined to not be a feasible alternative.
IX_70_02978	STH 21 & Monroe St	LOSS 3	0.62	LOSS 4	0.45	3 of 4 crashes remain after vetting. Two WB rear ends of left turns onto Monroe and one WB rear end turing into Kwik Trip.	WB rear end crashes were impacted by having no left turn lane to turn south on STH 116 to Monroe St. or driveways. These three crashes resulted in one type B suspected minor injury, and two property damage only crashes.	Developing a left turn lane on STH 21 WB at Monroe or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
IX_70_02980	STH 21 & Quincy Ave	LOSS 3	0.62	LOSS 4	1.16	1 of 3 crashes remain after vetting. A WB rear end of left turning traffic into a driveway near Quincy Ave.	WB rear end crash was impacted by having no left turn lane. The crash resulted in a type C possible injury.	Developing a left turn lane on STH 21 WB at Quincy Ave. or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
IX_70_02981	STH 21 & Jackson Ave	LOSS 3	1.25	LOSS 3	0.10			
IX_70_02982	STH 21 & Van Buren Ave	LOSS 2	-0.65	LOSS 2	-0.25			
IX 70 02985	STH 21 & Harrison Ave & Maplewood Rd	LOSS 2	-2.68	LOSS 2	-0.79			
IX 70 03018	STH 21 & Maplewood Rd	LOSS 2	-0.65	LOSS 3	0.10			
IX_70_03027	STH 21 & Omreau Ave	LOSS 2	-0.65	LOSS 3	0.10			
IX_70_03026	STH 21 & McKinley Ave	LOSS 3	0.62	LOSS 4	0.45	3 of 4 crashes remain after vetting. Three WB rear end crashes with left turns onto McKinley Ave.	The three WB rear end crashes were impacted by having no left turn lanes. The three crashes resulted in on type C possible injury and two property damage only crashes.	Developing a left turn lane on STH 21 at McKinley Ave. or TWLTL could help address the three rear end crashes. This was determined to not be a feasible alternative.
IX 70 03024	STH 21 & Beckwith Ave	LOSS 3	0.62	LOSS 4	0.45	0 of 4 crashes remain after vetting.	None	None
IX_70_03023	STH 21 & Lincoln Ave	LOSS 2	-0.65	LOSS 2	-0.25	·		
IX 70 03028	STH 21 & Goldenrod Ave	LOSS 2	-1.43	LOSS 2	-0.31			
IX_70_03030	STH 21 & Industrial Dr	LOSS 2	-1.12	LOSS 3	0.43			
IX_70_03034	STH 21 & Alder Ave & Goldenrod Dr	LOSS 4	4.27	LOSS 4	1.43	3 of ten crashes remain after vetting. Two EB rear end crashes while turning onto Goldenrod and on WB rear end crash while turning onto Alder Ave.	The three rear end crashes of left turning vehicles were impacted by having no left turn lanes. The three crashes resulted in property damage only.	Developing a left turn lane on STH 21 EB & WB at Alder/Goldenrod or TWLTL could help address the three rear end crashes. This was determined to not be a feasible alternative.
IX_70_03043	STH 21 & Brooke Dr & Schwab Ave	LOSS 3	0.10	LOSS 2	-0.79			
IX_70_02902	STH 21 & Rivermoor Rd (2)	LOSS 4	2.84	LOSS 3	0.06	0 of 4 crashes remain after vetting.	None	None
IX_70_02757	STH 21 & E Scott St	LOSS 3	0.38	LOSS 3	0.14			
IX_70_02649	STH 21 & CTH FF & Reighmoor Rd	LOSS 4	3.21	LOSS 4	3.76	9 of the 11 crashes remain after vetting. Six of the 9 involved left turning crashes from Hwy 21. One NB left failed to yield to a SB motorist. One SB failed to yield to WB. The remaining crash was not intersection related but the driver drifted off the roadway to the right.	The mainline left turning crashes are impacted by having no left turn lanes. NB failing to yield ot SB due to looking at crossing traffic. SB and WB crash due to picking an inadequate gap. The drift to the right due to inattentive driving. The nine crases resulted in one fatality, three type B suspected minor injuries, four type C possible injuries, and one property damage only.	Safety mitigation for these crashes could inlcude a roundabout, left turn lanes on STH 21 EB & WB, and longitudinal shoulder rumble strips.
IX_70_02655	STH 21 & Marquart Ln & Potratz Hill Rd	LOSS 3	0.24	LOSS 3	0.48			
IX_70_02660	STH 21 & Sand Pit Rd	LOSS 4	9.04	LOSS 4	4.10	11 of 11 crashes remain after vetting. Ten of the 11 crashes involve a left turning vehicle from Highway 21. The remaining crash was a NB failure to yield to an EB.	The mainline left turning crashes are impacted by having no left turn lanes. NB failing to yield to EB due to picking an inadequate gap. These crashes resulted in five type B suspected minor injuries, three type C possible injuries, and three property damage only crashes.	Safety mitigation for these crashes could inlcude a roundabout, left turn lanes on STH 21 EB & WB, and longitudinal shoulder rumble strips.

ATTACHMENT E

Safety Mitigation Certification Documentation

Layout/Schematic for each alternative and Cost Estimate for each alternative

Created by: Mason Simmons

6/24/2020

STH 21 - STH 116 - Industrial Drive

Project ID: 6180-30-00 **Route :** STH 021

Title: Omro - Oshkosh Sub Title: STH 116 - Leonard Point

Region: NORTHEAST **County**: Winnebago

Improvement Type proposed RSRF10

MetaManager 9/2019

Year 1 ADT varies 10,590

Year 20 ADT varies 10,590

HMA – would be 4MT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.

Existing roadway conditions:

- 25 MPH roadway
- 12-ft thru lanes with 9-ft parking lanes or 6-ft urban shoulders

Proposed TWLTL conditions:

- 25 MPH roadway
- 12-ft through lanes
- 16-ft TWLTL
- 6-ft Bike Lanes

The options presented were to compare an overlay of STH 21 to adding a TWLTL, however a TWLTL will not fit in the current roadway area. Widening the road to accommodate this option would require a massive real estate acquisition of downtown Omro. As such, no alternative will be presented for this section of roadway.

Project ID: 6180-30-00 STH 21 Omro – Oshkosh STH 116 - Leonard Point Rd Winnebago County

STH 21 & CTH FF/Reighmoor Rd Intersection

Created by: Mason Simmons

Created: 6/2/2020

The intersection of STH 21 and CTH FF has an intersection safety flag. Two alternatives have been suggested to mitigate the crashes occurring they are slotted left turn lanes on STH 21 and a single lane roundabout. A construction cost estimate including estimated real estate costs have been created for the two alternatives and a do-nothing alternative cost estimate.

Existing roadway conditions and assumptions for project:

- STH 21 is on the community's plan for wider shoulders for bike accommodations
- 1 ¼-Inch Base Aggregate Dense unit weight = 2 Tons/ CY
- ¾-Inch Base Aggregate Dense unit weight = 2.1 Tons/CY
- Fill expansion factor: 1.33
- STH 21 is a concrete roadway with no HMA overlay
 - o As-built 6184-03-71
- Traffic forecasting:

Year 1 AADT: 11,090Year 20 AADT: 11,090

The proposed Improvement Type is RSRF10

*NOTE — if this Do nothing alternative. is selected for the preferred alternative the CTH FF work would most likely stop at the radius and not extend down the road. Due to the nature of IHSDM and this process all alternatives need to have the same limits. All design assumptions need to be revisited in final design.

Do Nothing Alternative (Option 1):

No Geometric modifications.

Limits on STH 21: 0+75 – STA 19+90. Mainline length 1915-ft.

Assumptions:

- 10% of the concrete will need to be repaired or replaced.
- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft shoulders (widen from 3-ft due to bike comp plan)
- No new BAD is needed for shoulders due to HMA widening. Using Shaping Shoulders to shape gravel section of shoulder. Anticipated to be used project wide therefore higher quantity for pices.

Limits on CTH FF: CTH FF from STA 22+58 – 32+44. Sideroad lengths: 1020-ft

Assumptions:

- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- Mill 2-inches –It is assumed this would be the only milling on the project.
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
305.0500	Shaping Shoulders	STA	18.8	\$50.00	\$940
416.1710	Concrete Pavement Repair	SY	315	\$80.00	\$25,200
416.1720	Concrete Pavement	SY	315	\$90.00	\$28,350
	Replacement				
455.0605	Tack Coat	Gal	510	\$5.00	\$2,550
204.0120	Removing Asphaltic	SY	2,500	\$6.00	\$15,000
	Surface Milling				
460.5224	HMA Pavement 4LT 58-28S	Tons	1,125	\$70.00	\$78,750
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved	LF	3,750	\$2.00	\$7,500
	Epoxy 4-inch				
				Total	\$161,665
				Rounded	\$170,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 2 – Slotted Left Turn Lane

This option will add a slotted left turn lane with a 6-ft positive offset along STH 21. Based off traffic forecast, the left turn lane will be 300-ft. it will be assumed that the final pavement design along STH 21 will be 2inches of HMA over 9-inches of concrete over 6 inches of base aggregate with 5-ft shoulders. Outside of the intersection reconstruction limits, a 2-inch mill and overlay will be applied to CTH FF road between 22+58 – 32+44. It is assumed that all the concrete will be hand work on this project.

Limits on STH 21: 0+75 – STA 19+90. Mainline length 1915-ft.

Assumptions:

- 6-ft positive offset of left turn lanes
- 300-ft left turn lanes
- Pavement Structure: 2-inches HMA over 9-inches concrete over 6-inches of 1 ¼-Inch
 BAD
 - 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft shoulders (widen from 3-ft due to bike comp plan) with 5-ft gravel shoulders

Limits on CTH FF: CTH FF from STA 22+58 – 32+44. Sideroad lengths: 1020-ft

Assumptions:

- 5-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- Mill 2-inches
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
204.0100	Removing Pavement	SY	6,300	\$20.00	\$126,000
205.0100	Excavation Common	CY	5,000	\$12.00	\$120,000

208.0100	Borrow	CY	1200	\$12.00	\$14,400
305.0110	Base Aggregate Dense ¾-	Tons	400	\$22.00	\$8,800
	Inch			,	, ,
305.0120	Base Aggregate Dense 1 1/4 -	Tons	3,125	\$18.00	\$56,250
	Inch		,		
415.0090	Concrete Pavement 9-Inch	SY	6,300	\$55.00	\$346,500
455.0605	Tack Coat	Gal	70	\$5.00	\$350
460.5224	HMA Pavement 4MT 48-	Ton	1,125	\$70.00	\$78,750
	28S				
522.1018	Apron Endwalls for Culvert	Each	2	\$600	\$1,200
	Pipe Reinforced Concrete				
	18-Inch				
601.0411	Concrete Curb & Gutter	LF	800	\$30.00	\$24,000
	30-Inch Type D				
602.0410	Concrete Sidewalk 5-Inch	SF	2,400	\$10.00	\$24,000
608.0318	Storm Sewer Culvert Pipe	LF	60	\$100	\$6,000
	Reinforced Concrete Class				
	III 18-Inch				
611.1004	Catch Basin 4-ft Diameter	Each	2	\$2,000	\$4,000
625.0500	Salvaged Topsoil	SY	400	\$4.00	\$1,600
628.2004	Erosion Mat Class I Type B	SY	400	\$1.50	\$600
629.0210	Fertilizer Type B	CWT	.1	\$250.00	\$25
630.0120	Seeding Mixture No. 20	LBS	10	\$25.00	\$250
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved	LF	3,750	\$2.00	\$11,250
	Epoxy 4-inch				
	FEE R/W (1 parcel)	Acres	.2	\$50,000	\$10,000
	TLE R/W (1 parcel)	Acres	.05	\$10,000	\$500
				Total	\$823,000
				Rounded	\$830,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 3 – Single Lane Roundabout

This option will reconstruct the intersection to a single lane roundabout. In final design the exact configuration will be completed.

Limits on STH 21: 0+75 – STA 19+90. Mainline length 1915-ft.

Assumptions:

- STA 4+77 16+09 will be reconstructed
- STA 0+75 STA 19+90 -2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft paved shoulders, 5 -ft Gravel at full thickness
- Did not provide grading for Multi-use path
- Lighting lump sum was created by: poles, arms, pull box, Transformer Base, Luminaire
 LED lights, and Lighting Control Cabinet

Limits on CTH FF: CTH FF from STA 22+58 – 32+44. Sideroad lengths: 1020-ft

Assumptions:

- STA 22+58 32+44 be reconstructed
- Depth of HMA, 4LT58-28S based off recent As-built

• 3-ft gravel Shoulders

Estimated Costs: See above for some comments. – How come HMA was brought down to 65, less quantity than project above – I would suggest staying at 70?

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
205.0100	Excavation Common	CY	10,000	\$12.00	\$120,000
305.0110	Base Aggregate Dense ¾- Inch	Tons	400	\$22.00	\$8,800
305.0120	Base Aggregate Dense 1 ¼ -Inch	Tons	3,700	\$18.00	\$66,600
415.0090	Concrete Pavement 9-Inch	SY	4,500	\$55.00	\$247,500
416.0512	Concrete Truck Apron 12- Inch	SY	457	\$60.00	27,420
460.5244	HMA Pavement 4LT 58-28S	Tons	750	\$70.00	\$52,500
522.1018	Apron Endwalls for Culvert Pipe Reinforced Concrete 18-Inch	Each	8	\$600	\$4,800
608.0318	Storm Sewer Culvert Pipe Reinforced Concrete Class III 18-Inch	LF	120	\$100	\$12,000
601.0411	Concrete Curb & Gutter 30-Inch Type D	LF	4,562	\$30.00	\$136,860
602.0410	Concrete Sidewalk 5-Inch (at splitter island crossings)	SF	11,721	\$10.00	\$117,210
611.1004	Catch Basin 4-ft Diameter	Each	8	\$2,000	\$16,000
625.0500	Salvaged Topsoil	SY	5,000	\$4.00	\$20,000
628.2004	Erosion Mat Class I Type B	SY	5,000	\$1.50	\$7,500
629.0210	Fertilizer Type B	CWT	.5	\$250.00	\$125
630.0120	Seeding Mixture No. 20	LBS	200	\$25.00	\$5,000
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved Epoxy 4-inch	LF	3,750	\$2.00	\$7,500
SPV.0120.01	Lighting Slump Sum	LS	1	\$65,000	\$65,000
	FEE R/W (5 Parcels)	Acres	.5	\$50,000	\$25,000
				Total	\$942,590
				Rounded	\$950,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Project ID: 6180-30-00 STH 21 Omro – Oshkosh STH 116 - Leonard Point Rd Winnebago County

STH 21 & Sand Pit Rd Intersection

Created by: Mason Simmons

Created: 5/20/2020

The intersection of STH 21 and Sand Pit Rd has an intersection safety flag. Two alternatives have been suggested to mitigate the crashes occurring they are slotted left turn lanes on STH 21 and a single lane roundabout. A construction cost estimate including estimated real estate costs have been created for the two alternatives and a do-nothing alternative cost estimate.

Existing roadway conditions and assumptions for project:

- STH 21 is on the community's plan for wider shoulders for bike accommodations
- 1 ¼-Inch Base Aggregate Dense unit weight = 2 Tons/ CY
- ¾-Inch Base Aggregate Dense unit weight = 2.1 Tons/CY
- Fill expansion factor: 1.33
- STH 21 is a concrete roadway with no HMA overlay
 - o As-built 6184-03-71
- Traffic forecasting:

Year 1 AADT: 11,090Year 20 AADT: 11,090

• The proposed Improvement Type is RSRF10

*NOTE — if this Do nothing alternative. is selected for the preferred alternative the CTH FF work would most likely stop at the radius and not extend down the road. Due to the nature of IHSDM and this process all alternatives need to have the same limits. All design assumptions need to be revisited in final design.

Do Nothing Alternative (Option 1):

No Geometric modifications.

Limits on STH 21: 54+32 – STA 73+11. Mainline length 1879-ft.

Assumptions:

- 10% of the concrete will need to be repaired or replaced.
- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft shoulders (widen from 3-ft due to bike comp plan)
- No new BAD is needed for shoulders due to HMA widening. Using Shaping Shoulders to shape gravel section of shoulder.

Limits on CTH FF: STA 0+00 - 10+20. Sideroad lengths: 1020-ft

Assumptions:

- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- Mill 2-inches
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
305.0500	Shaping Shoulders	STA	18.8	\$50.00	\$940
416.1710	Concrete Pavement Repair	SY	315	\$80.00	\$25,200
416.1720	Concrete Pavement	SY	315	\$90.00	\$28,350
	Replacement				
455.0605	Tack Coat	Gal	510	\$5.00	\$2,550
204.0120	Removing Asphaltic	SY	2500	\$6.00	\$15,000
	Surface Milling				
460.5224	HMA Pavement 4LT 58-28S	Tons	1,125	\$70.00	\$78,750
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved	LF	3,750	\$2.00	\$7,500
	Epoxy 4-inch				
				Total	\$161,065
				Rounded	\$170,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 2 - Slotted Left Turn Lane

This option will add a slotted left turn lane with a 6-ft positive offset along STH 21. Based off traffic forecast, the left turn lane will be 300-ft. it will be assumed that the final pavement design along STH 21 will be 2 inches of HMA over 9-inches of concrete over 6 inches of base aggregate with 5-ft shoulders. Outside of the intersection reconstruction limits, a 2-inch mill and overlay will be applied to CTH FF road between 0+00-10+20. It is assumed that all the concrete will be hand work on this project.

Limits on STH 21: 54+32 – STA 73+11. Mainline length 1879-ft.

Assumptions:

- 6-ft positive offset of left turn lanes
- 300-ft left turn lanes
- Pavement Structure: 2-inches HMA over 9-inches concrete over 6-inches of 1 ¼-Inch
 BAD
 - 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft shoulders (widen from 3-ft due to bike comp plan) with 5-ft Gravel shoulders
- Limits on CTH FF: STA 0+00 10+20. Sideroad lengths: 1020-ft

Assumptions:

- 5-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 2-inch over lay limits
- Mill 2-inches
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
204.0100	Removing Pavement	SY	6,300	\$20.00	\$126,000
205.0100	Excavation Common	CY	500	\$12.00	\$6,000
208.0100	Borrow	CY	1200	\$12.00	\$14,400
305.0120	Base Aggregate Dense 1 ¼ - Inch	Tons	3,125	\$18.00	\$56,250
415.0090	Concrete Pavement 9-Inch	SY	6,300	\$55.00	\$346,500
455.0605	Tack Coat	Gal	70	\$5.00	\$350
460.5224	HMA Pavement 4MT 48- 28S	Ton	1,125	\$70.00	\$78,750
522.1018	Apron Endwalls for Culvert Pipe Reinforced Concrete 18-Inch	Each	2	\$600	\$1,200
601.0411	Concrete Curb & Gutter 30-Inch Type D	LF	800	\$30.00	\$24,000
602.0410	Concrete Sidewalk 5-Inch (at splitter island crossings)	SF	2,400	\$10.00	\$24,000
608.0318	Storm Sewer Culvert Pipe Reinforced Concrete Class III 18-Inch	LF	60	\$100	\$6,000
611.1004	Catch Basin 4-ft Diameter	Each	2	\$2,000	\$4,000
625.0500	Salvaged Topsoil	SY	400	\$4.00	\$1,600
628.2004	Erosion Mat Class I Type B	SY	400	\$1.50	\$600
629.0210	Fertilizer Type B	CWT	.1	\$250.00	\$25
630.0120	Seeding Mixture No. 20	LBS	10	\$25.00	\$250
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved Epoxy 4-inch	LF	3,750	\$2.00	\$7,500
	FEE R/W	Acres	.2	\$50,000	\$10,000
	TLE R/W	Acres	.05	\$10,000	\$500
				Total	\$710,700
				Rounded	\$720,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 3 – Single Lane Roundabout

This option will reconstruct the intersection to a single lane roundabout. In final design the exact configuration will be completed.

Limits on STH 21: 54+32 – STA 73+11. Mainline length 1879-ft. Assumptions:

- STA 58+32 69+68. will be reconstructed based off previous As-built depths
- STA 54+32 STA 73+11 -2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft paved shoulders, 5 -ft Gravel at full thickness
- Did not provide grading for Multi-use path
- Lighting lump sum was created by: poles, arms, pull box, Transformer Base, Luminaire LED lights, and Lighting Control Cabinet

Limits on CTH FF: STA 0+00 – 10+20. Sideroad lengths: 1020-ft Assumptions:

- STA 22+58 32+44 be reconstructed
- Depth of HMA, 4LT58-28S based on previous as-built
- 3-ft gravel shoulders

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
205.0100	Excavation Common	CY	6,200	\$12.00	\$74,400
305.0110	Base Aggregate Dense ¾- Inch	Tons	400	\$22.00	\$8,800
305.0120	Base Aggregate Dense 1 ¼ -Inch	Tons	3,700	\$18.00	\$66,600
415.0090	Concrete Pavement 9-Inch	SY	4,500	\$55.00	\$247,500
416.0512	Concrete Truck Apron 12- Inch	SY	457	\$60.00	27,420
460.5244	HMA Pavement 4LT 58-28S	Tons	750	\$70.00	\$52,500
522.1018	Apron Endwalls for Culvert Pipe Reinforced Concrete 18-Inch	Each	8	\$600	\$4,800
608.0318	Storm Sewer Culvert Pipe Reinforced Concrete Class III 18-Inch	LF	120	\$100	\$12,000
601.0411	Concrete Curb & Gutter 30-Inch Type D	LF	4,562	\$30.00	\$136,860
602.0410	Concrete Sidewalk 5-Inch	SF	11,721	\$10.00	\$117,210
611.1004	Catch Basin 4-ft Diameter	Each	8	\$2,000	\$16,000
625.0500	Salvaged Topsoil	SY	5,000	\$4.00	\$20,000
628.2004	Erosion Mat Class I Type B	SY	5,000	\$1.50	\$7,500
629.0210	Fertilizer Type B	CWT	.5	\$250.00	\$125
630.0120	Seeding Mixture No. 20	LBS	200	\$25.00	\$5,000
SPV.0120.01	Lighting Slump Sum	LS	1	\$65,000	\$65,000
	FEE R/W	Acres	.5	\$50,000	\$25,000
				Total	\$886,715
				Rounded	\$900,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

ATTACHMENT E

Safety Mitigation Certification Documentation

IHSDM Crash Prediction Evaluation Report for each alternative

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 & CTH FF Overlay & Concrete Repair Base Case

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview
Disclaimer Regarding Crash Prediction Method
Section Types
Rural Two Lane Site Set CPM Evaluation
List of Tables
Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites
Table Predicted Crash Frequencies and Rates by Site
Table Predicted Crash Frequencies by Year (4ST)
Table Predicted 4ST Crash Type Distribution

Report Overview

Report Generated: Aug 6, 2020 9:10 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:00:20 CDT 2020

IHSDM Version: v15.0.0 (Oct 31, 2019)

Site Set Crash Prediction Module: v|ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point **Project Comment:** Created Wed Jul 01 13:40:49 CDT 2020

Project Unit System: U.S. Customary

Site Set: CTH FF Intersection Overlay & Concrete Repair **Site Set Comment:** Created Wed Jul 01 13:41:29 CDT 2020

Site Set Version: v3

Evaluation Title: CTH FF Predicted Crashes Overlay & Concrete Repair

Evaluation Comment: Created Thu Aug 06 08:59:07 CDT 2020 **Policy for Superelevation:** AASHTO 2011 U.S. Customary

Calibration: WisDOT Calibration_v15-0

Crash Distribution: WisDOT Distributions_v15-0

Model/CMF: WisDOT Models_v15-0

Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to

Part C, section A.1.3).

First Year of Analysis: 2027 Last Year of Analysis: 2036 Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM-1 models, then it may be appropriate to directly compare the results. [Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type

Type: 4ST

Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

S	ite No.	Туре	Highway	Site Description	Major AADT	Minor AADT	Number of Approaches with Left- Turn Lanes	Number of Approaches with Right-Turn Lanes	Skew Angle 1 (deg)	Skew Angle 2 (deg)	Presence of Lighting
	1		STH 21 & CTH FF	Overlay & Concrete Repair	2027-2036: 11090	2027: 2118; 2028: 2133; 2029: 2148; 2030: 2162; 2031: 2177; 2032: 2192; 2033: 2207; 2034: 2222; 2035: 2237; 2036: 2251	0	2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Туре	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)	
1	4ST	STH 21 & CTH FF	Overlay & Concrete Repair	18.976	1.8975	0.5806	1.3169	0.39	1.8975	
		Total	Total	18.976	1.8975	0.5806	1.3169	0.39	1.8975	

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2027	1.86	0.57	30.600	1.29	69.400
2028	1.87	0.57	30.600	1.30	69.400
2029	1.88	0.57	30.600	1.30	69.400
2030	1.89	0.58	30.600	1.31	69.400
2031	1.89	0.58	30.600	1.31	69.400
2032	1.90	0.58	30.600	1.32	69.400
2033	1.91	0.58	30.600	1.32	69.400
2034	1.92	0.59	30.600	1.33	69.400
2035	1.93	0.59	30.600	1.34	69.400
2036	1.93	0.59	30.600	1.34	69.400
Total	18.98	5.81	30.600	13.17	69.400
Average	1.90	0.58	30.600	1.32	69.400

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted 4ST Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)	Total Crashes	Percent Total (%)
Intersection	Collision with Animal	0.06	0.3	3.35	17.6	3.41	18.0
Intersection	Collision with Bicycle	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	1.19	6.2	2.84	15.0	4.03	21.2
Intersection	Overturned	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Collision with Pedestrian	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Run Off Road	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Total Single Vehicle Crashes	1.25	6.6	6.19	32.6	7.44	39.2
Intersection	Angle Collision	2.66	14.0	2.83	14.9	5.48	28.9
Intersection	Head-on Collision	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Multiple-vehicle Collision	0.22	1.1	0.28	1.5	0.49	2.6
Intersection	Rear-end Collision	1.25	6.6	2.28	12.0	3.53	18.6
Intersection	Sideswipe	0.44	2.3	1.59	8.4	2.03	10.7
Intersection	Total Multiple Vehicle Crashes	4.56	24.0	6.98	36.8	11.54	60.8
Intersection	Total Intersection Crashes	5.80	30.6	13.16	69.4	18.98	100.0
	Total Crashes	5.80	30.6	13.16	69.4	18.98	100.0

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 & CTH FF
Mainline Left Turn Lanes

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview
Disclaimer Regarding Crash Prediction Method
Section Types
Rural Two Lane Site Set CPM Evaluation
List of Tables
Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites
Table Predicted Crash Frequencies and Rates by Site
Table Predicted Crash Frequencies by Year (4ST)
Table Predicted 4ST Crash Type Distribution

Report Overview

Report Generated: Aug 6, 2020 9:13 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:01:13 CDT 2020

IHSDM Version: v15.0.0 (Oct 31, 2019)

Site Set Crash Prediction Module: v|ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point **Project Comment:** Created Wed Jul 01 13:40:49 CDT 2020

Project Unit System: U.S. Customary

Site Set: CTH FF Intersection with STH 21 Left Turn Lanes

Site Set Comment: Copied from CTH FF Intersection Overlay & Concrete Repair (v3)

Site Set Version: v4

Evaluation Title: CTH FF Predicted Crashes Left Turn Lanes Evaluation Comment: Created Thu Aug 06 09:00:49 CDT 2020 Policy for Superelevation: AASHTO 2011 U.S. Customary

Calibration: WisDOT Calibration_v15-0

Crash Distribution: WisDOT Distributions_v15-0

Model/CMF: WisDOT Models_v15-0

Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to

Part C, section A.1.3).

First Year of Analysis: 2027 Last Year of Analysis: 2036 Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM-1 models, then it may be appropriate to directly compare the results. [Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type

Type: 4ST

Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

s	te No.	Туре	Highway	Site Description	Major AADT	Minor AADT	Number of Approaches with Left- Turn Lanes	Number of Approaches with Right-Turn Lanes	Skew Angle 1 (deg)	Skew Angle 2 (deg)	Presence of Lighting
	1		STH 21 & CTH FF	Overlay & Concrete Repair	2027-2036: 11090	2027: 2118; 2028: 2133; 2029: 2148; 2030: 2162; 2031: 2177; 2032: 2192; 2033: 2207; 2034: 2222; 2035: 2237; 2036: 2251	2	2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Туре	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	4ST	STH 21 & CTH FF	Overlay & Concrete Repair	9.867	0.9867	0.3019	0.6848	0.20	0.9867
		Total	Total	9.867	0.9867	0.3019	0.6848	0.20	0.9867

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2027	0.97	0.30	30.600	0.67	69.400
2028	0.97	0.30	30.600	0.68	69.400
2029	0.98	0.30	30.600	0.68	69.400
2030	0.98	0.30	30.600	0.68	69.400
2031	0.98	0.30	30.600	0.68	69.400
2032	0.99	0.30	30.600	0.69	69.400
2033	0.99	0.30	30.600	0.69	69.400
2034	1.00	0.30	30.600	0.69	69.400
2035	1.00	0.31	30.600	0.69	69.400
2036	1.00	0.31	30.600	0.70	69.400
Total	9.87	3.02	30.600	6.85	69.400
Average	0.99	0.30	30.600	0.69	69.400

Table 4. Predicted 4ST Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)	Total Crashes	Percent Total (%)
Intersection	Collision with Animal	0.03	0.3	1.74	17.6	1.77	18.0
Intersection	Collision with Bicycle	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	0.62	6.2	1.48	15.0	2.10	21.2
Intersection	Overturned	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Collision with Pedestrian	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Run Off Road	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Total Single Vehicle Crashes	0.65	6.6	3.22	32.6	3.87	39.2
Intersection	Angle Collision	1.38	14.0	1.47	14.9	2.85	28.9
Intersection	Head-on Collision	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Multiple-vehicle Collision	0.11	1.1	0.14	1.5	0.26	2.6
Intersection	Rear-end Collision	0.65	6.6	1.19	12.0	1.83	18.6
Intersection	Sideswipe	0.23	2.3	0.83	8.4	1.06	10.7
Intersection	Total Multiple Vehicle Crashes	2.37	24.0	3.63	36.8	6.00	60.8
Intersection	Total Intersection Crashes	3.02	30.6	6.85	69.4	9.87	100.0
	Total Crashes	3.02	30.6	6.85	69.4	9.87	100.0

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 & CTH FF Roundabout Alternative

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview	1
Disclaimer Regarding Crash Prediction Method	1
Section Types	3
Roundabout Site Set CPM Evaluation	3
List of Tables	
Table Evaluation and Crash Data (CSD) (if applicable) Roundabout - Homogeneous Sites	4
Table Predicted Crash Frequencies and Rates by Site	5
Table Predicted Crash Frequencies by Year (Roundabout RTL 41R)	5
Table Predicted Roundabout RTL 41R Crash Severity	6
Table Predicted Roundabout RTL 41R Crash Type Distribution	6

Report Overview

Report Generated: Aug 6, 2020 9:14 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:01:52 CDT 2020

IHSDM Version: v15.0.0 (Oct 31, 2019)

Site Set Crash Prediction Module: v|ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point **Project Comment:** Created Wed Jul 01 13:40:49 CDT 2020

Project Unit System: U.S. Customary

Site Set: CTH FF Intersection Single Lane Roundabout **Site Set Comment:** Created Wed Jul 01 14:00:43 CDT 2020

Site Set Version: v2

Evaluation Title: CTH FF Crash Prediction Roundabout

Evaluation Comment: Created Thu Aug 06 09:01:29 CDT 2020 **Policy for Superelevation:** AASHTO 2011 U.S. Customary

Calibration: WisDOT Calibration_v15-0

Crash Distribution: WisDOT Distributions_v15-0

Model/CMF: WisDOT Models_v15-0

Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to

Part C, section A.1.3).

First Year of Analysis: 2027 Last Year of Analysis: 2036 Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM-1 models, then it may be appropriate to directly compare the results. [Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Roundabout Site Set CPM Evaluation

Site Type

Type: Roundabout RTL 41R

Calibration Factor: RTL 41R = 1.0

$Table \ 1. \ Evaluation \ and \ Crash \ Data \ (CSD) \ (if applicable) \ Roundabout \ - \ Homogeneous \ Sites$

Site No.	Туре	Roundabout	Area Type	Entering AADT
1	41R - Roundabout with 4 legs and a single circulating lane	STH 21 & CTH FF	[Rural	Leg 1:2027: 364; 2028: 366; 2029: 368; 2030: 370; 2031: 372; 2032: 374; 2033: 375; 2034: 377; 2035: 379; 2036: 381; Leg 2:2027-2036: 5545; Leg 3:2027: 694: 2028: 700: 2029: 705: 2030: 711: 2031: 716: 2032: 722: 2033: 727: 2034: 733: 2035: 738: 2036: 744: Leg 4:2027-2036: 5545

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.		Туре	Roundabout	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
	1	41R - Roundabout with 4 legs and a single circulating lane	STH 21 & CTH FF		18.011	1.8011	0.2360	1.5651	0.81	1.8011
			Total	Total	18.011	1.8011	0.2360	1.5651	0.81	1.8011

Table 3. Predicted Crash Frequencies by Year (Roundabout RTL 41R)

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2027	1.80	0.23	13.097	1.56	86.903
2028	1.80	0.24	13.098	1.56	86.901
2029	1.80	0.24	13.100	1.56	86.900
2030	1.80	0.24	13.101	1.56	86.898
2031	1.80	0.24	13.103	1.56	86.897
2032	1.80	0.24	13.104	1.56	86.895
2033	1.80	0.24	13.106	1.57	86.894
2034	1.80	0.24	13.107	1.57	86.893
2035	1.80	0.24	13.109	1.57	86.891
2036	1.80	0.24	13.110	1.57	86.890
Total	18.01	2.36	13.104	15.65	86.896
Average	1.80	0.24	13.104	1.56	86.896

Table 4. Predicted Roundabout RTL 41R Crash Severity

Site No.	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)
1	0.0178	0.1766	1.1362	1.0295	15.6510
Total	0.0178	0.1766	1.1362	1.0295	15.6510

Table 5. Predicted Roundabout RTL 41R Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)	Total Crashes	Percent Total (%)
Intersection	Collision with Animal	0.00	0.0	0.22	1.2	0.22	1.2
Intersection	Collision with Fixed Object	0.51	2.8	4.08	22.7	4.59	25.5
Intersection	Collision with Other Object	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	0.49	2.7	1.82	10.1	2.31	12.8
Intersection	Collision with Parked Vehicle	0.01	0.0	0.05	0.3	0.05	0.3
Intersection	Total Single Vehicle Crashes	1.01	5.6	6.17	34.2	7.17	39.8
Intersection	Angle Collision	0.27	1.5	2.33	12.9	2.60	14.4
Intersection	Head-on Collision	0.03	0.1	0.06	0.3	0.09	0.5
Intersection	Other Multiple-vehicle Collision	0.17	0.9	1.10	6.1	1.26	7.0
Intersection	Rear-end Collision	0.70	3.9	3.88	21.5	4.58	25.4
Intersection	Sideswipe	0.18	1.0	2.13	11.8	2.31	12.8
Intersection	Total Multiple Vehicle Crashes	1.35	7.5	9.50	52.7	10.85	60.2
Intersection	Total Intersection Crashes	2.36	13.1	15.67	86.9	18.03	100.0
	Total Crashes	2.36	13.1	15.67	86.9	18.03	100.0

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 & Sand Pit Road Overlay & Concrete Repair Base Case

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview
Disclaimer Regarding Crash Prediction Method
Section Types
Rural Two Lane Site Set CPM Evaluation
List of Tables
Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites
Table Predicted Crash Frequencies and Rates by Site
Table Predicted Crash Frequencies by Year (4ST)
Table Predicted 4ST Crash Type Distribution

Report Overview

Report Generated: Aug 6, 2020 9:16 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:02:36 CDT 2020

IHSDM Version: v15.0.0 (Oct 31, 2019)

Site Set Crash Prediction Module: v|ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point **Project Comment:** Created Wed Jul 01 13:40:49 CDT 2020

Project Unit System: U.S. Customary

Site Set: Sand Pit Road Intersection Overlay & Concrete Repair **Site Set Comment:** Created Wed Jul 01 15:29:11 CDT 2020

Site Set Version: v2

Evaluation Title: Sand Pit Predicted Crashes Overlay and Concrete Repair

Evaluation Comment: Created Thu Aug 06 09:02:06 CDT 2020 **Policy for Superelevation:** AASHTO 2011 U.S. Customary

Calibration: WisDOT Calibration_v15-0

Crash Distribution: WisDOT Distributions_v15-0

Model/CMF: WisDOT Models_v15-0

Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to

Part C, section A.1.3).

First Year of Analysis: 2027 Last Year of Analysis: 2036 Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM-1 models, then it may be appropriate to directly compare the results. [Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type

Type: 4ST

Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

Site No.	Type	Highway	Site Description	Major AADT	Minor AADT	Number of Approaches with Left-Turn Lanes	Number of Approaches with Right-Turn Lanes	Skew Angle 1 (deg)	Skew Angle 2 (deg)	Presence of Lighting
1	4ST	Sand Pit Road		2027-2036: 14340	2027: 1259; 2028: 1266; 2029: 1274; 2030: 1281; 2031: 1288; 2032: 1296; 2033: 1303; 2034: 1311; 2035: 1318; 2036: 1325	0	2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Туре	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	4ST	Sand Pit Road		16.070	1.6071	0.4918	1.1153	0.28	1.6071
		Total	Total	16.070	1.6071	0.4918	1.1153	0.28	1.6071

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2027	1.58	0.48	30.600	1.10	69.400
2028	1.59	0.49	30.600	1.10	69.400
2029	1.59	0.49	30.600	1.11	69.400
2030	1.60	0.49	30.600	1.11	69.400
2031	1.60	0.49	30.600	1.11	69.400
2032	1.61	0.49	30.600	1.12	69.400
2033	1.61	0.49	30.600	1.12	69.400
2034	1.62	0.50	30.600	1.12	69.400
2035	1.63	0.50	30.600	1.13	69.400
2036	1.63	0.50	30.600	1.13	69.400
Total	16.07	4.92	30.600	11.15	69.400
Average	1.61	0.49	30.600	1.11	69.400

Table 4. Predicted 4ST Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)	Total Crashes	Percent Total (%)
Intersection	Collision with Animal	0.05	0.3	2.83	17.6	2.89	18.0
Intersection	Collision with Bicycle	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	1.00	6.2	2.41	15.0	3.41	21.2
Intersection	Overturned	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Collision with Pedestrian	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Run Off Road	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Total Single Vehicle Crashes	1.06	6.6	5.24	32.6	6.30	39.2
Intersection	Angle Collision	2.25	14.0	2.39	14.9	4.64	28.9
Intersection	Head-on Collision	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Multiple-vehicle Collision	0.18	1.1	0.23	1.5	0.42	2.6
Intersection	Rear-end Collision	1.06	6.6	1.93	12.0	2.99	18.6
Intersection	Sideswipe	0.37	2.3	1.35	8.4	1.72	10.7
Intersection	Total Multiple Vehicle Crashes	3.86	24.0	5.91	36.8	9.77	60.8
Intersection	Total Intersection Crashes	4.92	30.6	11.15	69.4	16.07	100.0
	Total Crashes	4.92	30.6	11.15	69.4	16.07	100.0

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 & Sand Pit Road Mainline Left Turns Alternative

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview
Disclaimer Regarding Crash Prediction Method
Section Types
Rural Two Lane Site Set CPM Evaluation
List of Tables
Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites
Table Predicted Crash Frequencies and Rates by Site
Table Predicted Crash Frequencies by Year (4ST)
Table Predicted 4ST Crash Type Distribution

Report Overview

Report Generated: Aug 6, 2020 9:16 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:03:12 CDT 2020

IHSDM Version: v15.0.0 (Oct 31, 2019)

Site Set Crash Prediction Module: v|ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point **Project Comment:** Created Wed Jul 01 13:40:49 CDT 2020

Project Unit System: U.S. Customary

Site Set: Sand Pit Road Intersection STH 21 Left Turn Lanes

Site Set Comment: Copied from Sand Pit Road Intersection Overlay & Concrete Repair (v2)

Site Set Version: v2

Evaluation Title: Sand Pit Predicted Crashes Left Turn Lanes **Evaluation Comment:** Created Thu Aug 06 09:02:51 CDT 2020 **Policy for Superelevation:** AASHTO 2011 U.S. Customary

Calibration: WisDOT Calibration_v15-0

Crash Distribution: WisDOT Distributions_v15-0

Model/CMF: WisDOT Models_v15-0

Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to

Part C, section A.1.3).

First Year of Analysis: 2027 Last Year of Analysis: 2036 Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM-1 models, then it may be appropriate to directly compare the results. [Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type

Type: 4ST

Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

Site No.	Type	Highway	Site Description	Major AADT	Minor AADT	Number of Approaches with Left-Turn Lanes	Number of Approaches with Right-Turn Lanes	Skew Angle 1 (deg)	Skew Angle 2 (deg)	Presence of Lighting
1	4ST	Sand Pit Road		2027-2036: 14340	2027: 1259; 2028: 1266; 2029: 1274; 2030: 1281; 2031: 1288; 2032: 1296; 2033: 1303; 2034: 1311; 2035: 1318; 2036: 1325	2	2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Туре	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	4ST	Sand Pit Road		8.357	0.8357	0.2557	0.5800	0.15	0.8357
		Total	Total	8.357	0.8357	0.2557	0.5800	0.15	0.8357

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2027	0.82	0.25	30.600	0.57	69.400
2028	0.82	0.25	30.600	0.57	69.400
2029	0.83	0.25	30.600	0.57	69.400
2030	0.83	0.25	30.600	0.58	69.400
2031	0.83	0.26	30.600	0.58	69.400
2032	0.84	0.26	30.600	0.58	69.400
2033	0.84	0.26	30.600	0.58	69.400
2034	0.84	0.26	30.600	0.58	69.400
2035	0.85	0.26	30.600	0.59	69.400
2036	0.85	0.26	30.600	0.59	69.400
Total	8.36	2.56	30.600	5.80	69.400
Average	0.84	0.26	30.600	0.58	69.400

Table 4. Predicted 4ST Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)	Total Crashes	Percent Total (%)
Intersection	Collision with Animal	0.03	0.3	1.47	17.6	1.50	18.0
Intersection	Collision with Bicycle	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	0.52	6.2	1.25	15.0	1.77	21.2
Intersection	Overturned	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Collision with Pedestrian	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Run Off Road	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Total Single Vehicle Crashes	0.55	6.6	2.73	32.6	3.28	39.2
Intersection	Angle Collision	1.17	14.0	1.24	14.9	2.41	28.9
Intersection	Head-on Collision	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Multiple-vehicle Collision	0.10	1.1	0.12	1.5	0.22	2.6
Intersection	Rear-end Collision	0.55	6.6	1.00	12.0	1.55	18.6
Intersection	Sideswipe	0.19	2.3	0.70	8.4	0.89	10.7
Intersection	Total Multiple Vehicle Crashes	2.01	24.0	3.07	36.8	5.08	60.8
Intersection	Total Intersection Crashes	2.56	30.6	5.80	69.4	8.36	100.0
	Total Crashes	2.56	30.6	5.80	69.4	8.36	100.0

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 & Sand Pit Road Roundabout Alternative

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview	1
Disclaimer Regarding Crash Prediction Method	1
Section Types	3
Roundabout Site Set CPM Evaluation	3
List of Tables	
Table Evaluation and Crash Data (CSD) (if applicable) Roundabout - Homogeneous Sites	4
Table Predicted Crash Frequencies and Rates by Site	5
Table Predicted Crash Frequencies by Year (Roundabout RTL 41R)	5
Table Predicted Roundabout RTL 41R Crash Severity	6
Table Predicted Roundabout RTL 41R Crash Type Distribution	6

Report Overview

Report Generated: Aug 6, 2020 9:18 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:03:53 CDT 2020

IHSDM Version: v15.0.0 (Oct 31, 2019)

Site Set Crash Prediction Module: v|ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point **Project Comment:** Created Wed Jul 01 13:40:49 CDT 2020

Project Unit System: U.S. Customary

Site Set: Sand Pit Road Intersection Roundabout

Site Set Comment: Copied from Sand Pit Road Intersection STH 21 Left Turn Lanes (v2)

Site Set Version: v4

Evaluation Title: Sand Pit Predicted Crashes Roundabout Evaluation Comment: Created Thu Aug 06 09:03:27 CDT 2020 Policy for Superelevation: AASHTO 2011 U.S. Customary

Calibration: WisDOT Calibration_v15-0

Crash Distribution: WisDOT Distributions_v15-0

Model/CMF: WisDOT Models_v15-0

Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to

Part C, section A.1.3).

First Year of Analysis: 2027 Last Year of Analysis: 2036 Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM-1 models, then it may be appropriate to directly compare the results. [Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Roundabout Site Set CPM Evaluation

Site Type

Type: Roundabout RTL 41R

Calibration Factor: RTL 41R = 1.0

$Table \ 1. \ Evaluation \ and \ Crash \ Data \ (CSD) \ (if applicable) \ Roundabout \ - \ Homogeneous \ Sites$

Site No.	Туре	Roundabout	Area Type	Entering AADT
1	41R - Roundabout with 4 legs and a single circulating lane	Sand Pit Road		Leg 1:2027: 629; 2028: 633; 2029: 637; 2030: 640; 2031: 644; 2032: 648; 2033: 651; 2034: 655; 2035: 659; 2036: 662; Leg 2:2027-2036: 7170; Leg 3:2027: 629; 2028: 633; 2029: 637; 2030: 640; 2031: 644; 2032: 648; 2033: 651; 2034: 655; 2035: 659; 2036: 662; Leg 2:2027-2036: 7170

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Туре	Roundabout	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	41R - Roundabout with 4 legs and a single circulating lane	Sand Pit Road		21.610	2.1610	0.2965	1.8645	0.76	2.1610
		Total	Total	21.610	2.1610	0.2965	1.8645	0.76	2.1610

Table 3. Predicted Crash Frequencies by Year (Roundabout RTL 41R)

Year	Total Crashes	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)
2027	2.16	0.30	13.715	1.86	86.285
2028	2.16	0.30	13.716	1.86	86.284
2029	2.16	0.30	13.717	1.86	86.282
2030	2.16	0.30	13.718	1.86	86.282
2031	2.16	0.30	13.720	1.86	86.280
2032	2.16	0.30	13.721	1.86	86.279
2033	2.16	0.30	13.722	1.86	86.278
2034	2.16	0.30	13.723	1.87	86.277
2035	2.16	0.30	13.725	1.87	86.275
2036	2.16	0.30	13.726	1.87	86.275
Total	21.61	2.96	13.720	18.64	86.280
Average	2.16	0.30	13.720	1.86	86.280

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted Roundabout RTL 41R Crash Severity

Site No.	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)
1	0.0191	0.1898	1.2209	1.5353	18.6452
Total	0.0191	0.1898	1.2209	1.5353	18.6452

Table 5. Predicted Roundabout RTL 41R Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (%)	PDO Crashes	Percent PDO (%)	Total Crashes	Percent Total (%)
Intersection	Collision with Animal	0.00	0.0	0.26	1.2	0.26	1.2
Intersection	Collision with Fixed Object	0.64	3.0	4.87	22.5	5.51	25.5
Intersection	Collision with Other Object	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	0.62	2.9	2.16	10.0	2.78	12.9
Intersection	Collision with Parked Vehicle	0.01	0.0	0.06	0.3	0.06	0.3
Intersection	Total Single Vehicle Crashes	1.27	5.9	7.35	34.0	8.61	39.8
Intersection	Angle Collision	0.34	1.6	2.78	12.8	3.12	14.4
Intersection	Head-on Collision	0.03	0.2	0.07	0.3	0.11	0.5
Intersection	Other Multiple-vehicle Collision	0.21	1.0	1.30	6.0	1.52	7.0
Intersection	Rear-end Collision	0.88	4.1	4.62	21.4	5.51	25.5
Intersection	Sideswipe	0.23	1.1	2.54	11.7	2.77	12.8
Intersection	Total Multiple Vehicle Crashes	1.70	7.9	11.32	52.3	13.02	60.2
Intersection	Total Intersection Crashes	2.96	13.7	18.66	86.3	21.63	100.0
	Total Crashes	2.96	13.7	18.66	86.3	21.63	100.0

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

ATTACHMENT E

Safety Mitigation Certification Documentation

IHSDM Economic Analysis Report

Interactive Highway Safety Design Model

Economic Analysis Report

STH 21 & CTH FF

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Economic Analysis Report	1
Configuration Summary	2
Analysis Output Summary	5
Crash Cost Data	6
Overlay and Concrete Repairs Data	6
STH 21 Left Turn Lanes Added Data	8
STH 21 & CTH FF Roundabout Data	10
Evaluation Message	13
List of Tables	
Table Economic Analysis Configuration	2
Table RTL Segment FI Proportion Data	2
Table RTL Intersection FI Proportion Data	3
Table RML Segment FI Proportion Data	3
Table RML Intersection FI Proportion Data	3
Table USA Segment FI Proportion Data	4
Table USA Intersection FI Proportion Data	4
Table Case Cost Summary	5
Table Case Crash Summary	5
Table Overlay and Concrete Repairs Evaluation Cost	7
Table Overlay and Concrete Repairs Evaluation Crashes	8
Table CTH FF Intersection Overlay & Concrete Repair Facility Type Crashes	8
Table STH 21 Left Turn Lanes Added Evaluation Cost	9
Table STH 21 Left Turn Lanes Added Evaluation Crashes	10
Table CTH FF Intersection with STH 21 Left Turn Lanes Facility Type Crashes	10
Table STH 21 & CTH FF Roundabout Evaluation Cost	11
Table STH 21 & CTH FF Roundabout Evaluation Crashes	12
Table CTH FF Intersection Single Lane Roundabout Facility Type Crashes	12

Economic Analysis Report

Economic Analysis Report Overview

Report Generated: Aug 6, 2020 9:19 AM

Report Template: System: Multi-Page [System] (eam2, Jan 20, 2020 2:20 PM)

Evaluation Title: EAAnalysis Updated 8/6/2020

Evaluation Comment: Created Thu Aug 06 09:06:21 CDT 2020

Evaluation Date: Thu Aug 06 09:06:46 CDT 2020

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 & CTH FF Evaluation **Project Comment:** Created Wed Jul 01 14:29:10 CDT 2020

Configuration Summary

Crash Cost Configuration: WisDOT Economics_v15-0
Configuration Comment: WisDOT Crash Costs

Table 1. Economic Analysis Configuration

Configuration Data					
Crash Unit Cost Zero Year	2016				
Crash Cost Index	0.00				
Discount Rate	0.03				
KABCO Unit Costs					
K Cost (\$/Crash)	10,897,580.00				
A Cost (\$/Crash)	613,781.00				
B Cost (\$/Crash)	194,022.00				
C Cost (\$/Crash)	110,830.00				
O Cost (\$/Crash)	10,173.00				

Table 2. RTL Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Two-Lane Undivided	3.502	12.638	43.370	40.490

Table 3. RTL Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Three-Legged w/STOP control	3.070	15.070	42.380	39.480
Four-Legged w/STOP control	3.980	15.280	42.860	37.880
Four-Legged Signalized	2.960	11.750	35.290	50.000

Table 4. RML Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Four-Lane Undivided	3.502	12.638	43.370	40.490
Four-Lane Divided	3.502	12.638	43.370	40.490

Table 5. RML Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Three-Legged w/STOP control	4.090	14.090	40.630	41.190
Four-Legged w/STOP control	4.710	15.910	41.990	37.390
Four-Legged Signalized	0.600	10.010	37.180	52.210

Table 6. USA Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Two-Lane Undivided	1.012	5.785	33.011	60.192
Three-Lane w/Center TWLTL	1.012	5.785	33.011	60.192
Four-Lane Undivided	1.012	5.785	33.011	60.192
Four-Lane Divided	1.012	5.785	33.011	60.192
Five-Lane w/Center TWLTL	1.012	5.785	33.011	60.192

Table 7. USA Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Three-Legged w/STOP control	0.744	6.558	36.725	55.973
Three-Legged Signalized	0.451	4.957	32.024	62.568
Four-Legged w/STOP control	0.864	6.637	38.161	54.338
Four-Legged Signalized	0.715	5.263	32.359	61.663

Analysis Output Summary

Analysis Type: Benefit/Cost

Table 8. Case Cost Summary

Is Base Case	Title	Present Value of Crash Cost (\$)	Value of	Net Present Value of Benefits (B) (\$)	Net Present Value of Costs (C) (\$)	Present Value of Net Benefit (B-C) (\$)	Benefit Cost Ratio (B/C)
Yes	Overlay and Concrete Repairs	3,443,820.60	170,000.00				
	STH 21 Left Turn Lanes Added	1,790,786.71	830,000.00	1,653,033.89	660,000.00	993,033.89	2.5046
	STH 21 & CTH FF Roundabout	698,966.63	950,000.00	2,744,853.97	780,000.00	1,964,853.97	3.5190

Table 9. Case Crash Summary

Is Base Case	Title	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Yes	Overlay and Concrete Repairs	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755
	STH 21 Left Turn Lanes Added	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672
	STH 21 & CTH FF Roundabout	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111

Crash Cost Data

Overlay and Concrete Repairs Data

Case Title: Overlay and Concrete Repairs

Is Base Case: true

Present Value of Crash Cost: 3,443,820.60 Present Value of Other Cost: 170,000.00 Economic Analysis Report Crash Cost Data

Table 10. Overlay and Concrete Repairs Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Overlay & Concrete Repair	CTH FF Predicted Crashes Overlay & Concrete Repair	3,443,820.60
Total			3,443,820.60

Crash Cost Data Economic Analysis Report

Table 11. Overlay and Concrete Repairs Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Overlay & Concrete Repair	CTH FF Predicted Crashes Overlay & Concrete Repair	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755
Total			0.2311	0.8872	2.4887	2.1995	13.1690	18.9755

Table 12. CTH FF Intersection Overlay & Concrete Repair Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755
Total	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755

STH 21 Left Turn Lanes Added Data

Case Title: STH 21 Left Turn Lanes Added

Is Base Case: false

Present Value of Crash Cost: 1,790,786.71 Present Value of Other Cost: 830,000.00

Table 13. STH 21 Left Turn Lanes Added Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection with STH 21 Left Turn Lanes	CTH FF Predicted Crashes Left Turn Lanes	1,790,786.71
Total			1,790,786.71

Crash Cost Data Economic Analysis Report

Table 14. STH 21 Left Turn Lanes Added Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection with STH 21 Left Turn Lanes	CTH FF Predicted Crashes Left Turn Lanes	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672
Total			0.1202	0.4614	1.2941	1.1437	6.8479	9.8672

Table 15. CTH FF Intersection with STH 21 Left Turn Lanes Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672
Total	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672

STH 21 & CTH FF Roundabout Data

Case Title: STH 21 & CTH FF Roundabout

Is Base Case: false

Present Value of Crash Cost: 698,966.63 **Present Value of Other Cost:** 950,000.00

Table 16. STH 21 & CTH FF Roundabout Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Single Lane Roundabout	CTH FF Crash Prediction Roundabout	698,966.63
Total			698,966.63

Crash Cost Data Economic Analysis Report

Table 17. STH 21 & CTH FF Roundabout Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Single Lane Roundabout	CTH FF Crash Prediction Roundabout	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111
Total			0.0178	0.1766	1.1362	1.0295	15.6510	18.0111

Table 18. CTH FF Intersection Single Lane Roundabout Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Roundabout	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111
Total	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111

Evaluation Message

Interactive Highway Safety Design Model

Economic Analysis Report

STH 21 & Sand Pit Road

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Economic Analysis Report	1
Configuration Summary	2
Analysis Output Summary	5
Crash Cost Data	7
Sand Pit Overylay & Concrete Repair Data	7
Sand Pit STH 21 Left Turn Lanes Data	9
Sand Pit Road Roundabout Data	11
Evaluation Message	14
List of Tables	
Table Economic Analysis Configuration	2
Table RTL Segment FI Proportion Data	2
Table RTL Intersection FI Proportion Data	3
Table RML Segment FI Proportion Data	3
Table RML Intersection FI Proportion Data	3
Table USA Segment FI Proportion Data	4
Table USA Intersection FI Proportion Data	4
Table Case Cost Summary	6
Table Case Crash Summary	6
Table Sand Pit Overylay & Concrete Repair Evaluation Cost	8
Table Sand Pit Overylay & Concrete Repair Evaluation Crashes	9
Table Sand Pit Road Intersection Overlay & Concrete Repair Facility Type Crashes	9
Table Sand Pit STH 21 Left Turn Lanes Evaluation Cost	10
Table Sand Pit STH 21 Left Turn Lanes Evaluation Crashes	11
Table Sand Pit Road Intersection STH 21 Left Turn Lanes Facility Type Crashes	11
Table Sand Pit Road Roundabout Evaluation Cost	12
Table Sand Pit Road Roundabout Evaluation Crashes	13
Table Sand Pit Road Intersection Roundabout Facility Type Crashes	13

Economic Analysis Report

Economic Analysis Report Overview

Report Generated: Aug 6, 2020 10:05 AM

Report Template: System: Multi-Page [System] (eam2, Jan 20, 2020 2:20 PM)

Evaluation Title: EAAnalysis 4 Updated 8/6/2020

Evaluation Comment: Created Thu Aug 06 10:04:25 CDT 2020

Evaluation Date: Thu Aug 06 10:04:44 CDT 2020

User Name: Scott Nelson

Organization Name: WisDOT NE Region

Phone: 920.366.2109

E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 & Sand Pit Road Evaluation **Project Comment:** Created Wed Jul 01 16:09:50 CDT 2020

Configuration Summary

Crash Cost Configuration: WisDOT Economics_v15-0
Configuration Comment: WisDOT Crash Costs

Table 1. Economic Analysis Configuration

Configuration Data	
Crash Unit Cost Zero Year	2016
Crash Cost Index	0.00
Discount Rate	0.03
KABCO Unit Costs	
K Cost (\$/Crash)	10,897,580.00
A Cost (\$/Crash)	613,781.00
B Cost (\$/Crash)	194,022.00
C Cost (\$/Crash)	110,830.00
O Cost (\$/Crash)	10,173.00

Table 2. RTL Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Two-Lane Undivided	3.502	12.638	43.370	40.490

Table 3. RTL Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Three-Legged w/STOP control	3.070	15.070	42.380	39.480
Four-Legged w/STOP control	3.980	15.280	42.860	37.880
Four-Legged Signalized	2.960	11.750	35.290	50.000

Table 4. RML Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Four-Lane Undivided	3.502	12.638	43.370	40.490
Four-Lane Divided	3.502	12.638	43.370	40.490

Table 5. RML Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Three-Legged w/STOP control	4.090	14.090	40.630	41.190
Four-Legged w/STOP control	4.710	15.910	41.990	37.390
Four-Legged Signalized	0.600	10.010	37.180	52.210

Table 6. USA Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Two-Lane Undivided	1.012	5.785	33.011	60.192
Three-Lane w/Center TWLTL	1.012	5.785	33.011	60.192
Four-Lane Undivided	1.012	5.785	33.011	60.192
Four-Lane Divided	1.012	5.785	33.011	60.192
Five-Lane w/Center TWLTL	1.012	5.785	33.011	60.192

Table 7. USA Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (%)	Incapacitating Injury Crash (A) Proportion of FI (%)	Non-incapacitating Injury Crash (B) Proportion of FI (%)	Possible Injury Crash (C) Proportion of FI (%)
Three-Legged w/STOP control	0.744	6.558	36.725	55.973
Three-Legged Signalized	0.451	4.957	32.024	62.568
Four-Legged w/STOP control	0.864	6.637	38.161	54.338
Four-Legged Signalized	0.715	5.263	32.359	61.663

Analysis Output Summary

Analysis Type: Benefit/Cost

Analysis Output Summary Economic Analysis Report

Table 8. Case Cost Summary

Is Base Case	Title	Present Value of Crash Cost (\$)	Present Value of Other Cost (\$)	Net Present Value of Benefits (B) (\$)	Net Present Value of Costs (C) (\$)	Present Value of Net Benefit (B-C) (\$)	Benefit Cost Ratio (B/C)
Yes	Sand Pit Overylay & Concrete Repair	2,917,076.43	170,000.00				
	Sand Pit STH 21 Left Turn Lanes	1,516,879.75	720,000.00	1,400,196.68	550,000.00	850,196.68	2.5458
	Sand Pit Road Roundabout	809,019.74	900,000.00	2,108,056.68	730,000.00	1,378,056.68	2.8878

Table 9. Case Crash Summary

Is Base Case	Title	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Yes	Sand Pit Overylay & Concrete Repair	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705
	Sand Pit STH 21 Left Turn Lanes	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567
	Sand Pit Road Roundabout	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102

Crash Cost Data

Sand Pit Overylay & Concrete Repair Data

Case Title: Sand Pit Overylay & Concrete Repair

Is Base Case: true

Present Value of Crash Cost: 2,917,076.43 Present Value of Other Cost: 170,000.00 Crash Cost Data Economic Analysis Report

Table 10. Sand Pit Overylay & Concrete Repair Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection Overlay & Concrete Repair	Sand Pit Predicted Crashes Overlay and Concrete Repair	2,917,076.43
Total			2,917,076.43

Economic Analysis Report Crash Cost Data

Table 11. Sand Pit Overylay & Concrete Repair Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection Overlay & Concrete Repair	Sand Pit Predicted Crashes Overlay and Concrete Repair	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705
Total			0.1957	0.7514	2.1077	1.8628	11.1530	16.0705

Table 12. Sand Pit Road Intersection Overlay & Concrete Repair Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705
Total	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705

Sand Pit STH 21 Left Turn Lanes Data

Case Title: Sand Pit STH 21 Left Turn Lanes

Is Base Case: false

Present Value of Crash Cost: 1,516,879.75 Present Value of Other Cost: 720,000.00

Table 13. Sand Pit STH 21 Left Turn Lanes Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection STH 21 Left Turn Lanes	Sand Pit Predicted Crashes Left Turn Lanes	1,516,879.75
Total			1,516,879.75

Economic Analysis Report Crash Cost Data

Table 14. Sand Pit STH 21 Left Turn Lanes Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection STH 21 Left Turn Lanes	Sand Pit Predicted Crashes Left Turn Lanes	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567
Total			0.1018	0.3907	1.0960	0.9686	5.7995	8.3567

Table 15. Sand Pit Road Intersection STH 21 Left Turn Lanes Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567
Total	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567

Sand Pit Road Roundabout Data

Case Title: Sand Pit Road Roundabout

Is Base Case: false

Present Value of Crash Cost: 809,019.74 Present Value of Other Cost: 900,000.00

Table 16. Sand Pit Road Roundabout Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection Roundabout	Sand Pit Predicted Crashes Roundabout	809,019.74
Total			809,019.74

Economic Analysis Report Crash Cost Data

Table 17. Sand Pit Road Roundabout Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection Roundabout	Sand Pit Predicted Crashes Roundabout	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102
Total			0.0191	0.1897	1.2204	1.5359	18.6452	21.6102

Table 18. Sand Pit Road Intersection Roundabout Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Roundabout	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102
Total	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102

Evaluation Message

Wisconsin Department of Transportation Traffic Signal Warrant Summary Worksheet

70%

The Worksheet(s) attached are provided as an attachment to the Engineering Investigation Study for:

Intersection: WIS 21 & Sand Pit Road

County: Winnebago

Select one:

Major Street: WIS 21 Minor Street: Sand Pit Road

Critical Approach Speed: 55 mph Critical Approach Speed: 55 mph

Lanes: 1 lane Lanes: 1 lane

% Right Turns Included In built-up area of isolated community of < 10,000 population? Yes

From North (SB) 100% Total number of approaches at intersection? 4 or more

From East (WB) 0% If it is a "T" intersection, inflate minor threshold to 150%? No From South (NB) 100% Manually set volume level? No

From West (EB) 0%

Analysis based on EXISTING volume data.

Date	Day of the Week		Time (HH	:MM)	
Date	Day of the week	From	AM / PM	То	AM / PM
10/26/2019	Tuesday	6:00	AM	6:00	PM

Warrant Evaluation Summary	Warrant Met:
Warrant 1: Eight - Hour Vehicular Volume	No
Condition A: Minimum Vehicular Volume	No
Condition B: Interruption of Continuous Traffic	No
Condition C: Combination: 80% of A and B	No
Warrant 2: Four-Hour Volume	No
Warrant 3: Peak Hour Volume	N/A
Warrant 4: Pedestrian Volume	N/A
Criterion A: Four-Hour	
Criterion B: Peak-Hour	
Warrant 5: School Crossing	N/A
Warrant 6: Coordinated Signal System	N/A
Warrant 7: Crash Experience	Yes
Warrant 8: Roadway Network	N/A
Warrant 9: Intersection Near a Grade Crossing	N/A

Warrant Analysis Conducted By:

Name: Randy Asman Agency: WisDOT Date: 1/23/2020

Warrant 1: Eight - Hour Vehicular Volume

70%

Warrant Evaluated? Yes

Condition A :		
Min. Veh. Volume		
Volume Level	70%	56%
Major Rd. Req	350	280
Minor Rd. Req	105	84
Number of Hours	1	1

Satisfied? No

Condition B:		
Interruption of Continuous Traffic		
Volume Level	70%	56%
Major Rd. Req	525	420
Minor Rd. Req	53	42
Number of Hours	4	8

Satisfied? No

Condition C:	
Combination of A & B at 56%	

Satisfied? No

Warrant Satisfied? No

Manually Set To:

6:00 AM		Enter	Start Time (Military Time) (HH:MM)		
Time Period	From	То	Major Road: Both App. (VPH)	Minor Road: High App. (VPH)	Total
1	6:00	7:00	557	75	632
2	7:00	8:00	813	127	940
3	8:00	9:00	538	55	593
4	9:00	10:00	530	35	565
5	10:00	11:00	517	43	560
6	11:00	12:00	592	36	628
7	12:00	13:00	652	38	690
8	13:00	14:00	652	34	686
9	14:00	15:00	774	43	817
10	15:00	16:00	959	54	1013
11	16:00	17:00	980	48	1028
12	17:00	18:00	825	47	872
13	18:00	19:00	0	0	0
14	19:00	20:00	0	0	0
15	20:00	21:00	0	0	0
16	21:00	22:00	0	0	0

Warrant 2: Four-Hour Volume

70%

 Hour Start
 7:00
 15:00
 16:00
 17:00

 Major Road Vol.
 813
 959
 980
 825

 Minor Road Vol.
 127
 54
 48
 47

Warrant Evaluated? Yes Warrant Satisfied? No Manually Set To:

Warrant 3: Peak Hour Volume

70%

Warrant Evaluated?

Condition justifying use of warrant:

Criteria		Met?
Delay on Minor Approach	4	
Volume on Minor Approach	100	
Total Entering Volume (veh/h)	800	

Manually Set Peak Hour?

Peak Hour	Major Road Vol. (Both App.)	Minor Road Vol. (High App.)
16:00	980	48

Warrant Satisfied? N/A

Manually Set To:

Warrant 4: Pedestrian Volume

70%

Warrant Evaluated?

Criterion A: Four Hour

Hour	Pedestrian	Major Road
(Start)	Volume	Vol.
		0
		0
		0
		0

Manually Set Major Rd Vol?

Avg. walk speed less than 3.5 ft/s?

Criterion A Satisfied?

Criterion B: Peak Hour

Peak Hour	Pedestrian Vol.	Major Road Vol.
0:00	0	0

Criterion B Satisfied?

Warrant Satisfied? N/A

Manually Set To:

U V	1	I	ı	-
0	500	1000	1500	2000

Warrant 5: School Crossing

70%

Warrant Evaluated?

Warrant Satisfied? N/A

Manually Set To:

Criteria		
1	There are a MINIMUM of 20 school children during the highest crossing hour.	
There are fewer adequate gaps in the major road traffic stream during the period when the school children are using the crossing than the number of minutes in the same period.		
3	The nearest traffic signal along the major road is located more than 300 ft away. Or, the nearest traffic signal is within 300 ft but the proposed traffic signal will not restrict the progressive movement of traffic.	

Warrant 6: Coordinated Signal System

70%

Warrant Evaluated?

Warrant Evaluated?

Warrant Satisfied? N/A

Manually Set To:

Manually Set To:

-	Criteria		
1 Signal spacing > 1000 ft		Signal spacing > 1000 ft	
On a one-way road or a road that he that they do not provide the necessity.		On a one-way road or a road that has traffic predominantly in one direction, the adjacent signals are so far apart that they do not provide the necessary degree of vehicle platooning.	
	3	On a two-way road, adjacent signals do not provide the necessary degree of platooning and the proposed and the adjacent signals will collectively provide a progressive operation.	

Warrant 7: Crash Experience

70%

	Warrant Evaluated? Yes	Warrant Satisfied? You	es Manua	lly Set To:					
Crite	eria			Met?	Fulfilled?				
1	Adequate trial of other remedial measures has failed to re	duce crash frequency.			Yes				
	Measures Tried: Added Turn Lanes				163				
2	Five or more reported crashes, of types susceptible to correction by signal, have # of crashes per 12 months								
2	occurred within a 12 month period.		5		Yes				
	Warrant 1, Condition A (80%)	-		No					
3	Warrant 1, Condition B (80%)			Yes	Yes				
3	Warrant 4, Criterion A (80%)			No	165				
	Warrant 4 Criterion B (80%)			No					

Warrant 8: Roadway Network

70%

Crit	eria			Met?	Fulfilled?					
1	Total entering volume of at least 1,000 veh/h during typical weekday peak hour	1028	Yes	No						
	Five-year projected volumes that satisfy one or more of Warrants 1, 2, or 3.									
	Total entering vol. of at least 1,000 veh/h for each of any 5 hrs of non-normal bu	siness day (Sat. or Sun.)						
2	Hour									
	Volume									

Warrant Satisfied? N/A

C	Characteristics of Major Routes - Select yes if all intersecting routes have characteristic									
	1	Part of the road or highway system that serves as the principal roadway network for through traffic flow								

2	Rural or suburban highway outside of, entering, or traversing a city	
3	Appears as a major route on an official plan	

Warrant 9: Intersection Near a Grade Crossing

70%

Warrant Evaluated?

Warrant Satisfied? N/A

Manually Set To:

	Adjustment Fac	tors	Manually Set Peak Hour?								
Rail Traffic per Day	% High Occupancy Buses on Minor Road	% Tractor-Trailer Trucks on Minor Road	D	Peak Hour	Major Road Vol.	Minor Road Vol.	Adjusted Minor Vol.				
1	0	0% to 2.5%	660	16:00	980	48	16.08				

Conclusions/Comments:

Updated: 12/6/2017

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd									
Agency/Co.	Westwood	Jurisdiction	WisDOT NE									
Date Performed	1/21/2021	East/West Street	STH 21									
Analysis Year	2027	North/South Street	Sand Pit Road									
Time Analyzed	AM Peak Existing Geometry	Peak Hour Factor	0.92									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	STH 21, Omro - Oshkosh											

Approach	T	Factle	ound		Westbound				Г	North	bound		Southbound				
Approach	_								Northbound								
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0	
Configuration		LT		R		LT		R			LTR				LTR		
Volume (veh/h)		4	557	14		6	262	11		6	14	4		83	46	13	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)										()		0				
Right Turn Channelized		Ν	lo			Ν	lo										
Median Type Storage				Undi	ivided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		4				7					26				154		
Capacity, c (veh/h)		1259				955					263				258		
v/c Ratio		0.00				0.01					0.10				0.60		
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.3				3.5		
Control Delay (s/veh)		7.9				8.8					20.2				37.8		
Level of Service (LOS)		А				Α					С				E		
Approach Delay (s/veh)		0	.1			0	.3		20.2				37.8				
Approach LOS										(2						

Generated: 1/21/2021 12:18:51 PM

	HCS7 Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd										
Agency/Co.	Westwood	Jurisdiction	WisDOT NE										
Date Performed	1/21/2021	East/West Street	STH 21										
Analysis Year	2027	North/South Street	Sand Pit Road										
Time Analyzed	PM Peak Existing Geometry	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs) 0.25											
Project Description	STH 21, Omro - Oshkosh												

Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	oound			Westbound				North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0
Configuration		LT		R		LT		R			LTR				LTR	
Volume (veh/h)		16	436	10		11	527	86		7	34	12		30	22	6
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			-	0	
Right Turn Channelized		N	10			Ν	lo									
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	Τ	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Τ	17				12					58				63	
Capacity, c (veh/h)		918				1073					204				174	
v/c Ratio		0.02				0.01					0.28				0.36	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					1.1				1.5	
Control Delay (s/veh)		9.0				8.4					29.5				37.1	
Level of Service (LOS)		А				Α					D				E	
Approach Delay (s/veh)		0	.5			0	.3		29.5				37.1			
Approach LOS															E	

Generated: 1/21/2021 12:20:16 PM

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd									
Agency/Co.	Westwood	Jurisdiction	WisDOT NE									
Date Performed	1/21/2021	East/West Street	STH 21									
Analysis Year	2047	North/South Street	Sand Pit Road									
Time Analyzed	AM Peak Existing Geometry	Peak Hour Factor	0.92									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	STH 21, Omro - Oshkosh											

Vehicle Volumes and Adjustments																
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0
Configuration		LT		R		LT		R			LTR				LTR	
Volume (veh/h)		5	583	16		7	276	14		7	19	4		103	64	16
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized		Ν	lo			Ν	lo									
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		5				8					33				199	
Capacity, c (veh/h)		1239				931					234				236	
v/c Ratio		0.00				0.01					0.14				0.84	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.5				6.6	
Control Delay (s/veh)		7.9				8.9					22.9				69.0	
Level of Service (LOS)		А				А					С				F	
Approach Delay (s/veh)	0.1				0.3			22.9			69.0					
Approach LOS										(C				F	

Generated: 1/21/2021 12:21:39 PM

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd									
Agency/Co.	Westwood	Jurisdiction	WisDOT NE									
Date Performed	1/21/2021	East/West Street	STH 21									
Analysis Year	2047	North/South Street	Sand Pit Road									
Time Analyzed	PM Peak Existing Geometry	Peak Hour Factor	0.92									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	STH 21, Omro - Oshkosh											

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0
Configuration		LT		R		LT		R			LTR				LTR	
Volume (veh/h)		21	458	12		13	547	107		9	47	14		36	31	8
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized		Ν	lo			Ν	lo									
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		23				14					76				82	
Capacity, c (veh/h)		884				1049					174				146	
v/c Ratio		0.03				0.01					0.44				0.56	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					2.0				2.8	
Control Delay (s/veh)		9.2				8.5					40.8				56.9	
Level of Service (LOS)		А				Α					Е				F	
Approach Delay (s/veh)	0.7				0.3			40.8				56.9				
Approach LOS									E				F			

Generated: 1/21/2021 12:23:21 PM

	HCS7 Two-Way Stop	o-Control Report							
General Information		Site Information							
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd						
Agency/Co.	Westwood	Jurisdiction	WisDOT NE						
Date Performed	1/21/2021	East/West Street	STH 21						
Analysis Year	2027	North/South Street	Sand Pit Road						
Time Analyzed	AM Peak LTLs	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	STH 21, Omro - Oshkosh								

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0
Configuration		L	Т	R		L	Т	R			LTR				LTR	
Volume (veh/h)		4	557	14		6	262	11		6	14	4		83	46	13
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized		No No														
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		4				7					26				154	
Capacity, c (veh/h)		1259				955					264				259	
v/c Ratio		0.00				0.01					0.10				0.60	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.3				3.5	
Control Delay (s/veh)		7.9				8.8					20.1				37.6	
Level of Service (LOS)		А				А					С				E	
Approach Delay (s/veh)		0.1 0.2								20).1		37.6			
Approach LOS										(2		E			

Generated: 1/21/2021 1:44:10 PM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	1/21/2021	East/West Street	STH 21
Analysis Year	2027	North/South Street	Sand Pit Road
Time Analyzed	PM Peak LTLs	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Approach	T	Factle	ound		I	\A/o.=+1	oound		I	North	haund			Court	bound	
Approach	_									North						
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0
Configuration		L	Т	R		L	Т	R			LTR				LTR	
Volume (veh/h)		16	436	10		11	527	86		7	34	12		30	22	6
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized		Ν	lo			Ν	lo									
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		17				12					58				63	
Capacity, c (veh/h)		918				1073					206				176	
v/c Ratio		0.02				0.01					0.28				0.36	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					1.1				1.5	
Control Delay (s/veh)		9.0				8.4					29.1				36.6	
Level of Service (LOS)		Α				А					D				Е	
Approach Delay (s/veh)		0	.5			0	.2			29	9.1			36	5.6	
Approach LOS										[)				E	

Generated: 1/21/2021 1:45:49 PM

	HCS7 Two-Way Stop	o-Control Report							
General Information		Site Information							
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd						
Agency/Co.	Westwood	Jurisdiction	WisDOT NE						
Date Performed	1/21/2021	East/West Street	STH 21						
Analysis Year	2047	North/South Street	Sand Pit Road						
Time Analyzed	AM Peak LTLs	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	STH 21, Omro - Oshkosh								

Vehicle Volumes and Ad	justme	nts														
Approach	Т	Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0
Configuration		L	Т	R		L	Т	R			LTR				LTR	
Volume (veh/h)		5	583	16		7	276	14		7	19	4		103	64	16
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		١	10		No											
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т	5				8					33				199	
Capacity, c (veh/h)		1239				931					235				237	
v/c Ratio		0.00				0.01					0.14				0.84	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.5				6.6	
Control Delay (s/veh)		7.9				8.9					22.8				68.3	
Level of Service (LOS)		А				А					С				F	
Approach Delay (s/veh)		C).1		0.3				22.8				68.3			
Approach LOS									Ì	(С				F	

Generated: 1/21/2021 1:44:38 PM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	1/21/2021	East/West Street	STH 21
Analysis Year	2047	North/South Street	Sand Pit Road
Time Analyzed	PM Peak LTLs	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westk	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0
Configuration		L	Т	R		L	Т	R			LTR				LTR	
Volume (veh/h)		21	458	12		13	547	107		9	47	14		36	31	8
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										(0				0	
Right Turn Channelized		Ν	lo			N	lo									
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		23				14					76				82	
Capacity, c (veh/h)		884				1049					177				149	
v/c Ratio		0.03				0.01					0.43				0.55	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					2.0				2.7	
Control Delay (s/veh)		9.2				8.5					39.8				55.2	
Level of Service (LOS)		А				Α					E				F	
Approach Delay (s/veh)		0.6				0.3			39.8				55.2			
Approach LOS									E F					F		

Generated: 1/21/2021 1:46:28 PM

SITE LAYOUT

♥ Site: 101 [AM 2027 Sand Pit (Site Folder: General)]

Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)

All Movement Classes

▼ Site: 101 [AM 2027 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones. Click and drag popup boxes to move to preferred positions.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:34 AM
Project: Not Saved

INPUT COMPARISON

Site A: 101 [AM 2027 Sand Pit (Site Folder: General)]

₩ Site B:

Intersection - Site Data		
SITE	AM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Differ	ence

Intersection - Site Proper	ties		
SITE	AM 2027 Sand Pit		Defaults - US HCM (Customary)
		NA	

Intersection - /	Approach	& Exit Da	ita								
SITE	Location	Name	Туре	No. of App. Lanes	No. of Exit Lanes		Extra Bunching (Site Analysis)	Extra Bunching (Network Analysis)	Exit Distance	Approach Control	Area Type Factor
						ft	%	%	ft		
AM 2027 Sand Pit	South	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2027 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2027 Sand Pit	North	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	North	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2027 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-

Movement Definitions - Included Movement Classes									
SITE	Included	Name	ID	Model Designation					
		No Difference							

Movement Definitions - Origin-Destination Movements								
SITE	To Approach	Turn	OD Mov ID					
	No Difference							
SITE	U-Turn Before Intersection		rn Before Intersection From Signal Analysis					
	No Difference							

Lane Geometry - Lane Configuration												
SITE	Leg Item	Config	Type Control	Slip/	Length Width	Grade			Isla	and		
				Bypass Control				Back Width				Short Strip Isl]

ft	ft	%	ft	ft					
No Difference									

Lane Geometry - Lane Disciplines										
SITE	To Approach	Turn	Free Queue Distance ft	Movement Class(es)						
			No Difference							

Lane Geometry - Lane Disciplines - Lane Change Data									
SITE	Movement Class	% Lane Change to Left %	% Lane Change to Right %						
	No Difference								

Lane Geom	etry - Lane	Data										
	Approach Lane Data											
SITE	Approa Lane	e Satn Flow	Ratio	Satn Speed	Capacity Adj			Include SLip/ ByPass Lane in Entry Lane Count	Apply Satn Flow Est	Short Lane Capacity	Delay Model Param	
		tcu/h	%	mph	%							
					No Diffe							_
					Merge Ar	ıalysis						
SITE	Exit Lane	Merge Lane Number	Apply Mero Analysis	, .	´ ´ (Percent Opposing i Short Land		ng in Lane	ritical Gap sec	Follow- Headwa	•	es
					No Differ	, ,	,,,		223	- 000	VOIIIIIII	

Lane Movements	- Flow Proportion	ıs			
CITE			To Ex		
SITE	Exit Lane	South	East	North	West
		%	%	%	%
Light Vehicles (LV)					
From: South	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	-	100	100	100
Defaults - US HCM	Exit Lane 1	-	_	100	100
(Customary)					
From: East	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	100	-	100	100
Defaults - US HCM	Exit Lane 1	100	-	_	100
(Customary)					
From: North	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	100	100	-	100
Defaults - US HCM	Exit Lane 1	100	100	-	_
(Customary)					
From: West	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	100	100	100	-
Defaults - US HCM	Exit Lane 1	_	100	100	-
(Customary)					
Heavy Vehicles (HV	")				
From: South	App. Lane 1				

AM 2027 Sand Pit	Exit Lane 1	-	100	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	-	-	100	100	
From: East	App. Lane 1					
AM 2027 Sand Pit	Exit Lane 1	100	-	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	-	-	100	
From: North	App. Lane 1					
AM 2027 Sand Pit	Exit Lane 1	100	100	-	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	100	-	-	
From: West	App. Lane 1					
AM 2027 Sand Pit	Exit Lane 1	100	100	100	-	
Defaults - US HCM (Customary)	Exit Lane 1	-	100	100	-	

Lane Movements - Blockage Calibration									
			To E	kit Leg					
SITE	Exit Lane	South	East	North	West				
From: South	App. Lane 1								
AM 2027 Sand Pit	Exit Lane 1	-	1	1	1				
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1				
From: East	App. Lane 1								
AM 2027 Sand Pit	Exit Lane 1	1	-	1	1				
Defaults - US HCM (Customary)	Exit Lane 1	1	-	-	1				
From: North	App. Lane 1								
AM 2027 Sand Pit	Exit Lane 1	1	1	-	1				
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	-				
From: West	App. Lane 1								
AM 2027 Sand Pit	Exit Lane 1	1	1	1	-				
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-				

Roundabouts - Op	tions	
SITE	AM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Diffe	erence

Roundabouts -	Geometry	/									
SITE	Location	Name	Circ. Lanes	Circ. Width	Island Diamete	Inscribed r Diameter	Entry Radius	Entry Angle	Raindrop Design	Circ Trans Line	Downstre am Circ Lanes
				ft	ft	ft	ft				
AM 2027 Sand Pit	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-
AM 2027 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-
AM 2027 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-
AM 2027 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-

HCM 2010 Roundabout Model Parameters												
CITE	Lacation	Name		L.Circ:		L.Circ:		L.Circ:		L.Circ:		L.Circ:
SITE	Location	Name	Single	L.Entry	Multi	L.Entry	Single	L.Entry	Domina	ant Lane		ominant
					Dava A	Dava D	Dana A	Para. B	Dava A	Dava D		ane
AM 2027 Cond	Cauth	0 10101	Para. A		Para. A		Para. A		Para. A		Para. A	
AM 2027 Sand Pit	South	Sand Pit Rd	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
Defaults - US	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
HCM (Customary)												2
AM 2027 Sand Pit	East	STH 21	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
Defaults - US	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
HCM (Customary)	Lasi	Nodulvallie	1360	0.00102	1420	0.00031	1420	0.00003	1420	0.00003	1000	2
AM 2027 Sand	North	Sand Pit Rd	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
Pit				4								2
Defaults - US	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
HCM (Customary)												2
AM 2027 Sand	West	STH 21	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
Pit				4								2
Defaults - US	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
HCM (Customary)												2
,												

HCM 6 Roundabout Model Calibration									
SITE	Location	Name	Model Calib. Factor (HCM6)	Entry/Circ. Flow Adjust. (HCM6)					
AM 2027 Sand Pit	South	Sand Pit Rd	1	None					
Defaults - US HCM (Customary)	South	RoadName	1	None					
AM 2027 Sand Pit	East	STH 21	1	None					
Defaults - US HCM (Customary)	East	RoadName	1	None					
AM 2027 Sand Pit	North	Sand Pit Rd	1	None					
Defaults - US HCM (Customary)	North	RoadName	1	None					
AM 2027 Sand Pit	West	STH 21	1	None					
Defaults - US HCM (Customary)	West	RoadName	1	None					

Pedestrians - Pedestrian Movements									
SITE	Main Crossing/ Slip/Bypass Lane Crossing	Volume ped	Peak Flow %	Flow Scale %	Growth Rate %				
No Difference									

Pedestrians - Pedestrian Movement Data											
SITE	Main Crossing/ Slip/Bypass Lane Crossing	Mov. ID	Crossing Distance		Oppng Ped.Fac.	P.Deg. Satn	Walking Speed	App. Trav. Distance		Queue Space	Cr. Setback Distance
	Crossing		ft	ft	ference		ft/sec	ft	ft	ft	Distance
Volumes - Volume Data Settings											
SITE	AM 2	2027 Sar	nd Pit				Defaults -	US HCM (Customary	/)	
No Difference											

Volumes - Vehicle Volumes								
		To Exit Leg						
SITE	Movement Class							
		NA						

Volumes - Volume Factors								
SITE	To Approach	Peak Flow Factor %	Flow Scale %	Growth Rate %/vear				
No Difference								

Gap Acceptance - Gap Acceptance Data									
SITE	Opposed Movement	Critical Gap	Follow-up Headway	Minimum Departures	Exiting Flow Effect	% Opp. By Nearest Lane	Opng. Peds (UnSig)		
		sec	sec	veh/min	%	%			
No Difference									

Gap Acceptan	ce - Settings					
		G	Sap Acceptance Optio	ns		
			No Difference			
		Gap Accept	ance Data for Specific	Applications		
SITE		Criti	ical Follow-up) Minimum	Exiting	% Opp. By
		Ga	p Headway	Departures	Flow Effect	Nearest Lane
		se	ec sec	veh/min	%	%
			No Difference			
		Merge Analysis	& Zebra Crossing Ana	llysis Parameters		
					Merge A	nalysis
SITE	Movement Class	Parameter	Zebra Crossing on	Midblock Zebra	[Exit Short Lane	Merge Lane]
			Slip/Bypass Lane	Crossing		
			No Difference			

Vehicle Movement Data - Path Data								
SITE	Turn	Approach Cruise Speed	Exit Cruise Speed	Negotiation Speed	Negotiation Distance	Downstream Distance	Negotiation Radius	
		mph	mph	mph	ft	ft	ft	
No Difference								

Vehicle Movement Data - Calibration									
SITE	Turn	Queue Space ft	Vehicle Length ft	Vehicle Occupancy pers/veh	Turn Ve [Factor	h Effect Radius] ft	Gap Accp Factor	Opng. Veh Factor	Prac. Deg. Of Satn.
No Difference									

Site Demand & Sensitivity		
SITE	AM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Difference	e

Parameter Settings - Options						
SITE	AM 2027 Sand Pit	Defaults - US HCM (Customary)				
No Difference						

Parameter Settings - Model Parameters							
SITE	AM 2027 Sand Pit	Defaults - US HCM (Customary)					
No Difference							

Parameter Settings	s - Cost							
Efficiency Parameters								
SITE	Move	ment Class		Desired Speed		Lower Limit of Speed Efficiency for TTI		
				mph				
		N	lo Difference					
		Vehicl	e Cost Paramet	ers				
OUTE			Ve	h Operating Co	ost	Veh Ti	me Cost	
SHE	SITE Movement Class	Veh Cost Method	[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]	
			\$/Gal			\$/h		
AM 2027 Sand Pit	Light Vehicles (LV)	Operating Cost	2.3	0.7	3	27	0.4	
Defaults - US HCM (Customary)	Light Vehicles (LV)	Operating Cost	2.5	0.7	3	29	0.4	
AM 2027 Sand Pit	Heavy Vehicles (HV)	Operating Cost	2.3	0.7	3	27	0.4	
Defaults - US HCM (Customary)	Heavy Vehicles (HV)	Operating Cost	2.5	0.7	3	29	0.4	

	Cost Options	
SITE	AM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Difference	
	Pedestrian Cost Parame	eters
SITE		
	Not Applicable	

Parameter Settings - Vehicle Parameters							
		Vehicle	CO2 to				
SITE	Movement Class	Mass	Max Power	Fuel Rate			
		lb	kW				
No Difference							

Parameter Settings - Fuel Consumption							
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta		
	No	Difference					

Parameter Settings - CO Emission							
SITE	Movement Class	fi	Fuel & Emission A	Model Parameters B	Beta		
No Difference							

Parameter Settings - HC Emission							
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta		
No Difference							

Parameter Setting	s - NOx Emission				
SITE	Movement Class	fi	Fuel & Emission l A	Model Parameters B	Beta
	No	Difference			

Parameter Setting	Parameter Settings - Advanced									
SITE	AM 2027 Sand Pit	Defaults - US HCM (Customary)								
	No Diffe	erence								

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:48:54 AM
Project(s):

MOVEMENT SUMMARY

▼ Site: 101 [AM 2027 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Vehic	cle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service	95% BA Que		Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total	HV]	[Total	HV]	- Salii	Delay	Service	[Veh.	Dist]	— Que	Rate	Cycles	-spee u
		veh/h	% -	veh/h	%	v/c	sec		veh	ft				mph
South	: Sand	Pit Rd												
3	L2	6	3.0	7	3.0	0.038	5.7	LOS A	0.1	3.5	0.56	0.49	0.56	34.2
8	T1	14	3.0	15	3.0	0.038	5.7	LOS A	0.1	3.5	0.56	0.49	0.56	34.1
18	R2	4	3.0	4	3.0	0.038	5.7	LOS A	0.1	3.5	0.56	0.49	0.56	33.1
Appro	oach	24	3.0	26	3.0	0.038	5.7	LOS A	0.1	3.5	0.56	0.49	0.56	34.0
East:	STH 2	1												
1	L2	6	3.0	7	3.0	0.231	4.7	LOS A	1.1	28.6	0.12	0.04	0.12	35.4
6	T1	262	3.0	285	3.0	0.231	4.7	LOS A	1.1	28.6	0.12	0.04	0.12	35.3
16	R2	11	3.0	12	3.0	0.231	4.7	LOS A	1.1	28.6	0.12	0.04	0.12	34.3
Appro	ach	279	3.0	303	3.0	0.231	4.7	LOSA	1.1	28.6	0.12	0.04	0.12	35.3
North	: Sand	Pit Rd												
7	L2	83	3.0	90	3.0	0.153	5.0	LOS A	0.6	16.1	0.42	0.31	0.42	33.6
4	T1	46	3.0	50	3.0	0.153	5.0	LOS A	0.6	16.1	0.42	0.31	0.42	33.5
14	R2	13	3.0	14	3.0	0.153	5.0	LOS A	0.6	16.1	0.42	0.31	0.42	32.6
Appro	oach	142	3.0	154	3.0	0.153	5.0	LOS A	0.6	16.1	0.42	0.31	0.42	33.5
West	STH 2	:1												
5	L2	4	3.0	4	3.0	0.536	9.3	LOS A	3.6	93.1	0.47	0.31	0.47	33.1
2	T1	557	3.0	605	3.0	0.536	9.3	LOS A	3.6	93.1	0.47	0.31	0.47	33.0
12	R2	14	3.0	15	3.0	0.536	9.3	LOS A	3.6	93.1	0.47	0.31	0.47	32.1
Appro	ach	575	3.0	625	3.0	0.536	9.3	LOS A	3.6	93.1	0.47	0.31	0.47	33.0
All Ve	hicles	1020	3.0	1109	3.0	0.536	7.4	LOSA	3.6	93.1	0.37	0.24	0.37	33.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:34 AM

Project: Not Saved

LANE SUMMARY

▼ Site: 101 [AM 2027 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Lane Use a	and Per	forman	се										
	DEM. FLO [Total	WS HV]	Сар.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	95% BAC QUEL [Veh		Lane Config	Lane Length		Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Sand	Pit Rd												
Lane 1 ^d	26	3.0	681	0.038	100	5.7	LOSA	0.1	3.5	Full	1600	0.0	0.0
Approach	26	3.0		0.038		5.7	LOSA	0.1	3.5				
East: STH 2	1												
Lane 1 ^d	303	3.0	1311	0.231	100	4.7	LOSA	1.1	28.6	Full	1600	0.0	0.0
Approach	303	3.0		0.231		4.7	LOSA	1.1	28.6				
North: Sand	Pit Rd												
Lane 1 ^d	154	3.0	1007	0.153	100	5.0	LOSA	0.6	16.1	Full	1600	0.0	0.0
Approach	154	3.0		0.153		5.0	LOSA	0.6	16.1				
West: STH 2	21												
Lane 1 ^d	625	3.0	1166	0.536	100	9.3	LOSA	3.6	93.1	Full	1600	0.0	0.0
Approach	625	3.0		0.536		9.3	LOSA	3.6	93.1				
Intersection	1109	3.0		0.536		7.4	LOSA	3.6	93.1				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

South: Sand P	South: Sand Pit Rd									
Mov.	L2	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From S						Cap.	Satn		SL Ov.	Lane
To Exit:	W	Ν	Е			veh/h	v/c	%	%	No.
Lane 1	7	15	4	26	3.0	681	0.038	100	NA	NA
Approach	7	15	4	26	3.0		0.038			
East: STH 21										
Mov.	L2	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From E						Cap.	Satn		SL Ov.	Lane
To Exit:	S	W	N			veh/h	v/c	%	%	No.
Lane 1	7	285	12	303	3.0	1311	0.231	100	NA	NA
Approach	7	285	12	303	3.0		0.231			

North: Sand P	it Rd										
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.	
Lane 1	90	50	14	154	3.0	1007	0.153	100	NA	NA	
Approach	90	50	14	154	3.0		0.153				
West: STH 21											
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	4	605	15	625	3.0	1166	0.536	100	NA	NA	
Approach	4	605	15	625	3.0		0.536				
	Total	%HV	Deg.Sat	n (v/c)							
Intersection	1109	3.0		0.536							

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis									
E: Lar Numb		Short Lane Length ft	Opng in Lane	Opposing Flow Rate veh/h pcu/h	Critical Gap sec	Follow-up Headway sec	Lane Flow Rate veh/h	Deg. Satn v/c	Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied									
Full Length Lane	1	Merge /	Analysis ı	not applied.					
East Exit: STH 21 Merge Type: Not Applied									
Full Length Lane	1	Merge /	Analysis ı	not applied.					
North Exit: Sand Pit Rd Merge Type: Not Applied									
Full Length Lane	1	Merge A	Analysis ı	not applied.					
West Exit: STH 21 Merge Type: Not Applied									
Full Length Lane	1	Merge /	Analysis ı	not applied.					

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:34 AM
Project: Not Saved

SITE LAYOUT

♥ Site: 101 [PM 2027 Sand Pit (Site Folder: General)]

Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)

All Movement Classes

♥ Site: 101 [PM 2027 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones. Click and drag popup boxes to move to preferred positions.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:41 AM
Project: N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9

INPUT COMPARISON

Site A: 101 [PM 2027 Sand Pit (Site Folder: General)]

₩ Site B:

Intersection - Site Data		
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Difference	

Intersection - Site	Properties	
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)
	NA NA	```

Intersection - A	Approach	& Exit Da	ıta								
SITE	Location	Name	Туре	No. of App. Lanes	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) %	Extra Bunching (Network Analysis) %	Exit Distance ft	Approach Control	Area Type Factor
PM 2027 Sand Pit	South	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2027 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2027 Sand Pit	North	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	North	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2027 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-

Movement De	finitions - Included Movement	Classes		
SITE	Included	Name	ID	Model Designation
		No Difference		Ŭ

Movement Definitions - Origin-D	Destination Movements		
SITE	To Approach	Turn	OD Mov ID
	No Difference		
SITE	U-Turn Before Intersection		rn Before Intersection From Bignal Analysis
	No Difference		

Lane Geometry - Lane Configuration											
SITE	Leg Item	Config	Type Control	Slip/	Length Width	Grade			Isla	and	
			71	Bypass Control				Back Width			Short Strip Isl]

ft	ft	%	ft	ft
No Differ	ence			

Lane Geometry - Lar	ne Disciplines			
SITE	To Approach	Turn	Free Queue Distance ft	Movement Class(es)
			No Difference	

Lane Geometry - Lane Disciplines - Lane Change Data							
SITE	Movement Class	% Lane Change to Left %	% Lane Change to Right %				
	No Difference						

Lane Geom	etry - Lane	Data									
				Ap	proach La	ane Data					
SITE	Approa Land		Util Ratio	Satn Speed	Capacity Adj			Satn		Delay Model Param	
		tcu/h	%	mph	%						
					No Differ	ence					
					Merge Ar	alysis					
SITE	Exit Lane	Merge Lane Number	Apply Merge Analysis	Merg	´ ´' (Percent Opposing i Short Land	 ing in Lane	ritical Gap sec	Follow-I Headwa	ay Dep	nimum partures h/min
					No Differ	ence					

Lane Movements	- Flow Proportion	ns				
SITE	Exit Lane	South %	To Ex East %	it Leg North %	West %	
Light Vehicles (LV)						
From: South	App. Lane 1					
PM 2027 Sand Pit	Exit Lane 1	-	100	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	-	-	100	100	
From: East	App. Lane 1					
PM 2027 Sand Pit	Exit Lane 1	100	-	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	-	-	100	
From: North	App. Lane 1					
PM 2027 Sand Pit	Exit Lane 1	100	100	-	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	100	-	-	
From: West	App. Lane 1					
PM 2027 Sand Pit	Exit Lane 1	100	100	100	-	
Defaults - US HCM (Customary)	Exit Lane 1	-	100	100	-	
Heavy Vehicles (HV)					
From: South	App. Lane 1					

PM 2027 Sand Pit	Exit Lane 1	-	100	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	-	-	100	100	
From: East	App. Lane 1					
PM 2027 Sand Pit	Exit Lane 1	100	-	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	-	-	100	
From: North	App. Lane 1					
PM 2027 Sand Pit	Exit Lane 1	100	100	-	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	100	-	-	
From: West	App. Lane 1					
PM 2027 Sand Pit	Exit Lane 1	100	100	100	-	
Defaults - US HCM (Customary)	Exit Lane 1	-	100	100	-	

Lane Movements	- Blockage Calib	ration			
OITE			To Ex	it Leg	
SITE	Exit Lane	South	East	North	West
From: South	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	-	1	1	1
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1
From: East	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	1	-	1	1
Defaults - US HCM (Customary)	Exit Lane 1	1	-	-	1
From: North	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	1	1	-	1
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	-
From: West	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	1	1	1	-
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-

Roundabouts - Opti	ions	
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Diffe	rence

Roundabouts -	Geometry	/									
SITE	Location	Name	Circ. Lanes	Circ. Width	Island Diameter	Inscribed Diameter	Entry Radius	Entry Angle	Raindrop Design	Circ Trans Line	Downstre am Circ Lanes
				ft	ft	ft	ft				
PM 2027 Sand Pit	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-
PM 2027 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-
PM 2027 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-
PM 2027 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-

HCM 2010 Rou	ındabout	Model Parame	eters									
CITE	Lacation	Name		L.Circ:		L.Circ:		L.Circ:		L.Circ:		L.Circ:
SITE	Location	Name	Single	L.Entry	Multi	L.Entry	Single	L.Entry	Domina	ant Lane		ominant
			Dava A	Dava D	Para. A	Dava D	Para. A	Para. B	Dava A	Para. B		ane
PM 2027 Sand	Cauth	0 10101	Para. A			Para. B 0.00091		0.00085	Para. A	0.00085	Para. A	Para. B 0.0009
Pit 2027 Sand	South	Sand Pit Rd	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	2
Defaults - US	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
HCM (Customary)												2
PM 2027 Sand Pit	East	STH 21	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
				4								2
Defaults - US	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
HCM (Customary)												2
PM 2027 Sand Pit	North	Sand Pit Rd	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
				4								_
Defaults - US HCM	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
(Customary)												2
PM 2027 Sand	West	STH 21	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
Pit				4								2
Defaults - US	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009
HCM												2
(Customary)												

HCM 6 Roundabout Model Calibr	ation			
SITE	Location	Name	Model Calib. Factor (HCM6)	Entry/Circ. Flow Adjust. (HCM6)
PM 2027 Sand Pit	South	Sand Pit Rd	1	None
Defaults - US HCM (Customary)	South	RoadName	1	None
PM 2027 Sand Pit	East	STH 21	1	None
Defaults - US HCM (Customary)	East	RoadName	1	None
PM 2027 Sand Pit	North	Sand Pit Rd	1	None
Defaults - US HCM (Customary)	North	RoadName	1	None
PM 2027 Sand Pit	West	STH 21	1	None
Defaults - US HCM (Customary)	West	RoadName	1	None

Pedestrians - Pedestrian Movements									
SITE	Main Crossing/ Slip/Bypass Lane Crossing	Volume ped	Peak Flow %	Flow Scale %	Growth Rate %				
	No Difference								

Pedestrians	- Pedestrian Moveme	ent Data									
SITE	Main Crossing/ Slip/Bypass Lane Crossing		Crossing Distance		Oppng Ped.Fac.	P.Deg. Satn	Walking Speed	App. Trav. Distance		Queue Space	Cr. Setback Distance
			ft	ft			ft/sec	ft	ft	ft	Biotarioo
				No Dif	ference						
Volumes - Vo	olume Data Settings										
SITE	PM 2	2027 Sand	d Pit				Defaults -	US HCM (Customary	/)	
	No Difference										

Volumes - Vehicle Volumes						
		To Exit Leg				
SITE	Movement Class					
		NA				

Volumes - Volume Factors							
SITE	To Approach	Peak Flow Factor %	Flow Scale %	Growth Rate %/vear			
No Difference							

Gap Acceptance - Gap Acceptance Data								
SITE	Opposed Movement	Critical Gap	Follow-up Headway	Minimum Departures	Exiting Flow Effect	% Opp. By Nearest Lane	Opng. Peds (UnSig)	
		sec	sec	veh/min	%	%		
No Difference								

Gap Acceptan	ce - Settings					
		G	Sap Acceptance Optio	ns		
			No Difference			
		Gap Accept	ance Data for Specific	Applications		
SITE		Criti	ical Follow-up) Minimum	Exiting	% Opp. By
		Ga	p Headway	Departures	Flow Effect	Nearest Lane
		se	ec sec	veh/min	%	%
			No Difference			
		Merge Analysis	& Zebra Crossing Ana	llysis Parameters		
					Merge A	nalysis
SITE	Movement Class	Parameter	Zebra Crossing on	Midblock Zebra	[Exit Short Lane	Merge Lane]
			Slip/Bypass Lane	Crossing		
			No Difference			

Vehicle Movement Data - Path Data									
SITE	Turn	Approach Cruise Speed	Exit Cruise Speed	Negotiation Speed	Negotiation Distance	Downstream Distance	Negotiation Radius		
		mph	mph	mph	ft	ft	ft		
			No Difference	e					

Vehicle Movement Data - Calibration										
SITE	Turn	Queue Space ft	Vehicle Length ft	Vehicle Occupancy pers/veh	Turn Ve [Factor	h Effect Radius] ft	Gap Accp Factor	Opng. Veh Factor	Prac. Deg. Of Satn.	
				No Difference	ce					

Site Demand & Sensitivity		
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Difference	

Parameter Settings - Options							
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)					
No Difference							

Parameter Settings - Model Parameters								
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)						
No Difference								

Parameter Settings	s - Cost									
Efficiency Parameters										
SITE	Move	ment Class		Desired Speed	I Lov	Lower Limit of Speed Efficiency				
				mph						
		N	lo Difference							
		Vehicle	e Cost Paramet	ers						
OUTE	M (0)		Ve	h Operating Co	ost	Veh Ti	me Cost			
SITE	Movement Class	Veh Cost Method	[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]			
			\$/Gal			\$/h				
PM 2027 Sand Pit	Light Vehicles (LV)	Operating Cost	2.3	0.7	3	27	0.4			
Defaults - US HCM (Customary)	Light Vehicles (LV)	Operating Cost	2.5	0.7	3	29	0.4			
PM 2027 Sand Pit	Heavy Vehicles (HV)	Operating Cost	2.3	0.7	3	27	0.4			
Defaults - US HCM (Customary)	Heavy Vehicles (HV)	Operating Cost	2.5	0.7	3	29	0.4			

	Cost Options	
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Difference	
	Pedestrian Cost Paramet	ters
SITE		
	Not Applicable	

Parameter Settings - Vehicle Parameters										
SITE	Movement Class	Mass	Parameters Max Power	CO2 to Fuel Rate						
	N- D	lb ••••••••	kW							
	No Di	fference								

Parameter Settings - Fuel Consumption										
SITE	Movement Class	fi	Fuel & Emission N A	Model Parameters B	Beta					
	No	Difference								

Parameter Settings	- CO Emission				
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta
	N	o Difference			

Parameter Settings - HC Emission											
SITE	Movement Class	fi	Fuel & Emission A	Model Parameters B	Beta						
	N	o Difference									

Parameter Settings	- NOx Emission				
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta
	N	o Difference			

Parameter Setting	s - Advanced	
SITE	PM 2027 Sand Pit	Defaults - US HCM (Customary)
	No Diffe	erence

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:54:07 AM
Project(s): N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9

MOVEMENT SUMMARY

▼ Site: 101 [PM 2027 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	vement	Perform	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO¹ [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	n: Sand	Pit Rd												
3	L2	7	3.0	8	3.0	0.071	5.2	LOS A	0.3	6.8	0.51	0.43	0.51	34.8
8	T1	34	3.0	37	3.0	0.071	5.2	LOS A	0.3	6.8	0.51	0.43	0.51	34.7
18	R2	12	3.0	13	3.0	0.071	5.2	LOS A	0.3	6.8	0.51	0.43	0.51	33.7
Appro	oach	53	3.0	58	3.0	0.071	5.2	LOSA	0.3	6.8	0.51	0.43	0.51	34.5
East:	STH 2	1												
1	L2	11	3.0	12	3.0	0.536	8.8	LOS A	3.9	101.0	0.31	0.14	0.31	33.3
6	T1	527	3.0	573	3.0	0.536	8.8	LOS A	3.9	101.0	0.31	0.14	0.31	33.2
16	R2	86	3.0	93	3.0	0.536	8.8	LOS A	3.9	101.0	0.31	0.14	0.31	32.3
Appro	oach	624	3.0	678	3.0	0.536	8.8	LOSA	3.9	101.0	0.31	0.14	0.31	33.1
North	: Sand	Pit Rd												
7	L2	30	3.0	33	3.0	0.083	5.6	LOS A	0.3	7.9	0.54	0.48	0.54	33.5
4	T1	22	3.0	24	3.0	0.083	5.6	LOS A	0.3	7.9	0.54	0.48	0.54	33.4
14	R2	6	3.0	7	3.0	0.083	5.6	LOS A	0.3	7.9	0.54	0.48	0.54	32.5
Appro	oach	58	3.0	63	3.0	0.083	5.6	LOSA	0.3	7.9	0.54	0.48	0.54	33.3
West	: STH 2	<u>!</u> 1												
5	L2	16	3.0	17	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	34.3
2	T1	436	3.0	474	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	34.2
12	R2	10	3.0	11	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	33.2
Appro	oach	462	3.0	502	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	34.2
All Ve	ehicles	1197	3.0	1301	3.0	0.536	7.7	LOSA	3.9	101.0	0.31	0.17	0.31	33.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Project: N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9

LANE SUMMARY

▼ Site: 101 [PM 2027 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Lane Use a	and Per	forman	се										
	DEM. FLO [Total		Сар.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service		95% BACK OF QUEUE [Veh Dist]		Lane Length	Cap. Adj.	Prob. Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Sand	Pit Rd												
Lane 1 ^d	58	3.0	808	0.071	100	5.2	LOSA	0.3	6.8	Full	1600	0.0	0.0
Approach	58	3.0		0.071		5.2	LOSA	0.3	6.8				
East: STH 2	1												
Lane 1 ^d	678	3.0	1266	0.536	100	8.8	LOSA	3.9	101.0	Full	1600	0.0	0.0
Approach	678	3.0		0.536		8.8	LOSA	3.9	101.0				
North: Sand	Pit Rd												
Lane 1 ^d	63	3.0	756	0.083	100	5.6	LOSA	0.3	7.9	Full	1600	0.0	0.0
Approach	63	3.0		0.083		5.6	LOSA	0.3	7.9				
West: STH 2	21												
Lane 1 ^d	502	3.0	1258	0.399	100	6.7	LOSA	2.4	60.2	Full	1600	0.0	0.0
Approach	502	3.0		0.399		6.7	LOSA	2.4	60.2				
Intersection	1301	3.0		0.536		7.7	LOSA	3.9	101.0				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

South: Sand P	it Rd									
Mov.	L2	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From S						Cap.	Satn		SL Ov.	Lane
To Exit:	W	Ν	Е			veh/h	v/c	%	%	No.
Lane 1	8	37	13	58	3.0	808	0.071	100	NA	NA
Approach	8	37	13	58	3.0		0.071			
East: STH 21										
Mov.	L2	T1	R2	Total	%HV		Deg.		Prob.	Ov.
From E						Cap.	Satn		SL Ov.	Lane
To Exit:	S	W	N			veh/h	v/c	%	%	No.
Lane 1	12	573	93	678	3.0	1266	0.536	100	NA	NA
Approach	12	573	93	678	3.0		0.536			

North: Sand F	Pit Rd										
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.	
Lane 1	33	24	7	63	3.0	756	0.083	100	NA	NA	
Approach	33	24	7	63	3.0		0.083				
West: STH 21											
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	17	474	11	502	3.0	1258	0.399	100	NA	NA	
Approach	17	474	11	502	3.0		0.399				
	Total	%HV	Deg.Sat	n (v/c)							
Intersection	1301	3.0		0.536							

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis										
E) Lar Numb	ne	Short Lane Length ft	Opng in Lane	Opposing Flow Rate veh/h pcu/h	Critical Gap sec	Follow-up Headway sec	Lane Flow Rate veh/h	Capacity veh/h	Deg. Satn I v/c	Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied										
Full Length Lane	1	Merge /	Analysis ı	not applied.						
East Exit: STH 21 Merge Type: Not Applied										
Full Length Lane	1	Merge /	Analysis ı	not applied.						
North Exit: Sand Pit Rd Merge Type: Not Applied										
Full Length Lane	1	Merge /	Analysis ı	not applied.						
West Exit: STH 21 Merge Type: Not Applied										
Full Length Lane	1	Merge A	Analysis ı	not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:41 AM
Project: N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9

SITE LAYOUT

♥ Site: 101 [AM 2047 Sand Pit (Site Folder: General)]

Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)

All Movement Classes

♥ Site: 101 [AM 2047 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones. Click and drag popup boxes to move to preferred positions.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:30 AM
Project: Not Saved

INPUT COMPARISON

Site A: 101 [AM 2047 Sand Pit (Site Folder: General)]

₩ Site B:

Intersection - Site Data		
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)
		No Difference

Intersection - Site Pro	perties	
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)
		NA STATE OF THE ST

Intersection -	Approach	& Exit Da	ata								
SITE	Location	Name	Туре	No. of App. Lanes	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) %	Extra Bunching (Network Analysis) %	Exit Distance ft	Approach Control	Area Type Factor
AM 2047 Sand Pit	South	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2047 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2047 Sand Pit	North	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	North	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2047 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-

Movement De	finitions - Included Movement	Classes		
SITE	Included	Name	ID	Model Designation
		No Difference		

Movement Definitions - Origin-Destination Movements								
SITE	To Approach	Turn	OD Mov ID					
	No Difference							
SITE	U-Turn Before Intersection		rn Before Intersection From Signal Analysis					
	No Difference							

Lane Geometry - Lane Configuration												
SITE	Leg Item	Config	Type Contr	ol Slip/	Length Width	Grade			Isla	and		
			,,	Bypass Control			[Front Width				For Ped Stgn	

ft	ft	%	ft	ft
No Differ	ence			

Lane Geometry - La	Lane Geometry - Lane Disciplines									
SITE	To Approach	Turn	Free Queue Distance ft	Movement Class(es)						
			No Difference							

Lane Geometry - Lane Disciplines - Lane Change Data							
SITE	Movement Class	% Lane Change to Left %	% Lane Change to Right %				
	No Difference						

Lane Geom	netry - Lane D	Data									
				Ар	proach La	ane Data					
SITE	Approac Lane		Ratio S	Satn Speed	Capacity Adj			Satn	Short Lane Capacity	Delay Model Param	
		tcu/h	%	mph	%						
					No Differ	ence					
					Merge An	alysis					
SITE	Exit Lane N	Merge Lane Number	Apply Merge Analysis	Merg	, C	Percent Opposing i Short Land %	 ing in Lane	ritical Gap sec	Follow- Headw sec	ay D	Minimum Departures
					No Differ	ence					

Lane Movements	- Flow Proportion	ns			
CITE			To Ex		
SITE	Exit Lane	South	East	North	West
		%	%	%	%
Light Vehicles (LV)					
From: South	App. Lane 1				
AM 2047 Sand Pit	Exit Lane 1	-	100	100	100
Defaults - US HCM	Exit Lane 1	-	_	100	100
(Customary)					
From: East	App. Lane 1				
AM 2047 Sand Pit	Exit Lane 1	100	-	100	100
Defaults - US HCM	Exit Lane 1	100	-	_	100
(Customary)					
From: North	App. Lane 1				
AM 2047 Sand Pit	Exit Lane 1	100	100	-	100
Defaults - US HCM	Exit Lane 1	100	100	-	_
(Customary)					
From: West	App. Lane 1				
AM 2047 Sand Pit	Exit Lane 1	100	100	100	-
Defaults - US HCM	Exit Lane 1	_	100	100	-
(Customary)					
Heavy Vehicles (HV	()				
From: South	App. Lane 1				

AM 2047 Sand Pit	Exit Lane 1	-	100	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	-	-	100	100	
From: East	App. Lane 1					
AM 2047 Sand Pit	Exit Lane 1	100	-	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	-	-	100	
From: North	App. Lane 1					
AM 2047 Sand Pit	Exit Lane 1	100	100	-	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	100	-	-	
From: West	App. Lane 1					
AM 2047 Sand Pit	Exit Lane 1	100	100	100	-	
Defaults - US HCM (Customary)	Exit Lane 1	-	100	100	-	

Lane Movements	- Blockage Calib	ration				
OITE			To Ex			
SITE	Exit Lane	South	East	North	West	
From: South	App. Lane 1					
AM 2047 Sand Pit	Exit Lane 1	-	1	1	1	
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1	
From: East	App. Lane 1					
AM 2047 Sand Pit	Exit Lane 1	1	-	1	1	
Defaults - US HCM (Customary)	Exit Lane 1	1	-	-	1	
From: North	App. Lane 1					
AM 2047 Sand Pit	Exit Lane 1	1	1	-	1	
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	-	
From: West	App. Lane 1					
AM 2047 Sand Pit	Exit Lane 1	1	1	1	-	
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-	
(Oustolliary)						

Roundabouts - Opt	ions	
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)
	No Diff	erence

Roundabouts - Geometry												
SITE	Location	Name	Circ. Lanes	Circ. Width	Island Diameter	Inscribed Diameter	Entry Radius	Entry Angle	Raindrop Design	Circ Trans Line	Downstre am Circ Lanes	
				ft	ft	ft	ft					
AM 2047 Sand Pit	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-	
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-	
AM 2047 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-	
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-	
AM 2047 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-	
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-	
AM 2047 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-	
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-	

HCM 2010 Ro	HCM 2010 Roundabout Model Parameters												
SITE	Location	Name		L.Circ: L.Entry		L.Circ: L.Entry	Multi L.Circ: Single L.Entry			L.Circ: ant Lane		L.Circ: ominant	
			Para. A	Para. B	Para. A	Para. B	Para. A		Para. A	Para. B	La Para. A	ane Para. B	
AM 2047 Sand Pit	South	Sand Pit Rd	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
AM 2047 Sand Pit	East	STH 21	1385	0.00094 4	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
AM 2047 Sand Pit	North	Sand Pit Rd	1385	0.00094	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
AM 2047 Sand Pit	West	STH 21	1385	0.00094 4	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	

			Madal Calib	Final Indiana
SITE	Location	Name	Model Calib. Factor (HCM6)	Entry/Circ. Flow Adjust. (HCM6)
AM 2047 Sand Pit	South	Sand Pit Rd	1	None
Defaults - US HCM (Customary)	South	RoadName	1	None
AM 2047 Sand Pit	East	STH 21	1	None
Defaults - US HCM (Customary)	East	RoadName	1	None
AM 2047 Sand Pit	North	Sand Pit Rd	1	None
Defaults - US HCM (Customary)	North	RoadName	1	None
AM 2047 Sand Pit	West	STH 21	1	None
Defaults - US HCM (Customary)	West	RoadName	1	None

Pedestrians - Pedesti	Pedestrians - Pedestrian Movements										
SITE	Main Crossing/ Slip/Bypass Lane Crossing	Volume ped	Peak Flow %	Flow Scale %	Growth Rate %						
	No Difference										

Pedestrians - Pedestrian Movement Data											
SITE	Main Crossing/ Slip/Bypass Lane Crossing	Mov. ID	Crossing Distance		Oppng Ped.Fac.	P.Deg. Satn	Walking Speed	App. Trav. Distance	Downst. Distance	Queue Space	Cr. Setback Distance
			ft	ft			ft/sec	ft	ft	ft	
				No Dif	ference						
Volumes - Vo	olume Data Settings										
SITE	AM 2	2047 Sar	nd Pit				efaults -	US HCM (Customary	/)	
				No Dif	ference						

Volumes - Vo	Volumes - Vehicle Volumes								
		To Exit Leg							
SITE	Movement Class								
		NA							

Volumes - Volume Factors									
SITE	To Approach	Peak Flow Factor %	Flow Scale %	Growth Rate %/vear					
No Difference									

Gap Acceptance - Gap Acceptance Data										
SITE	Opposed Movement	Critical Gap	Follow-up Headway	Minimum Departures	Exiting Flow Effect	% Opp. By Nearest Lane	Opng. Peds (UnSig)			
		sec	sec	veh/min	%	%				
No Difference										

Gap Accepta	nce - Settings									
Gap Acceptance Options										
No Difference										
Gap Acceptance Data for Specific Applications										
SITE		Criti	ical Follow-up	Minimum	Exiting	% Opp. By				
		Ga	p Headway	Departures	Flow Effect	Nearest Lane				
		se	ec sec	veh/min	%	%				
			No Difference							
		Merge Analysis	& Zebra Crossing Ana	llysis Parameters						
					Merge A	nalysis				
SITE	Movement Class	Parameter	Zebra Crossing on	Midblock Zebra	[Exit Short Lane	Merge Lane]				
		Slip/Bypass Lane Crossing								
			No Difference							

Vehicle Movement Data - Path Data										
SITE	Turn	Approach Cruise Speed	Exit Cruise Speed	Negotiation Speed	Negotiation Distance	Downstream Distance	Negotiation Radius			
		mph	mph	mph	ft	ft	ft			
No Difference										

Vehicle Movement Data - Calibration									
SITE	Turn	Queue Space ft	Vehicle Length ft	Vehicle Occupancy pers/veh	Turn Ve [Factor	h Effect Radius] ft	Gap Accp Factor	Opng. Veh Factor	Prac. Deg. Of Satn.
No Difference									

Site Demand & Sensitivity				
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)		
	No Differe	ence		

Parameter Settings - Options				
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)		
No Difference				

Parameter Settings - Model Parameters				
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)		
No Difference				

Parameter Settings - Cost							
		Effici	ency Parametei	rs			
SITE	Move	ment Class		Desired Speed		Lower Limit of Speed Efficiency for TTI	
				mph			
		N	lo Difference				
		Vehicl	e Cost Paramet	ers			
OUTE			Ve	h Operating Co	ost	Veh Ti	me Cost
SITE	Movement Class	Veh Cost Method	[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost 1	[Avg. Income	Time Value Factor]
			\$/Gal			\$/h	
AM 2047 Sand Pit	Light Vehicles (LV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Light Vehicles (LV)	Operating Cost	2.5	0.7	3	29	0.4
AM 2047 Sand Pit	Heavy Vehicles (HV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Heavy Vehicles (HV)	Operating Cost	2.5	0.7	3	29	0.4

	Cost Options	3		
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)		
No Difference				
Pedestrian Cost Parameters				
SITE				
Not Applicable				

Parameter Settings - Vehicle Parameters				
		Vehicle	Parameters	CO2 to
SITE	Movement Class	Mass	Max Power	Fuel Rate
		lb	kW	
No Difference				

Parameter Settings - Fuel Consumption					
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta
No Difference					

Parameter Settings - CO Emission					
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta
No Difference					

Parameter Settings - HC Emission					
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta
No Difference					

Parameter Settings - NOx Emission					
SITE	Movement Class	fi	Fuel & Emission A	Model Parameters B	Beta
No Difference					

Parameter Settings - Advanced				
SITE	AM 2047 Sand Pit	Defaults - US HCM (Customary)		
No Difference				

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:29:12 AM
Project(s):

MOVEMENT SUMMARY

▼ Site: 101 [AM 2047 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO' [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	ПV] %	veh/h	пv] %	v/c	sec		veh	ft		Nate	Cycles	mph
South	n: Sand	Pit Rd												
3	L2	7	3.0	8	3.0	0.050	6.1	LOS A	0.2	4.5	0.58	0.53	0.58	34.0
8	T1	19	3.0	21	3.0	0.050	6.1	LOS A	0.2	4.5	0.58	0.53	0.58	34.0
18	R2	4	3.0	4	3.0	0.050	6.1	LOS A	0.2	4.5	0.58	0.53	0.58	33.0
Appro	oach	30	3.0	33	3.0	0.050	6.1	LOSA	0.2	4.5	0.58	0.53	0.58	33.8
East:	STH 2	1												
1	L2	7	3.0	8	3.0	0.248	4.9	LOS A	1.2	31.2	0.14	0.05	0.14	35.3
6	T1	276	3.0	300	3.0	0.248	4.9	LOS A	1.2	31.2	0.14	0.05	0.14	35.2
16	R2	14	3.0	15	3.0	0.248	4.9	LOS A	1.2	31.2	0.14	0.05	0.14	34.2
Appro	oach	297	3.0	323	3.0	0.248	4.9	LOSA	1.2	31.2	0.14	0.05	0.14	35.2
North	: Sand	Pit Rd												
7	L2	103	3.0	112	3.0	0.201	5.6	LOS A	0.9	21.9	0.45	0.35	0.45	33.4
4	T1	64	3.0	70	3.0	0.201	5.6	LOS A	0.9	21.9	0.45	0.35	0.45	33.3
14	R2	16	3.0	17	3.0	0.201	5.6	LOS A	0.9	21.9	0.45	0.35	0.45	32.4
Appro	oach	183	3.0	199	3.0	0.201	5.6	LOSA	0.9	21.9	0.45	0.35	0.45	33.3
West	: STH 2	:1												
5	L2	5	3.0	5	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	32.5
2	T1	583	3.0	634	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	32.4
12	R2	16	3.0	17	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	31.5
Appro	oach	604	3.0	657	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	32.4
All Ve	hicles	1114	3.0	1211	3.0	0.587	8.1	LOSA	4.1	105.7	0.43	0.31	0.43	33.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:30 AM

Project: Not Saved

LANE SUMMARY

▼ Site: 101 [AM 2047 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Lane Use and Performance													
	DEM. FLO [Total		Cap.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	95% BAC QUEI [Veh		Lane Config	Lane Length	Cap. Adj.	Prob. Block.
	veh/h	% -	veh/h	v/c	%	sec			ft		ft	%	%
South: Sand	Pit Rd												
Lane 1 ^d	33	3.0	648	0.050	100	6.1	LOSA	0.2	4.5	Full	1600	0.0	0.0
Approach	33	3.0		0.050		6.1	LOSA	0.2	4.5				
East: STH 2	1												
Lane 1 ^d	323	3.0	1301	0.248	100	4.9	LOSA	1.2	31.2	Full	1600	0.0	0.0
Approach	323	3.0		0.248		4.9	LOSA	1.2	31.2				
North: Sand	Pit Rd												
Lane 1 ^d	199	3.0	990	0.201	100	5.6	LOSA	0.9	21.9	Full	1600	0.0	0.0
Approach	199	3.0		0.201		5.6	LOSA	0.9	21.9				
West: STH 2	21												
Lane 1 ^d	657	3.0	1119	0.587	100	10.6	LOS B	4.1	105.7	Full	1600	0.0	0.0
Approach	657	3.0		0.587		10.6	LOS B	4.1	105.7				
Intersection	1211	3.0		0.587		8.1	LOS A	4.1	105.7				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

South: Sand P	South: Sand Pit Rd										
Mov.	L2	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From S						Cap.	Satn		SL Ov.	Lane	
To Exit:	W	Ν	Е			veh/h	v/c	%	%	No.	
Lane 1	8	21	4	33	3.0	648	0.050	100	NA	NA	
Approach	8	21	4	33	3.0		0.050				
East: STH 21											
Mov.	L2	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From E						Cap.	Satn		SL Ov.	Lane	
To Exit:	S	W	Ν			veh/h	v/c	%	%	No.	
Lane 1	8	300	15	323	3.0	1301	0.248	100	NA	NA	
Approach	8	300	15	323	3.0		0.248				

North: Sand P	it Rd										
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.	
Lane 1	112	70	17	199	3.0	990	0.201	100	NA	NA	
Approach	112	70	17	199	3.0		0.201				
West: STH 21											
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	5	634	17	657	3.0	1119	0.587	100	NA	NA	
Approach	5	634	17	657	3.0	-	0.587				
	Total	%HV	Deg.Sat	n (v/c)							
Intersection	1211	3.0		0.587							

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis										
E) Lar Numb	ne	Short Lane Length ft	Opng in Lane	Opposing Flow Rate veh/h pcu/h	Critical Gap sec	Follow-up Headway sec	Lane Flow Rate veh/h	Capacity veh/h	Deg. Satn I v/c	Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied										
Full Length Lane	1	Merge /	Analysis ı	not applied.						
East Exit: STH 21 Merge Type: Not Applied										
Full Length Lane	1	Merge /	Analysis ı	not applied.						
North Exit: Sand Pit Rd Merge Type: Not Applied										
Full Length Lane	1	Merge /	Analysis ı	not applied.						
West Exit: STH 21 Merge Type: Not Applied										
Full Length Lane	1	Merge A	Analysis ı	not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:30 AM
Project: Not Saved

SITE LAYOUT

♥ Site: 101 [PM 2047 Sand Pit (Site Folder: General)]

Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)

All Movement Classes

♥ Site: 101 [PM 2047 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones. Click and drag popup boxes to move to preferred positions.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:38 AM
Project: N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9

INPUT COMPARISON

Site A: 101 [PM 2047 Sand Pit (Site Folder: General)]

₩ Site B:

Intersection - Site Data		
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)
	No Differenc	e

Intersection - Site Properties										
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)								
NA										

Intersection - A	Intersection - Approach & Exit Data														
SITE	Location	Name	Туре	No. of App. Lanes	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) %	Extra Bunching (Network Analysis) %	Exit Distance ft	Approach Control	Area Type Factor				
PM 2047 Sand Pit	South	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-				
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-				
PM 2047 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-				
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-				
PM 2047 Sand Pit	North	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-				
Defaults - US HCM (Customary)	North	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-				
PM 2047 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-				
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-				

Movement Definitions - Included Movement Classes									
SITE	Included	Name	ID	Model Designation					
		No Difference		Ŭ					

Movement Definitions - Origin-Destination Movements										
SITE	To Approach	Turn	OD Mov ID							
	No Difference									
SITE	U-Turn Before Intersection		ırn Before Intersection From Signal Analysis							
	No Difference									

Lane Geometry - Lane Configuration												
SITE	Leg Item	Config	Type Control	Slip/	Length Width	Grade			Isla	and		
			71	Bypass Control				Back Width				Short Strip Isl]

ft	ft	%	ft	ft
No Differ	ence			

Lane Geometry - Lane Disciplines										
SITE	To Approach	Turn	Free Queue Distance ft	Movement Class(es)						
			No Difference							

Lane Geometry - Lane Disciplines - Lane Change Data									
SITE	Movement Class	% Lane Change to Left %	% Lane Change to Right %						
	No Difference								

Lane Geom	netry - Lane I	Data										
Approach Lane Data												
SITE	Approa Lane	e Satn Flow	Ratio S	Satn Speed	Capacity Adj				Apply Satn Flow Est	Short Lane Capacity	Delay Model Param	
		tcu/h	%	mph	%							
					No Differ	ence						
					Merge An	alysis						
SITE	Exit Lane	Merge Lane Number	Apply Merge Analysis	Merg	,, C	Percent Opposing i Short Land		ing in Lane	ritical Gap sec	Follow- Headw sec	ay De	dinimum epartures
					No Differ	ence						

Lane Movements	- Flow Proportion	ıs			
CITE			To Ex		
SITE	Exit Lane	South	East	North	West
		%	%	%	%
Light Vehicles (LV)					
From: South	App. Lane 1				
PM 2047 Sand Pit	Exit Lane 1	-	100	100	100
Defaults - US HCM	Exit Lane 1	-	_	100	100
(Customary)					
From: East	App. Lane 1				
PM 2047 Sand Pit	Exit Lane 1	100	-	100	100
Defaults - US HCM	Exit Lane 1	100	-	_	100
(Customary)					
From: North	App. Lane 1				
PM 2047 Sand Pit	Exit Lane 1	100	100	-	100
Defaults - US HCM	Exit Lane 1	100	100	-	_
(Customary)					
From: West	App. Lane 1				
PM 2047 Sand Pit	Exit Lane 1	100	100	100	-
Defaults - US HCM	Exit Lane 1	_	100	100	-
(Customary)					
Heavy Vehicles (HV)				
From: South	App. Lane 1				

PM 2047 Sand Pit	Exit Lane 1	-	100	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	-	-	100	100	
From: East	App. Lane 1					
PM 2047 Sand Pit	Exit Lane 1	100	-	100	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	-	-	100	
From: North	App. Lane 1					
PM 2047 Sand Pit	Exit Lane 1	100	100	-	100	
Defaults - US HCM (Customary)	Exit Lane 1	100	100	-	-	
From: West	App. Lane 1					
PM 2047 Sand Pit	Exit Lane 1	100	100	100	-	
Defaults - US HCM (Customary)	Exit Lane 1	-	100	100	-	

Lane Movements - Blockage Calibration									
OITE			To Ex	it Leg					
SITE	Exit Lane	South	East	North	West				
From: South	App. Lane 1								
PM 2047 Sand Pit	Exit Lane 1	-	1	1	1				
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1				
From: East	App. Lane 1								
PM 2047 Sand Pit	Exit Lane 1	1	-	1	1				
Defaults - US HCM (Customary)	Exit Lane 1	1	-	-	1				
From: North	App. Lane 1								
PM 2047 Sand Pit	Exit Lane 1	1	1	-	1				
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	-				
From: West	App. Lane 1								
PM 2047 Sand Pit	Exit Lane 1	1	1	1	-				
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-				

Roundabouts - Opt	ions	
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)
	No Differ	rence

Roundabouts - Geometry													
SITE	Location	Name	Circ. Lanes	Circ. Width		Inscribed Diameter	Entry Radius	Entry Angle	Raindrop Design	Circ Trans Line	Downstre am Circ Lanes		
				ft	ft	ft	ft						
PM 2047 Sand Pit	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-		
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-		
PM 2047 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-		
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-		
PM 2047 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-		
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-		
PM 2047 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-		
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-		

HCM 2010 Ro	HCM 2010 Roundabout Model Parameters												
SITE	Location	Name		L.Circ: L.Entry		L.Circ: L.Entry		L.Circ: L.Entry		L.Circ: ant Lane		L.Circ: ominant	
5.1.2			Sirigle	L.EIIII y	IVIUILI	L.⊑⊓u y	Sirigle	L.⊑IIII y	DOMINI	ani Lane		ane	
			Para. A	Para. B	Para. A	Para. B							
PM 2047 Sand Pit	South	Sand Pit Rd	1385	0.00094 4	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
PM 2047 Sand Pit	East	STH 21	1385	0.00094 4	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
PM 2047 Sand Pit	North	Sand Pit Rd	1385	0.00094 4	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
PM 2047 Sand Pit	West	STH 21	1385	0.00094 4	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	
Defaults - US HCM (Customary)	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	0.0009	

HCM 6 Roundabout Model Calibr	ation			
SITE	Location	Name	Model Calib. Factor (HCM6)	Entry/Circ. Flow Adjust. (HCM6)
PM 2047 Sand Pit	South	Sand Pit Rd	1	None
Defaults - US HCM (Customary)	South	RoadName	1	None
PM 2047 Sand Pit	East	STH 21	1	None
Defaults - US HCM (Customary)	East	RoadName	1	None
PM 2047 Sand Pit	North	Sand Pit Rd	1	None
Defaults - US HCM (Customary)	North	RoadName	1	None
PM 2047 Sand Pit	West	STH 21	1	None
Defaults - US HCM (Customary)	West	RoadName	1	None

Pedestrians - Pedestrian Movements											
SITE	Main Crossing/ Slip/Bypass Lane Crossing	Volume ped	Peak Flow %	Flow Scale %	Growth Rate %						
	No Diffe	erence									

Pedestrians	- Pedestrian Moveme	ent Data	3										
SITE	Main Crossing/ Slip/Bypass Lane Crossing	Mov. ID	Crossing Distance ft		Oppng Ped.Fac.	P.Deg. Satn	Walking Speed ft/sec	App. Trav. Distance ft	Downst. Distance ft	Queue Space ft	Cr. Setback Distance		
				No Dif	ference								
Volumes - V	Volumes - Volume Data Settings												
SITE	PM 2	2047 Sar	nd Pit			_	efaults -	US HCM ((Customary	/)			
				No Dif	ference								

Volumes - Vehicle Volumes					
SITE	Movement Class	To Exit Leg			
NA					

Volumes - Volume Factors						
SITE	To Approach	Peak Flow Factor	Flow Scale	Growth Rate		
	7.55	%	%	%/year		
No Difference						

Gap Acceptance - Gap Acceptance Data							
SITE	Opposed Movement	Critical Gap	Follow-up Headway	Minimum Departures	Exiting Flow Effect	% Opp. By Nearest Lane	Opng. Peds (UnSig)
		sec	sec	veh/min	%	%	
No Difference							

Gap Acceptan	ce - Settings							
		G	Sap Acceptance Optio	ns				
			No Difference					
		Gap Accept	ance Data for Specific	Applications				
SITE		Criti	ical Follow-up) Minimum	Exiting	% Opp. By		
		Ga	p Headway	Departures	Flow Effect	Nearest Lane		
		se	ec sec	veh/min	%	%		
	No Difference							
	Merge Analysis & Zebra Crossing Analysis Parameters							
					Merge A	nalysis		
SITE	Movement Class	Parameter	Zebra Crossing on	Midblock Zebra	[Exit Short Lane	Merge Lane]		
			Slip/Bypass Lane	Crossing				
			No Difference					

Vehicle Movement Data - Path Data								
SITE	Turn	Approach Cruise Speed	Exit Cruise Speed	Negotiation Speed	Negotiation Distance	Downstream Distance	Negotiation Radius	
		mph	mph	mph	ft	ft	ft	
No Difference								

Vehicle Movement Data - Calibration									
SITE	Turn	Queue Space ft	Vehicle Length ft	Vehicle Occupancy pers/veh	Turn Ve [Factor	h Effect Radius] ft	Gap Accp Factor	Opng. Veh Factor	Prac. Deg. Of Satn.
No Difference									

Site Demand & Sensitivity		
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)
	No Difference	

Parameter Settings - Options						
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)				
No Difference						

Parameter Settings - Model Parameters							
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)					
No Difference							

Parameter Settings - Cost								
	Efficiency Parameters							
SITE	Move	ment Class		Desired Speed		Lower Limit of Speed Efficiency for TTI		
				mph				
		N	lo Difference					
		Vehicl	e Cost Paramet	ers				
OUTE			Ve	h Operating Co	ost	Veh Ti	me Cost	
SITE Movement Class	Veh Cost Method	[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]		
			\$/Gal			\$/h		
PM 2047 Sand Pit	Light Vehicles (LV)	Operating Cost	2.3	0.7	3	27	0.4	
Defaults - US HCM (Customary)	Light Vehicles (LV)	Operating Cost	2.5	0.7	3	29	0.4	
PM 2047 Sand Pit	Heavy Vehicles (HV)	Operating Cost	2.3	0.7	3	27	0.4	
Defaults - US HCM (Customary)	Heavy Vehicles (HV)	Operating Cost	2.5	0.7	3	29	0.4	

	Cost Options						
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)					
	No Difference						
	Pedestrian Cost Paramete	ers					
SITE							
	Not Applicable						

Parameter Settings - Vehicle Parameters						
		Vehicle	Parameters	CO2 to		
SITE	Movement Class	Mass	Max Power	Fuel Rate		
		lb	kW			
No Difference						

Parameter Settings - Fuel Consumption											
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta						
	No	Difference									

Parameter Settings - CO Emission											
SITE	Movement Class	fi	Fuel & Emission l A	Model Parameters B	Beta						
	No	Difference									

Parameter Settings -	HC Emission				
SITE	Movement Class	fi	Fuel & Emission I A	Model Parameters B	Beta
	N	o Difference			

Parameter Settings - NOx Emission											
SITE	Movement Class	fi	Fuel & Emission l A	Model Parameters B	Beta						
	No	Difference									

Parameter Settings	Parameter Settings - Advanced													
SITE	PM 2047 Sand Pit	Defaults - US HCM (Customary)												
	No Diffe	erence												

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:56:30 AM
Project(s): N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9

MOVEMENT SUMMARY

▼ Site: 101 [PM 2047 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	vement	Perforr	nance										
Mov ID	Turn	INP VOLU [Total	JMES HV]	DEM/ FLO' [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUE [Veh.	Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
Sout	h: Sand	veh/h Pit Rd	%	veh/h	%	v/c	sec		veh	ft				mph
3	L2	9	3.0	10	3.0	0.098	5.6	LOS A	0.4	9.3	0.53	0.47	0.53	34.6
8	 T1	47	3.0	51	3.0	0.098	5.6	LOSA	0.4	9.3	0.53	0.47	0.53	34.5
18	R2	14	3.0	15	3.0	0.098	5.6	LOS A	0.4	9.3	0.53	0.47	0.53	33.5
Appr	oach	70	3.0	76	3.0	0.098	5.6	LOS A	0.4	9.3	0.53	0.47	0.53	34.3
East	STH 2	1												
1	L2	13	3.0	14	3.0	0.585	9.8	LOS A	4.6	117.8	0.39	0.21	0.39	32.8
6	T1	547	3.0	595	3.0	0.585	9.8	LOS A	4.6	117.8	0.39	0.21	0.39	32.7
16	R2	107	3.0	116	3.0	0.585	9.8	LOS A	4.6	117.8	0.39	0.21	0.39	31.8
Appr	oach	667	3.0	725	3.0	0.585	9.8	LOSA	4.6	117.8	0.39	0.21	0.39	32.6
North	n: Sand	Pit Rd												
7	L2	36	3.0	39	3.0	0.111	6.0	LOS A	0.4	10.5	0.56	0.52	0.56	33.4
4	T1	31	3.0	34	3.0	0.111	6.0	LOS A	0.4	10.5	0.56	0.52	0.56	33.3
14	R2	8	3.0	9	3.0	0.111	6.0	LOS A	0.4	10.5	0.56	0.52	0.56	32.4
Appr	oach	75	3.0	82	3.0	0.111	6.0	LOS A	0.4	10.5	0.56	0.52	0.56	33.2
West	:: STH 2	:1												
5	L2	21	3.0	23	3.0	0.432	7.3	LOS A	2.6	67.4	0.31	0.16	0.31	34.0
2	T1	458	3.0	498	3.0	0.432	7.3	LOS A	2.6	67.4	0.31	0.16	0.31	33.9
12	R2	12	3.0	13	3.0	0.432	7.3	LOS A	2.6	67.4	0.31	0.16	0.31	33.0
Appr	oach	491	3.0	534	3.0	0.432	7.3	LOS A	2.6	67.4	0.31	0.16	0.31	33.9
All V	ehicles	1303	3.0	1416	3.0	0.585	8.4	LOSA	4.6	117.8	0.38	0.22	0.38	33.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Project: N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9

LANE SUMMARY

Site: 101 [PM 2047 Sand Pit (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Lane Use a	and Per	forman	се										
	DEM. FLO [Total		Cap.	Deg. Satn	Lane Util.	Aver. Delay	Level of Service	95% BA0 QUEI [Veh		Lane Config	Lane Length	Cap. Adj.	Prob. Block.
	veh/h	% -	veh/h	v/c	%	sec		<u> </u>	ft		ft	%	%
South: Sand	Pit Rd												
Lane 1 ^d	76	3.0	780	0.098	100	5.6	LOSA	0.4	9.3	Full	1600	0.0	0.0
Approach	76	3.0		0.098		5.6	LOSA	0.4	9.3				
East: STH 2	1												
Lane 1 ^d	725	3.0	1240	0.585	100	9.8	LOSA	4.6	117.8	Full	1600	0.0	0.0
Approach	725	3.0		0.585		9.8	LOSA	4.6	117.8				
North: Sand	Pit Rd												
Lane 1 ^d	82	3.0	737	0.111	100	6.0	LOSA	0.4	10.5	Full	1600	0.0	0.0
Approach	82	3.0		0.111		6.0	LOSA	0.4	10.5				
West: STH 2	21												
Lane 1 ^d	534	3.0	1236	0.432	100	7.3	LOSA	2.6	67.4	Full	1600	0.0	0.0
Approach	534	3.0		0.432		7.3	LOSA	2.6	67.4				
Intersection	1416	3.0		0.585		8.4	LOS A	4.6	117.8				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

South: Sand F	Pit Rd									
Mov.	L2	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From S						Cap.	Satn		SL Ov.	Lane
To Exit:	W	Ν	Е			veh/h	v/c	%	%	No.
Lane 1	10	51	15	76	3.0	780	0.098	100	NA	NA
Approach	10	51	15	76	3.0		0.098			
East: STH 21										
Mov.	L2	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From E						Сар.	Satn	Util.	SL Ov.	Lane
To Exit:	S	W	Ν			veh/h	v/c	%	%	No.
Lane 1	14	595	116	725	3.0	1240	0.585	100	NA	NA
Approach	14	595	116	725	3.0		0.585			

North: Sand F	Pit Rd										
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	%HV	Cap. veh/h	Deg. Satn v/c		Prob. SL Ov. %	Ov. Lane No.	
Lane 1	39	34	9	82	3.0	737	0.111	100	NA	NA	
Approach	39	34	9	82	3.0		0.111				
West: STH 21											
Mov. From W	L2 N	T1 E	R2 S	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
To Exit:				504	2.0						
Lane 1	23	498	13	534	3.0	1236	0.432	100	NA	NA	
Approach	23	498	13	534	3.0		0.432				
	Total	%HV	Deg.Sati	n (v/c)							
Intersection	1416	3.0		0.585							

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis									
E) Lar Numb	ne	Short Lane Length ft	Opng in Lane	Opposing Flow Rate veh/h pcu/h	Critical Gap sec	Follow-up Headway sec	Capacity veh/h	Deg. Satn I v/c	Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied									
Full Length Lane	1	Merge /	Analysis ı	not applied.					
East Exit: STH 21 Merge Type: Not Applied									
Full Length Lane	1	Merge /	Analysis ı	not applied.					
North Exit: Sand Pit Rd Merge Type: Not Applied									
Full Length Lane	1	Merge /	Analysis ı	not applied.					
West Exit: STH 21 Merge Type: Not Applied									
Full Length Lane	1	Merge A	Analysis ı	not applied.					

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:38 AM
Project: N:\3001091.00\Traffic\Analysis\Sand Pit Rd\Roundabout\Sand Pit Rd.sip9