Project and Analyst Information:

Project ID:	6180-30-00
Project Type:	State Highway
Location:	STH 21 and Sand
	Town of Omro
	Winnebago
	NE Region
Analyst:	Camie Ferrier
Agency:	Westwood Infr
Date:	March 31, 202
ackground Information:	

Project Need:	Safety
Project Objective(s):	The project objective is to improve the safety at the intersection of STH 21 and Sand Pit Road.
Additional	The intersection of STH 21 and Sand Pit Road is included in a resurfacing project of STH 21, which Information: begins south of Structure B-70-0051 within the City of Omro and continues to approximately Leonard Point Road.
The existing form of traffic control is a minor road stop on Sand Pit Road while STH 21 has free flow traffic. The intersection geometry involves EB and WB both having a designated right turn lane while the left turn and through movements share a lane. NB and SB both have a single lane approach. The speed limit is 55 mph on STH 21 and 45 mph on Sand Pit Road.	

Existing Crash Information:

Observed Crash History:

Years: 2015-2019

Crash Type	Fatal	Injury A	Injury B	Injury C	KABC	PDO	Total
Sideswipe				1	1	1	2
STH 21 Left Turn				1	1		1
Run off Road			1		1		1
STH 21 Rear End while turning left			4	3	7	2	9
Total	0	0	5	5	10	3	13

Injury A - Suspected Serious Injury
Injury B - Suspected Minor Injury
Injury C - Possible Injury
KABC - Fatal (K) and Injury A, B and C
PDO - Property Damage Only

Crash Trends:

Left turning vehicles on STH 21 appear to be a factor in 13 of the 15 crashes. STH 21 through traffic rear ends traffic that is planning to turn left and left turning traffic from STH 21 fails to yield to oncoming traffic.

Contributing Factors:
Currently, left turn lanes do not exist on STH 21. Another factor may be difficulty selecting adequate gaps when crossing or turning left.

Additional Modes of Transportation:

Mode	Need? Yes/No	Nearby Generators and Existing Facilities	Volume	
		\#		Unit
PED/BIKE	Yes	None	N/A	
OSOW	Yes	None		vph

(add more rows as needed)
Other Information: STH 21 in the area of this project is recommended to be part of the Oshkosh MPO Regional Bicycle \& Pedestrian Network as shown in the Appleton (Fox Cities) Transportation Management Area \& Oshkosh Metropolitan Planning Organization Bicycle and Pedestrian Plan - 2014.

STH 21 is an OSOW truck route and High Clearance Route. Minimum 20 foot vertical clearance required for new vertical elements such as sign structures, sign bridges, signals and lighting.

Summary Tables:

Descriptions:

Alt.	Traffic Control	Description of Alternative
1	Minor Road Stop Control with Slotted Left turns on Major Road	Maintain two-way stop control, with Sand Pit Road being stop controlled. Install dedicated left turn lanes on STH 21.
2	Roundabout	Install a roundabout at the intersection of STH 21 and Sand Pit Road.

Costs and Impacts:

Alt.	Traffic Control	Construction Cost	Real Estate Impacts			Environmental Impacts	
			\# Build	\# Acres	Cost	Impact Type	\# Acres
	Minor Road Stop Control with Slotted Left turns on Major Road		N/A	0.07	$\$ 1,400$	Wetland	0
2	Roundabout	$\$ 2,000,000$	N/A	0.731	$\$ 34,000$	Wetland	0

Safety Performance:

Alt.	Traffic Control	Analysis Period	KABC	PDO	Total
-	Existing Conditions	$2014-2019$	11	4	15
-	Future No-Build	$2027-2036$	4.918	11.153	16.071
1	Minor Road Stop Control with Slotted Left turns on Major Road	$2027-2036$	2.557	5.800	8.357
2	Roundabout	$2027-2036$	2.965	18.645	21.610

Safety performance results are from the Safety Certification Document, dated 8-6-2020, signed 9-14-2020. Analysis method: Interactive Highway Safety Design Model

Recommendation:
Alternative:
Influencing
Factors:

Existing \& Future No-Build Conditions:

Practical Feasibility:

Public Opinion:	Concerns with safety have been expressed by local officials. A public involvement meeting is scheduled to occur in 2021.
Business Impacts:	None
ROW Impacts:	None
Utility Impacts:	None
Cost Estimate:	\$0
Additional Info:	None

Safety Analysis:
Left turning vehicles on STH 21 appear to be a factor in 13 of the 15 crashes. STH 21 through traffic rear ends traffic that is planning to turn left and left turning traffic from STH 21 fails to yield to oncoming traffic.

Currently, left turn lanes do not exist on STH 21. Another factor may be difficulty selecting adequate gaps when crossing or turning left.

Conflict Points:	EB and WB left turns conflicting with opposing through traffic. NB and SB left turns conflicting with EB and WB traffic.
Vulnerable Users:	N/A
Additional Info:	N/A

Safety Performance Measures:

	Analysis Period	KABC	PDO	Total
Existing Conditions	$2014-2019$	11	4	15
Future No-Build	$2027-2036$	4.918	11.153	16.071

Operational Analysis:

Utilizing traffic counts from October 21, 2019, traffic signal warrants were evaluated for the intersection of STH 21 and Sand pit Road. The signal warrant analysis showed that traffic signals were not warranted at the intersection, therefore a traffic signal alternative was eliminated from consideration.
There are field entrances located on the north leg of Sand Pit Road at approximately 170' north of the intersection. The southbound queue of 165^{\prime} in 2047 approaches the first field entrance. There is a commercial driveway on the south leg of Sand Pit Road at approximately 185 ' south of the intersection. The northbound queue does not impact this driveway.

Additional Capacity:	None
Railroad Impacts:	None
Additional Info:	In 2047, the southbound leg experiences a LOS of F in the am and pm peak hours and the northbound leg experiences a LOS of E in the pm peak hour.

Operational Performance Measures:

Year: 2027	Existing Conditions											
AM Peak	EB			WB			NB			SB		
	L/T	-	R	L/T	-	R	-	All	-	-	All	-
\# Lanes	1		1	1		1		1			1	
LOS	A			A				C			E	
Delay (s)	7.9			8.8				20.2			37.8	
v/c	0.00			0.01				0.10			0.60	
Queue (ft.)	0			0				7.5			87.5	
Storage (ft.)												
PM Peak	EB			WB			NB			SB		
	L/T	-	R	L/T	-	R	-	All	-	-	All	-
\# Lanes	1		1	1		1		1			1	
LOS	A			A				D			E	
Delay (s)	9.0			8.4				29.5			37.1	
v/c	0.02			0.01				0.28			0.36	
Queue (ft.)	2.5			0				27.5			37.5	
Storage (ft.)												
Additional Information												

Year: 2047	Future No-Build Conditions (Design Year)											
AM Peak	EB			WB			NB			SB		
	L/T	-	R	L/T	-	R	-	All	-	-	All	-
\# Lanes	1		1	1		1		1			1	
LOS	A			A				C			F	
Delay (s)	7.9			8.9				22.9			69.0	
v/c	0.00			0.01				0.14			0.84	
Queue (ft.)	0			0				12.5			165	
Storage (ft.)												
PM Peak	EB			WB			NB			SB		
	L/T	-	R	L/T	-	R	-	All	-	-	All	-
\# Lanes	1		1	1		1		1			1	
LOS	A			A				E			F	
Delay (s)	9.2			8.5				40.8			56.9	
v/c	0.03			0.01				0.44			0.56	
Queue (ft.)	2.5			0				50			70	
Storage (ft.)												
Additional Information												

Alt. 1: Minor Road Stop Control with Slotted Left turns on Major Road:

Practical Feasibility:

Public Opinion:	A public involvement meeting is scheduled in 2021.
Business Impacts:	None
ROW Impacts:	0.07 Acres $(\$ 1,400)$
Utility Impacts:	Unknown
Cost Estimate:	$\$ 1,630,000$
Additional Info:	None

Safety Analysis:

Crash Trend(s) being Improved with Alt.:	The addition of slotted left turn lanes on STH 21 would address crashes related to left turning vehicles and rear end crashes.
Geometric Concerns:	Due to the addition of left turn lanes, sideroad cross traffic will have additional travel length to cross STH 21 or turn left onto STH 21.
Additional Info:	None

Safety Performance Measures:

	Analysis Period	KABC	PDO	Total
Existing Conditions	$2014-2019$	11	4	15
Future No-Build	$2027-2036$	4.918	11.153	16.071
Alt. 1: Minor Road Stop Control with Slotted Left turns on Major Road:	$2027-2036$	2.557	5.800	8.357

Operational Analysis:

Warrant Analysis:	N/A
Queue Impacts:	There are field entrances located on the north leg of Sand Pit Road at approximately 170' north of the intersection. The southbound queue of 165' in 2047 approaches the first field entrance. There is a commercial driveway on the south leg of Sand Pit Road at approximately 185^{\prime} south of the intersection. The northbound queue does not impact this driveway.
Additional Capacity:	None
Railroad Impacts:	None
Additional Info:	In 2047, the southbound leg experiences a LOS of F in the am and pm peak hours and the northbound leg experiences a LOS of E in the pm peak hour.

Operational Performance Measures:

Year: 2027	Alt. 1: Minor Road Stop Control with Slotted Left turns on Major Road											
AM Peak	EB			WB			NB			SB		
	L	T	R	L	T	R	-	All	-	-	All	-
\# Lanes	1	1	1	1	1	1		1			1	
LOS	A			A				C			E	
Delay (s)	7.9			8.8				20.1			37.6	
v/c	0.00			0.01				0.10			0.60	
Queue (ft.)	0			0				7.5			87.5	
Storage (ft.)	300			300								
PM Peak	EB			WB			NB			SB		
	L	T	R	L	T	R	-	All	-	-	All	-
\# Lanes	1	1	1	1	1	1		1			1	
LOS	A			A				D			E	
Delay (s)	9.0			8.4				29.1			36.6	
v/c	0.02			0.01				0.28			0.36	
Queue (ft.)	2.5			0.0				27.5			37.5	
Storage (ft.)	300			300								
Additional Information												

Year: 2047	Alt. 1: Minor Road Stop Control with Slotted Left turns on Major Road											
AM Peak	EB			WB			NB			SB		
	L	T	R	L	T	R	-	All	-	-	All	-
\# Lanes	1	1	1	1	1	1		1			1	
LOS	A			A				C			F	
Delay (s)	7.9			8.9				22.8			68.3	
v/c	0.00			0.01				0.14			0.84	
Queue (ft.)	0			0				12.5			165	
Storage (ft.)	300			300								
PM Peak	EB			WB			NB			SB		
	L	T	R	L	T	R	-	All	-	-	All	-
\# Lanes	1	1	1	1	1	1		1			1	
LOS	A			A				E			F	
Delay (s)	9.2			8.5				39.8			55.2	
v/c	0.03			0.01				0.43			0.55	
Queue (ft.)	2.5			0				50			67.5	
Storage (ft.)	300			300								
Additional Information												

Alt. 2: Roundabout:
Practical Feasibility:

Public Opinion:	A public involvement meeting is scheduled in 2021.
Business Impacts:	Roundabout is designed to accommodate OSOW vehicles. There are no impacts to businesses.
ROW Impacts:	0.731 Acres, $\$ 34,000$
Utility Impacts:	Unknown
Cost Estimate:	$\$ 2,000,000$
Additional Info:	None

Safety Analysis:

Crash Trend(s) being Improved with Alt.:	The installation of a roundabout at the intersection of STH 21 and Sand Pit Road would address right-angle crashes and left turning crashes at the intersection.
Geometric Concerns:	None
Additional Info:	None

Safety Performance Measures:

	Analysis Period	KABC	PDO	Total
Existing Conditions	$2014-2019$	11	4	15
Future No-Build	$2027-2036$	4.918	11.153	16.071
Alt. 2: Roundabout:	$2027-2036$	2.965	18.645	21.610

Operational Analysis:

Warrant Analysis:	N/A
Queue Impacts:	There are field entrances located on the north leg of Sand Pit Road at approximately 170' north of the intersection. There is a commercial driveway on the south leg of Sand Pit Road at approximately 185' south of the intersection. The southbound and northbound queues do not impact these driveways.
Additional Capacity:	All legs operate at a LOS of A in 2047 for the AM and PM peak hours. This alternative has additional capacity compared to alternative 1.
Railroad Impacts:	None
Additional Info:	All legs operate at a LOS of A in 2047 for the AM and PM peak hours.

Operational Performance Measures:

Year: 2027	Alt. 2: Roundabout											
AM Peak	EB			WB			NB			SB		
	-	All	-									
\# Lanes		1			1			1			1	
LOS		A			A			A			A	
Delay (s)		9.3			4.7			5.7			5.0	
v/c		0.536			0.231			0.038			0.153	
Queue (ft.)		93.1			28.6			3.5			16.1	
Storage (ft.)												
PM Peak	EB			WB			NB			SB		
	-	All	-									
\# Lanes		1			1			1			1	
LOS		A			A			A			A	
Delay (s)		6.7			8.8			5.2			5.6	
v/c		0.399			0.536			0.071			0.083	
Queue (ft.)		60.2			101.0			6.8			7.9	
Storage (ft.)												
Additional Information												

Year: 2047	Alt. 2: Roundabout											
AM Peak	EB			WB			NB			SB		
	-	All	-									
\# Lanes		1			1			1			1	
LOS		B			A			A			A	
Delay (s)		10.6			4.9			6.1			5.6	
v/c		0.587			0.248			0.050			0.201	
Queue (ft.)		105.7			31.2			4.5			21.9	
Storage (ft.)												
PM Peak	EB			WB			NB			SB		
	-	All	-									
\# Lanes		1			1			1			1	
LOS		A			A			A			A	
Delay (s)		7.3			9.8			5.6			6.0	
v/c		0.432			0.585			0.098			0.111	
Queue (ft.)		67.4			117.8			9.3			10.5	
Storage (ft.)												
Additional Information												

Attachments:

(Provide attachments outline in FDM 11-25-3 Attachment 3.7 as appropriate)

1. Project Location Map
2. Aerial Photo
3. Traffic Data
4. Crash Diagram
5. Exhibits
a. Existing
b. Alternative 1 - Left Turn Lane
c. Alternative 2 - Roundabout
6. Safety Certification Document
7. Signal Warrants
8. Capacity Analysis
a. HCS
b. SIDRA 9

6180-30-00
STH 21
STH 116 - Leonard Point Rd Winnebago County

Intersection STH 21 \& Sand Pit Rd

WisDOT Bureau of Planning \& Economic Development

Design Hour Turning Movement Data

Projected PM Design Hour Traffic Volumes
\int Indicates roundabout
Design Hour: 3:30-4:30pm
Forecast Completed: 10/26/2020

Project Description

Project ID(s): 6180-30-00
Route(s): STH 21
Region/COUNTY(IES): NE/Winnebago
Location: @ Sand Pit Rd

Date: August 6, 2020

To: WisDOT NE Region Planning Chief: Brian Brock
Bureau of Traffic Operations - Traffic Engineering and Safety Section (BTOSafetyEngineering@dot.wi.gov)

From: Scott Nelson
WisDOT NE Region

Subject: SAFETY CERTIFICATION DOCUMENT
Project I.D. (design) 6180-30-00
STH 21 from STH 116 - Leonard Point Road
Winnebago County

Having considered the safety performance of the existing corridor and any proposed improvements, we believe this document reflects the intent of the policy and guidelines described in section 11-38 of the Wisconsin Facilities Development Manual.

Concurrence:

$\frac{\text { Kevin M. Scopoline }}{\text { Bureau of Traffic Operations }}$Traffic Engineering and Safety Section	
Date	

Approval:

> Bran S. Bund

9/14/2020
Date

SAFETY CERTIFICATION DOCUMENT

Analyst: Scott A. Nelson

Design ID:	$6180-30-00$
Highway:	STH 21
Project Title:	Omro - Oshkosh, STH 116 - Leonard Pt Rd
Improvement Concept Code:	RSRF10

Improvement Concept Code: RSRF10

1. Did the project have Sites of Promise from the system screening?

Yes $\boxtimes \quad$ No \square
Comments:

PDP ID 4284 - STH 116 to Webster - Crash Rate Flag 2.11, KAB Crash Rate Flag 2.09
PDP ID 4289 - CTH FF to Sand Pit Road - KAB Crash Rate Flag 1.46
PDP ID 4290 - Sand Pit Road to Leonard Point Road - Crash Rate Flag 1.18, KAB Crash Rate Flag 1.79
IX_70_02975 - STH 21 \& STH 116 - Total Crash LOSS 4, PSI 3.97, KABC LOSS 4, PSI 0.84
IX_70_02977 - STH 21 \& Madison Ave - Total Crash LOSS 4, PSI 2.39
IX_70_02978 - STH 21 \& Monroe St - KABC LOSS 4, PSI 0.45
IX_70_02980 - STH 21 \& Quincy - KABC LOSS 4, PSI 1.16
IX_70_03026 - STH 21 \& McKinley Ave - KABC LOSS 4, PSI 0.45
IX_70_03024 - STH 21 Beckwith Ave - KABC LOSS 4, PSI 0.45
IX_70_03034 - STH 21 \& Alder Ave \& Goldenrod Dr - Total Crash LOSS 4, PSI 4.27, KABC LOSS 4, PSI 1.43
IX_70_02902 - STH 21 \& Rivermoor Rd - Total Crash LOSS 4, PSI 2.84
IX_70_02649 - STH 21 \& CTH FF/Reighmoor Rd - Total Crash LOSS 4, PSI 3.21, KABC LOSS 4, PSI 3.76
IX_70_02660 - STH 21 \& Sand Pit Rd - Total Crash LOSS 4, PSI 9.04, KABC LOSS 4, PSI 4.10
2. Did relevant crashes remain after the initial Crash Vetting Process?

Yes $\boxtimes \quad$ No \square
Comments:
PDP ID 4284 - STH 116 to Webster (Segment Identified) - Of the ten crashes in this segment, five crashes remained after vetting. Four WB rear end crashes at the Jefferson St intersection and one at driveway. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative.

PDP ID 4289 - CTH FF to Sand Pit Road (Segment Identified) - Of the twenty-two crashes in this segment, twelve crashes remain after vetting. Only one segment crash occurred near Potratz Hill, but no safety mitigation strategies are recommended base on this one isolated crash. The remaining crashes will be addressed in the intersection safety flag for the CTH FF/Reighmoor intersection.

PDP ID 4290 - Sand Pit Road to Leonard Point Road (Segment Identified) - Of the thirty-seven crashes in this segment, fourteen remaining after vetting. Nine of these crashes occurred at the Sand Pit Road intersection and will be addressed in the intersection safety flag below. The remaining five crashes involve drifting left of center along this segment. The improvement project will include centerline rumble stripes which should help address this crash trend.

IX_70_02975 - STH 21 \& STH 116 (Intersection Identified) - Of the eight crashes at this intersection, five remain after vetting. Four WB rear end crashes at the Jefferson St intersection and one at a driveway. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative.

IX_70_02977 - STH 21 \& Madison Ave (Intersection Identified) - One of the seven crashes remain after vetting. The crash involved a WB vehicle yielded to a pedestrian crossing North to South on the East side of the intersection. Another WB tried bypassing WB on right and struck the pedestrian. The crash could be classified as driver error by bypassing the yielding vehicle in front. No safety mitigation strategies are recommended based on this one crash.

IX_70_02978 - STH 21 \& Monroe St (Intersection Identified) - Of the four crashes at this intersection three remained after vetting. Two WB rear ends of left turns onto Monroe and one WB rear end turning into Kwik Trip. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative. No other safety mitigation strategies are recommended.

IX_70_02980 - STH 21 \& Quincy (Intersection Identified) - Of the three crashes at this intersection, one remained after vetting and it occurred at a driveway near the Quincy St. intersection. A WB rear end of left turning traffic into a driveway near Quincy Ave. No safety mitigation strategies are recommended based on this one crash.

IX_70_03026 - STH 21 \& McKinley Ave (Intersection Identified) - Of the four crashes at this intersection, three remain after vetting. Three WB rear end crashes have occurred with left turns onto McKinley Ave. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative. No other safety mitigation strategies are recommended.

IX_70_03024 - STH 21 Beckwith Ave (Intersection Identified) - Of the four crashes at this intersection, no crashes remain after vetting. No safety mitigation strategies are recommended.

IX_70_03034 - STH 21 \& Alder Ave \& Goldenrod Dr (Intersection Identified) - Of the ten crashes at this intersection, three remained after vetting. Two EB rear end crashes while turning onto Goldenrod and on WB rear end crash while turning onto Alder Ave. A TWLTL was evaluated for feasibility by PDS preliminary engineering and it was determined to not be a feasible alternative. No other safety mitigation strategies are recommended.

IX_70_02902 - STH 21 \& Rivermoor Rd (Intersection Identified) - Of the four crashes at this intersection, no crashes remain after vetting. No safety mitigation strategies are recommended.

IX_70_02649 - STH 21 \& CTH FF/Reighmoor Rd (Intersection Identified) - Of the eleven crashes at this intersection, nine crashes remain after vetting. Six of the nine crashes involved left turning crashes from Hwy 21. One NB left failed to yield to a SB motorist. One SB failed to yield to WB. The remaining crash was not intersection related but the driver drifted off the roadway to the right. Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection.

IX_70_02660 - STH 21 \& Sand Pit Rd (Intersection Identified) - Of the eleven crashes at this intersection, eleven crashes remain after vetting. Ten of the eleven crashes involve a left turning vehicle from Highway 21. The specific crash types with the left turns are identified on the collision diagram in Appendix A. The remaining crash was a NB failure to yield to an EB. Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection.
3. Were possible safety mitigation alternatives identified in the CGA Process? Yes $\boxtimes \quad$ No \square

Comments:
IX_70_02649 - STH 21 \& CTH FF/Reighmoor Rd - Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection. Each alternative will target the six mainline left turn crashes that have occurred. Additionally, the two right-angle crashes can be targeted by the roundabout alternative.

IX_70_02660 - STH 21 \& Sand Pit Rd - Two safety mitigation strategies are recommended to move forward with the CGA process. The first alternative is to add install positive offset left turn lanes on STH 21. The second alternative is to install a roundabout at the intersection. Each alternative will target the ten mainline left turning crashes that have occurred. Additionally, the right-angle crash will be targeted by the roundabout alternative.
4. Were safety mitigation alternatives analyzed in this project?

Yes $\boxtimes \quad$ No \square

4.1. Provide narrative of existing geometric conditions and describe any geometric features that contributed to the type or severity of the crashes.

IX_70_02649 - STH 21 \& CTH FF/Reighmoor Rd - The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to one fatal crash, two suspect minor injury crashes, two possible injury crashes, and one property damage only crash. Based on mainline and sideroad volumes, picking an adequate gap is also challenging on the sideroad which has contributed to some of the other crashes. The remaining crashes resulted in two suspected minor
injuries, and one possible injury crash.
IX_70_02660 - STH 21 \& Sand Pit Rd - The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to five suspected minor injuries, three possible injuries, and two property damage only crashes. The remaining rightangle crash resulted in property damage only.

4.2. Provide narrative of crash history, crash trends, and contributing factors that were targeted in the safety mitigation alternatives.

IX_70_02649 - STH 21 \& CTH FF/Reighmoor Rd - Of the eleven crashes at this intersection, nine crashes remain after vetting. Six of the nine crashes involved left turning crashes from Hwy 21. One NB left failed to yield to a SB motorist. One SB failed to yield to WB. The remaining crash was not intersection related but the driver drifted off the roadway to the right. The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to one fatal crash, two suspect minor injury crashes, two possible injury crashes, and one property damage only crash. The remaining crashes resulted in two suspected minor injuries and one property damage only crash. The left turn lane alternative will target the left turn crashes. The roundabout alternative will target the left turn crashes and rightangle crashes.

IX_70_02660 - STH 21 \& Sand Pit Rd - Of the eleven crashes at this intersection, eleven crashes remain after vetting. Ten of the eleven crashes involve a left turning vehicle from Highway 21. One NB motorist failed to yield to a EB motorist. The current lane configuration at this intersection consists of a right turn lane and a shared through/left turn lane on STH 21. The absence of the left turn lane has contributed to five suspected minor injuries, three possible injuries, and two property damage only crashes. The remaining right-angle crash resulted in property damage only. The left turn lane alternative will target the left turn crashes. The roundabout alternative will target the left turn crashes and right-angle crashes.

4.3. Provide narrative and the name for each safety mitigation alternative analyzed in SMCP

STH 21 \& CTH FF/Reighmoor Rd
Concrete Repair \& Overlay - Base case with no geometric improvements.
STH 21 Left Turn Lanes - Add EB and WB left turn lanes on STH 21. Final geometry for EB and WB approaches will consist of a left turn lane, a through lane, and a right turn lane.

Single lane roundabout - Construct a single lane roundabout at the CTH FF/Reighmoor Rd intersection.

STH 21 \& Sand Pit Road
Concrete Repair \& Overlay - Base case with no geometric improvements.
STH 21 Left Turn Lanes - Add EB and WB left turn lanes on STH 21. Final geometry for EB and WB approaches will consist of a left turn lane, a through lane, and a right turn lane.

Single lane roundabout - Construct a single lane roundabout at the Sand Pit Rd intersection.

Analysis Location: STH 21 \& CTH FF/Reighmoor Rd Analysis Method: 2a

	Base	Alt. A	Alt. B	Add/Remove columns
Alternative Name	Concrete Overlay	STH 21 Left Turn Lanes	Roundabout	
Fatal \& Injury	5.806	3.019	2.360	
Property Damage	13.169	6.848	15.651	
Total	18.975	9.867	18.011	
Benefits	-	$\$ 1,653,033.89$	$\$ 2,744,853.97$	
Net Cost	$\$ 0$	$\$ 660,000$	$\$ 780,000$	
B/C		$\mathbf{2 . 5 0 4 6}$	$\mathbf{3 . 5 1 9 0}$	

Comments:
Both the left turn lane and roundabout alternative have B/C greater than 1.0 using IHSDM with Wisconsin calibration, crash distribution, model, and economic analysis model data sets. No external CMF's were applied.

Analysis Location: STH 21 \& Sand Pit Road
Analysis Method: 2a

	Base	Alt. A	Alt. B	Add/Remove columns
Alternative Name	Concrete Overlay	STH 21 Left Turn Lanes	Roundabout	
Fatal \& Injury	4.918	2.557	2.965	
Property Damage	11.153	5.800	18.645	
Total	16.071	8.357	21.610	
Benefits	-	$\$ 1,400,196.68$	$\$ 2,108,056.68$	
Net Cost	$\$ 0$	$\$ 550,000$	$\$ 730,000$	
B/C		$\mathbf{2 . 5 4 5 8}$	$\mathbf{2 . 8 8 7 8}$	

Comments:
Both the left turn lane and roundabout alternative have B/C greater than 1.0 using IHSDM with Wisconsin calibration, crash distribution, model, and economic analysis model data sets. No external CMF's were applied.
4.5. Provide narrative of reasonable and acceptable safety mitigation alternatives for consideration in the project improvement process

STH 21 \& CTH FF/Reighmoor Rd
Alt. A - STH 21 Left Turn Lanes - The addition of left turn lanes on STH 21 approaching CTH FF/Reighmoor Road should be considered as a feasible alternative for consideration through the NEPA process.

Alt. B - Single lane roundabout - A single lane roundabout at the intersection of STH 21 \& CTH FF/Reighmoor Rd should be considered as a feasible alternative for consideration through the NEPA process.

STH 21 \& Sand Pit Road
Alt. A - STH 21 Left Turn Lanes - The addition of left turn lanes on STH 21 approaching Sand Pit Road should be considered as a feasible alternative for consideration through the NEPA process.

Alt. B - Single Lane Roundabout - A single lane roundabout at the intersection of STH 21 \& Sand Pit Rd should be considered as a feasible alternative for consideration through the NEPA process.

ATTACHMENTS

Include all attachments in the final SCD and submit as a PDF
A. Project Information
a. Project Location/Overview Map
b. Crash Diagram(s)
B. Sites of Promise Documentation
a. Meta-Manager spreadsheet
b. Intersection Network Screening spreadsheet
C. Crash Vetting Documentation
a. WisTransPortal crash data spreadsheet with vetting comments
D. Contributing Geometric Analysis Documentation
a. Safety Certification Worksheet
E. Safety Mitigation Certification Documentation
a. Layout/Schematic for each alternative
b. Cost estimate for each alternative
c. IHSDM Crash Prediction Evaluation Report for each alternative
d. IHSDM Economic Analysis Report
e. Highway Safety Benefit Cost Analysis Tool results

ATTACHMENT A

Project Information

Project Location/Overview Map

Safety Certification Mapping (SCM) Tool

Design ID
6180-30-00
Project Title
OMRO - OSHKOSH
SCM Comment

Meta Manager Version: 2019-10
Meta Manager Crash Years: 2014-2018
SCM Crash Years: 2014-2018

Construction ID(s)

Project Description
STH 116 - LEONARD POINT ROAD

Sites of Promise

Corridor \#	Highway	Start County	End County	Start RP	End RP
1	WIS 21 EB	WINNEBAGO	WINNEBAGO	021E162T000	021E170K000
$4284: \overline{\mathrm{KAB}, \text { Crash Rate }}$					
4289: KAB					
$4290: \mathrm{KAB}$, Crash Rate					

Corridor \# 1: WIS 21 EB - 021E162T000-021E170K000

Meta Manager Version: 2019-10			Crash Years: 2014-2018		SCM Crash Years: 2014-2018					
PDP ID	Crash	KAB	Int Crash	Int KAB	K	A	B	C	O	TOTAL
4284	2.1088	2.0873					2	1	7	10
4285									5	5
4286							9	5	22	36
4287						1	3	2	12	18
4288							6	3	13	22
4289		1.4584			1	1	7	7	6	22
4290	1.1763	1.7913			1		13	6	17	37
TOTAL					2	2	40	24	82	

Manner of Collision

PDP ID	NO COLLISION	REAR END	SS OPP	SS SAME	OTHER	TOTAL
4284		9			1	10
4285	1	2		1	1	5
4286	9	20	1		6	36
4287	3	7	1		7	18
4288	12	7		1	2	22
4289	8	8			6	22
4290	10	17	2	1	7	37

ATTACHMENT A

Project Information

Crash Diagram(s)

ATTACHMENT B

Sites of Promise Documentation

Meta-Manager Spreadsheet

ATTACHMENT B

Sites of Promise Documentation

Intersection Network Screening Spreadsheet

Intersection Network Screening Updated: 132020																																															
Safety Certification Worksheet Information						Data Needed for SPFs																		SPF Results																							
						TOTAL Crashes (values for entire analysis	KABC Crashes(values for entire analysis																																								
	$\stackrel{\text { crorat }}{\text { coss }}_{\text {coss }}^{\text {corat }}$	$\underset{\substack{\text { PSI } \\ \text { (Tratal }}}{\square}$	$\begin{aligned} & \text { (Kase } \\ & \text { Kass } \end{aligned}$	$\stackrel{\text { PSI }}{\substack{\text { KRBCOC }}}$	Flagged Locatiol (Yortho)																			Region	Countr ${ }^{-}$	Area Typ -	$\begin{gathered} \text { Ramp } \\ \text { Termil } \end{gathered}$	Number of Lf	Control Typ -	Median Typ .	Number of tar	$\begin{aligned} & \text { Major } \\ & \text { AAD } \\ & \hline \end{aligned}$		Inside Ramn AAI ${ }^{-}$	Outside Ramn AAD	Off Ramp On Ramp AAD \square AAD -		Number of Ram!	Total AAI	$\begin{array}{\|c\|c\|} \hline \text { Years of } & \text { Crash Datal } \\ \left\lvert\, \begin{array}{c\|} \text { Crash } \mathrm{I} \\ \hline \end{array}\right. & \text { Rang } \\ \hline \end{array}$		Observed (Tore	Predicted (ToTA	Expected (TOTA	$\begin{gathered} \text { Observed } \\ \text { CKAEE } \end{gathered}$		
25458 \|X_70_0295\% STH 21\& Arboretu	L0S5 2	-1.76	L05S2	-0.09	No	NE	Winnebago	URBAN	FALSE	4	TWSC	JNDIVIVEL		12418	433	-	,	-			${ }^{12851}$		2014-2018	5	7.27	5.51	${ }^{2}$	2.15	2.06																		
$254591 \times$-70-02966 USH 45% WBent	Loss 3	0.54	LOSS 2	-0.33	No	NE	Winnebago	UREAN	FALSE	4	TWSC	JNDIVIIDE	2	14576	433	0	0	0	0	0	15009	5	2014-2018	9	8.32	8.86	2	2.52	2.20																		
$254501 \times$ 1-70_0297: STH 218 A Adams 4	LOSS 2	-0.36	Loss2	-0.95	No	NE	Winnebago	RUPAL	FALSE	4	OTHER	JNDIVIIDE[1	12166	374	0	0	0	0	0	12540	5	2014-2018	5	5.50	5.14	0	1.62	0.67																		
$254611 \times$-70_02975 STH $21 \&$ STH 116	LOSS 4	3.97	LOSS 4	0.84	Yes	NE	Wirnebago	RUPAL	FALSE	3	TWSC	JNDIVIDE[1	12166	1446	0	0	0	0	0	13612	5	2014-2018	${ }^{10}$	4.48	8.45	3	1.35	2.19																		
25462 1X-70_02977 STH 21\% Webster	Loss 3	1.07	LOSS 2	-0.39	No	NE	Winnebago	RUPAL	FALSE	3	TWSC	JMDIVIIEE	1	9196	914	0	0	0	0	0	10110	5	2014-2018	5	3.37	4.44	0	0.94	0.55																		
254631×70 - 02397 STH 218 Madison	LOSS 4	2.39	LOSS 3	0.02	Yes	NE	Wirnebago	RUPAL	FALSE	3	TWSC	JMDIVIIDE[1	9196	914	0	0	0	0	0	10110	5	2014-2018	7	3.37	5.76	1	0.94	0.97																		
$254641 \times$ 70_02976 STH 218 . Monroe	LOSS 3	0.62	LOSS 4	0.45	Yes	NE	Winnebago	RUPAL	FALSE	3	TWSC	JNDIVIIEE	1	10384	374	0	0	0	0	0	10758	5	2014-2018	${ }^{4}$	3.02	3.64	2	0.72	1.17																		
$254651 \times$-70_02988 STH 21\& Quincy	LOSS 3	0.62	LOSS 4	1.16	Yes	NE	Wirnebago	RUPAL	FALSE	3	TWSC	JNDIVIVE[1	10384	374	0	0	0	0	0	10758	5	2014-2018	4	3.02	3.64	4	0.72	1.88																		
2546611 -70 02988 STH 211 Jackson	LOSS 3	1.25	LOSS 3	0.10	No	NE	Winnebago	RURAL	FALSE	3	TWSC	JNDIVIDEC	1	10384	374	0	0	0	0	0	10758	5	2014-2018	5	3.02	4.28	1	0.72	0.82																		
25467 1X 70 -02988 STH 218 Van Bur	LOSS 2	-0.65	LOSS 2	-0.25	No	NE	Wirnebago	RUPAL	FALSE	3	TWSC	JNDIVIIDE[1	10384	374	0	0	0	0	0	10758	5	2014-2018	2	3.02	2.37	0	0.72	0.46																		
254681×70-7029385 STH 218 Harrison	LOSS 2	-2.68	LOSS 2	-0.79	No	NE	Winnebago	RUPAL	FALSE	4	TWSC	JNDIVIVEE	1	10384	374	0	0	0	0	0	10758	5	2014-2018	1	4.86	2.18	0	1.43	0.63																		
254691×70 - 703014 USH $45 \&$ Stanley	LOSS 2	-0.87	LOSS 2	-0.79	No	NE	Winnebago	UREAN	FALSE	3	TWSC	JNDIVIVE[2	14576	433	0	0	0	0	0	15009	5	2014-2018	4	5.15	4.28	0	1.54	0.75																		
254701×70-703018 STH 218. Maplewb	LOSS 2	-0.65	LOSS 3	0.10	No	NE	Wirnebago	RUPAL	FALSE	3	TWSC	JNDIVIVEE	1	10384	374	0	0	0	0	0	10758	5	2014-2018	2	3.02	2.37	1	0.72	0.82																		
$25471 \times 1 \times$ 70-03022 STH 21\& Hollister	LOSS 2	-1.77	LOSS 2	-0.13	No	NE	Wirnebago	UREAN	FALSE	3	TWSC	JNDIVIIDE[2	12418	433	0	0	0	0	0	12851	5	2014-2018	2	4.44	2.67	1	1.27	1.15																		
$254721 \times$-7000302: STH 218 Lincoln,	LOSS 2	-0.65	LOSS 2	-0.25	No	NE	Winnebago	RUPAL	FALSE	3	TWSC	JNDIVIIEE	1	10384	374	0	0	0	0	0	10758	5	2014-2018	2	3.02	2.37	0	0.72	0.46																		
254731×70-03022 STH 21\& Beckwith	LOSS 3	0.62	LOSS 4	0.45	Yes	NE	Winnebago	RUPAL	FALSE	3	TWSC	JNDIVIIDE[1	10384	374	0	0	0	0	0	10758	5	2014-2018	4	3.02	3.64	2	0.72	1.17																		
$25474 \mid \times 70$-0302E STH 218 McKirle	LOSS 3	0.62	LOSS 4	0.45	Yes	NE	Winnebago	RUPAL	FALSE	3	TWSC	JNDIVIIDE[1	10384	374	0	0	0	0	0	10758	5	2014-2018	${ }^{4}$	3.02	3.64	${ }^{2}$	0.72	1.17																		
$254751 \times 1 \times$-70 O3022 STH 21\& Omreau	LOSS 2	-0.65	LOSS 3	0.10	No	NE	Winnebago	RUPAL	FALSE	3	TWSC	JNDIVIIEE	1	10384	374	0	0	0	0	0	10758	5	2014-2018	2	3.02	2.37	1	0.72																			
$254761 \times$ P70 O3022 STH 21\& Goldenro	Missing DatM	ssing Data	lissing Datd	ssing Dati	Missing Data	NE	Wirnebago	RUPAL	FALSE	3	TWSC	JNDIVIVE[1	10384	,	0	0	0	0	0	10384	5	2014-2018	1 1	dissing Dalu	dissing D	- 0	dissing Dalu	/lissing Dat.																		
25477 1X 70-03033 STH 218 Industria	LOSS 2	-1.12	LOSS 3	0.43	No	NE	Wirnebago	RUPAL	FALSE	3	TWSC	JNDIVIIEE	1	10384	914	0	0	0	0	0	11298	5	2014-2018	2	3.66		- 2																				
25478 \|x-70_03033 STH 21\& Alder A.	LOS5 4	4.27	LOS5 4	1.43	Yes	NE	Winnebago	RUPAL	FALSE	4	TWSC	JNDIVIIDE[1	10384	374	0	0	0	0	0	10758	5	2014-2018	${ }^{11}$	4.86	9.13	4	1.43	${ }^{2} 86$																		
25479 1X-70_0304: STH 21\& Erooke 5	LOSS 3	0.10	LOSS 2	-0.79	No	NE	Winnebago	RUPAL	FALSE	4	TWSC	JNDIVIIDE[1	10384	374	0	0	0	0	0	10758	5	2014-2018	5	4.86	4.96	0	1.43	0.63																		
25480 1X 70-03055: USH 45 \& Hobbs A	LOSS 3	1.76	LOSS 4	0.81	Yes	NE	Wirnebago	UREAN	FALSE	3	TWSC	Ralised	2	14576	433	0	0	0	0	0	15009	5	2014-2018	7	4.60	6.36	3	1.23	2.04																		
254811×70-03066 USH $45 \&$ STH 21	LOSS 3	5.36	LOSS 2	-0.19	No	NE	Winnebago	UREAN	FALSE	3	SIINAL	RAISED		12418	8010	0	0	0	0	0	20428	5	2014-2018	22	15.62	20.98	4	4.29	4.11																		
$254821 \times$ 70-03066 USH 45 \& Plymout	LOSS 1	-2.53	LOSS 2	-0.41	No	NE	Winnebago	URBAN	FALSE	3	TWSC	JNDIVIVE[2	10146	433	0	0	0	0	0	10579	5	2014-2018	0	3.68	1.15	0	1.00	0.60																		
$254831 \times$-70 03077 USH 458 \& Sherida	LOSS 2	-3.08	LOSS 2	-0.40	No	NE	Winnebago	UREAN	FALSE	4	TWSC	JNDIVIVE[2	10146	433	0	0	0	0	0	10579	5	2014-2018	2	6.13	3.05	1	1.76	1.36																		
$254881 \times$ \| 70 -03071USH $45 \&$ Crane 5	LOSS 2	-1.15	LOSS2	0.00	No	NE	Winnebago	URBAN	FALSE	3	TWSC	JNDIVIIDE[2	10146	433	0	0	0		0	10579	5	2014-2018	2	3.68	2.52	1	1.00	1.00																		
$254851 \times$ \| 70 -03072 USH 458 \& Dlive St	LOSS 2	-1.84	LOSS 2	-0.41	No	NE	Winnebago	UREAN	FALSE	3	TWSC	JNDIVIVE[2	10146	433	0	0	0	0	0	10579	5	2014-2018	1	3.68	1.84	0	1.00	0.60																		
$254861 \times$-70-03077 USH 458 \& Mitchell	LOSS 2	-1.15	LOSS 2	-0.41	No	NE	Winnebago	URBAN	FALSE	3	TWSC	JNDIVIIDE[2	10146	433	0	0	0	0	0	10579	5	2014-2018	2	3.68	2.52	0	1.00	0.60																		
25487 1X-70_03072 USH $458 . E$ Elmwoo	Loss 3	2.21	LOSS 4	2.19	Yes	NE	Winnebago	UREAN	FALSE	4	TWSC	JNDIVIIDE[2	11350	2544	0	0	0	0	0	13894	5	2014-2018	16	13.45	15.66		3.95	6.14																		
25488 1X 70 -03072 USH 45 \& Walnut:	LOSS 2	-2.19	LOSS 2	-0.50	No	NE	Wirnebago	URBAN	FALSE	3	TWSC	JNDIVIIDE[2	11350	433	0	0	0	0	0	11783	5	2014-2018	1	4.08	1.90	0	1.14	0.64																		
$254891 \times$ P70 03076 USH 458 \& Cedar 5	LOSS 2	-0.77	LOSS 3	0.37	No	NE	Wirnebago	UREAN	FALSE	3	TWSC	JNDIVIIEE		${ }^{11350}$	433	0	0	0	0	0	11783	5	2014-2018	3	4.08	3.31	2	1.14	1.52																		
$254901 \times 1 \times 70$-0307, USH $45 \times$ Beech	LOSS 2	-2.85	LOSS 2	-1.10	No	NE	Winnebago	URBAN	FALSE	4	TWSC	JNDIVIVEE	2	11350	433	0	0	0	0	0	11783	5	2014-2018	3	6.74	3.88	0	1.97	0.87																		
$254911 \times .70$ O3077 USH 458 L Liberty S	LOSS 2	-2.19	LOSS 2	-0.06	No	NE	Wirnebago	UREAN	FALSE	3	TWSC	JNDIVIIDE[2	11350	433	0	0	0	0	0	11783	5	2014-2018	1	4.08	1.90	1	1.14	1.08																		
$254921 \times 1 \times 70$ O3077 USSH $45 \&$ Westerr	LOSS 2	-0.77	LOSS 2	-0.50	No	NE	Winnebago	URBAN	FALSE	3	TWSC	JNDIVIVEL	2	${ }^{11350}$	433	0	0	0	0	0	${ }^{11783}$	5	2014-2018	3	4.08	3.31	0	1.14	0.64																		
$254931 \times$-70_0308C USH $45 \&$ STH 76	LOS5 4	54.20	LOSS 4	18.72	Yes	NE	Winnebago	UREAN	FALSE	4	RAB	RAISED	2	18786	11905	0	0	0	0	0	30691	5	2014-2018	${ }^{112}$	55.04	109.24	36	10.00	28.72																		
$254941 \times$ \| 70 O_0308\% STH 116 \& Webste	LOSS 4	1.55	LOSS 3	0.12	Yes	NE	Winnebago	RUPAL	FALSE	3	TWSC	JNDIVIIDE[1	5000	914	0	0	0	0	0	5914	5	2014-2018	5	2.25	3.80	1	0.63	0.75																		
$254951 \times 1 \times 70$ O3088: USH 45 \& Ontario	LOSS 2	-2.19	LOSS 2	-0.50	No	NE	Winnebago	UREAN	FALSE	3	TWSC	JNDIVIVE[2	11350	433	0	0	0	0	0	11783	5	2014-2018	1	4.08	1.90	0	1.14	0.64																		
$254961 \times$ IX 70 O3088 USH 45 \& Wiscons	LOS5 3	8.83	LOSS 3	0.86	No	NE	Winnebago	URBAN	FALSE	4	SIGNAL	JNDIVIIDE[2	11350	4579	0	0	0	0	0	15929	5	2014-2018	${ }^{36}$	25.87	34.69	9	7.74	8.61																		
$254971 \times$-70 03008 STH 116 \& Cedar	LOSS 2	-0.44	LOSS 2	-0.11	No	NE	Winnebago	FURAL	FALSE	3	TWSC	JNDIVIVEL	1	5000	374	0	0	0	0	0	5374	5	2014-2018	20	${ }^{1.86}$	1.42	0	0.45	0.33																		
$254981 \times 1 \times 70$ 0309: STH 218 STH 116	LOSS 4	5.60	LOSS3	0.54	Yes	NE	Winnebago	RURAL	FALSE		SIIGNAL	PCR	1	12166	374	0	0		0		12540	5	2014-2018	20	12.51	18.11	4	2.94	3.48																		
254991×7003096 STH 116 \& Dak St	LOSS4	1.11	L05S2	-0.04	Yes	NE	Winnebago	RURAL	FALSE		TWSC	JNDIVIDEL		2136	374						2510		2014-2018	4	1.06	2.17		0.26	0.22																		

ATTACHMENT C Crash Vetting Documentation

WisTransPortal crash data spreadsheet with vetting comments

ATTACHMENT D

Contributing
 Geometric Analysis Documentation

Safety Certification Worksheet

Safety Certification Worksheet

Analyst: Nelson, Scott A	Design ID: 6180-30-00
Agency: WisDOT DTSD NE Region	Highway: WIS 21 EB
Date of Analysis: 2020-04-08	Project Title: OMRO-OSHKOSH
Meta Manager Version: 2019-10	Project Description: STH 116-LEONARD POINT ROAD
Meta Manager Crash Years: 2014-2018	Worksheet ID: 2716

System Screening - Sites of Promise							Crash Vetting - Sites of Promise	Contributing Geo	ometric Analysis
See FDM 11-38-10.2 for guidance							See FDM 11-38-10.3 for guidance	See FDM 11-38-10.4 for guidance	
Segments: Meta-Manager									
PDP ID	From RP	RP Description	To RP	Length (PDP_Mile)	Crash Rate Flag (RATEFLAG) (Insert value if ≥ 1.0)	KAB Crash Rate Flag (MMGR_KAB_CRSH_RT) (Insert value if ≥ 1.00)	Summarize the contributing factors for ALL crashes in the flagged segment.	Which geometric features contribute to the type and severity of the crashes?	Possible Countermeasures for Safety Mitigation Process
4284	021E162T000	STH 116 WB	021E162T006	0.06	2.1088	2.0873	5 of 10 crashes remain after vetting. All five crashes are intersection specific. Four WB rear ends of left turning traffic. No left turn lane exists. One NB fail to yield to WB with visibility obstructed by a parked vehicle at the Jefferson intersection.	WB rear end crashes were impacted by having no left turn lane to turn south on STH 116/Jefferson St. or driveways. These four crashes resulted in one type B suspected minor injury, one type C possible injury and two property damage only crashes. The right angle failure to yield crash had no geometric features influencing the crash. The crash resulted in a property damage only crash.	Developing a left turn lane on STH 21 WB at Jefferson or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
4285	021 162T006	WEbSTER AVE	021 162T017	0.11					
4286	021 162T017	MADISON AVE	021E162T110	0.93					
4287	021E162T110	INDUSTRIAL DR	021 1666000	1.06					
4288	021 1166 000	RIVERMOOR RD	$021 E 168000$	1.57					
4289	021E168 000	CTH FF	021E169 000	1.02		1.4584	12 of the 22 crashes remain after vetting. Eight of the 12 crashes remaining crashes occurred at CTH FF intersection and are described in the intersections section below. Of the four remaining crashes in this segment, one occurred at Potratz Hill where WB vehicle was rear ended, one drifted left of centerline, and the remaining two were at Sand Pit Road.	For the ten crashes at CTH FF and Sand Pit Road, see the intersections section below. Of the two remaining crashes one drifted left of center and one was a WB rear end crash at Potratz Hill. These two crashes resulted in one type A suspected serious injury and one type B suspected minor injury.	Recommendations at CTH FF \& Sand Pit are listed in the inersections section below. Given only one crash at Potratz Hill, no safety mitigation recommended at this intersection. The project is expected to include centerline rumble strips to address the crash that drifted left of center.
4290	021E169 000	SAND PIT RD	021E170K000	1.35	1.1763	1.7913	14 of 37 crashes remain after vetting. Nine of the remaining crashes occurred at the inersection of Sand Pit Road and the details are discussed in the intersections section below. The five remaining crashes all involve vehicles that drifted left of centerline	For the nine crashes at Sand Pit Road, see the intersections section below. For the five drifting left of center crashes, no geometric features seem to influence these crashes other than no centerline rumble strips are present. These five crashes resulted in one fatal crash, one suspected minor injury, and three property damage only crashes.	Recommendations at CTH FF \& Sand Pit are listed in the inersections section below. Centerline rumble stripes are expected to be included in the project to address these left of center crashes.
\|ntersections: Intersection Network Screening									
INT_ID		ction Name X_NAME)	$\begin{aligned} & \text { LOSS } \\ & \text { (TOTAL) } \end{aligned}$	PSI (TOTAL)	$\begin{gathered} \text { LOSS } \\ \text { (KABC) } \end{gathered}$	$\begin{gathered} \text { PSI } \\ \text { (KABC) } \end{gathered}$	Summarize the contributing factors for ALL crashes in the flagged intersection.	Which geometric features contribute to the type and severity of the crashes?	Possible Countermeasures for Safety Mitigation Process

FDM 11-38 Attachment 10.2 Safety Certification Worksheet

\|X_70_02975	STH 21 \& STH 116	LOSS 4	3.97	LOSS 4	0.84	5 of 8 crashes remain after vetting. Four WB rear ends of left turning traffic. No left turn lane exists. One NB fail to yield to WB with visibility obstructed by a parked vehicle.	WB rear end crashes were impacted by having no left turn lane to turn south on STH 116/Jefferson St. or driveways. These four crashes resulted in one type B suspected minor injury, one type C possible injury and two property damage only crashes. The right angle failure to yield crash had no geometric features influencing the crash. The crash resulted in a property damage only crash.	Developing a left turn lane on STH 21 WB at Jefferson or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
\|X_70_02976	STH 21 \& Webster Ave S	Loss 3	1.07	Loss 2	-0.39			
\|X_70_02977	STH 21 \& Madison Ave	LOSS 4	2.39	LOSS 3	0.02	1 of 7 crashes remain after vetting. A WB vehicle yielded to a pedestrian crossing North to South on the East side of the inersection. Another WB tried bypassing WB on right and struck the pedestrian.	Mainly a driver error by passing vehicle resulting in type B suspected minor injury. The width of the crossing is long with two travel lanes and two parking lanes.	Narrowing the STH 21 or creating bump-outs at the Madison Street intersection may have reduced the likehood of this collision. This was determined to not be a feasible alternative.
\|X_70_02978	STH $21 \&$ Monroe St	LOSS 3	0.62	LOSS 4	0.45	3 of 4 crashes remain after vetting. Two WB rear ends of left turns onto Monroe and one WB rear end turing into Kwik Trip.	WB rear end crashes were impacted by having no left turn lane to turn south on STH 116 to Monroe St. or driveways. These three crashes resulted in one type B suspected minor injury, and two property damage only crashes.	Developing a left turn lane on STH 21 WB at Monroe or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
\|X_70_02980	STH 21 \& Quincy Ave	LOSS 3	0.62	LOSS 4	1.16	1 of 3 crashes remain after vetting. A WB rear end of left turning traffic into a driveway near Quincy Ave.	WB rear end crash was impacted by having no left turn lane. The crash resulted in a type C possible injury.	Developing a left turn lane on STH 21 WB at Quincy Ave. or TWLTL could help address the two rear end crashes. This was determined to not be a feasible alternative.
\|X_70_02981	STH 21 \& Jackson Ave	Loss 3	1.25	Loss 3	0.10			
1X_70_02982	STH $21 \& \mathrm{Van}$ Buren Ave	Loss 2	-0.65	Loss 2	-0.25			
1X_70_02985	STH 21 \& Harrison Ave \& Maplewood Rd	Loss 2	-2.68	Loss 2	-0.79			
\|X_70_03018	STH 21 \& Maplewood Rd	Loss 2	-0.65	Loss 3	0.10			
\|X_70_03027	STH 21 \& Omreau Ave	Loss 2	-0.65	Loss 3	0.10			
\|X_70_03026	STH 21 \& McKinley Ave	LOSS 3	0.62	LOSS 4	0.45	3 of 4 crashes remain after vetting. Three WB rear end crashes with left turns onto McKinley Ave.	The three WB rear end crashes were impacted by having no left turn lanes. The three crashes resulted in on type C possible injury and two property damage only crashes.	Developing a left turn lane on STH 21 at McKinley Ave. or TWLTL could help address the three rear end crashes. This was determined to not be a feasible alternative.
IX_70_03024	STH 21 \& Beckwith Ave	Loss 3	0.62	LOSS 4	0.45	0 of 4 crashes remain after vetting.	None	None
\|X_70_03023	STH 21 \& Lincoln Ave	Loss 2	-0.65	Loss 2	-0.25			
\|X_70_03028	STH 21 \& Goldenrod Ave	Loss 2	-1.43	Loss 2	-0.31			
\|X_70_03030	STH 21 \& Industrial Dr	Loss 2	-1.12	Loss 3	0.43			
\|X_70_03034	STH 21 \& Alder Ave \& Goldenrod Dr	LOSS 4	4.27	LOSS 4	1.43	3 of ten crashes remain after vetting. Two EB rear end crashes while turning onto Goldenrod and on WB rear end crash while turning onto Alder Ave.	The three rear end crashes of left turning vehicles were impacted by having no left turn lanes. The three crashes resulted in property damage only.	Developing a left turn lane on STH 21 EB \& WB at Alder/Goldenrod or TWLTL could help address the three rear end crashes. This was determined to not be a feasible alternative.
1X 70_03043	STH 21 \& Brooke Dr \& Schwab Ave	Loss 3	0.10	Loss 2	-0.79			
\|X_70_02902	STH 21 \& Rivermoor Rd (2)	Loss 4	2.84	Loss 3	0.06	0 of 4 crashes remain after vetting.	None	None
1X_70_02757	STH $21 \&$ E Scott St	Loss 3	0.38	Loss 3	0.14			
\|X_70_02649	STH $21 \&$ CTH FF \& Reighmoor Rd	LOSS 4	3.21	LOSS 4	3.76	9 of the 11 crashes remain after vetting. Six of the 9 involved left turning crashes from Hwy 21. One NB left failed to yield to a SB motorist. One SB failed to yield to WB. The remaining crash was not intersection related but the driver drifted off the roadway to the right.	The mainline left turning crashes are impacted by having no left turn lanes. NB failing to yield ot SB due to looking at crossing traffic. SB and WB crash due to picking an inadequate gap. The drift to the right due to inattentive driving. The nine crases resulted in one fatality, three type B suspected minor injuries, four type C possible injuries, and one property damage only.	Safety mitigation for these crashes could inlcude a roundabout, left turn lanes on STH 21 EB \& WB, and longitudinal shoulder rumble strips.
\|X_70_02655	STH 21 \& Marquart Ln \& Potratz Hill Rd	Loss 3	0.24	Loss 3	0.48			
\|X_70_02660	STH 21 \& Sand Pit Rd	LOSS 4	9.04	LOSS 4	4.10	11 of 11 crashes remain after vetting. Ten of the 11 crashes involve a left turning vehicle from Highway 21. The remaining crash was a NB failure to yield to an EB.	The mainline left turning crashes are impacted by having no left turn lanes. NB failing to yield to EB due to picking an inadequate gap. These crashes resulted in five type B suspected minor injuries, three type C possible injuries, and three property damage only crashes.	Safety mitigation for these crashes could inlcude a roundabout, left turn lanes on STH 21 EB \& WB, and longitudinal shoulder rumble strips.

ATTACHMENT E

Safety Mitigation Certification Documentation

Layout/Schematic for each alternative and Cost Estimate for each alternative

Project ID: 6180-30-00
$\begin{array}{ll}\text { Title }: \text { Omro-Oshkosh } \\ \text { Region } & \text { : NORTHEAST }\end{array}$

Route : STH 021
Sub Title: STH 116 - Leonard Point
County : Winnebago

Improvement Type proposed RSRF10
MetaManager 9/2019
Year 1 ADT varies 10,590

Year 20 ADT varies 10,590

HMA - would be 4MT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.

Existing roadway conditions:

- 25 MPH roadway
- 12-ft thru lanes with 9-ft parking lanes or 6-ft urban shoulders

Proposed TWLTL conditions:

- 25 MPH roadway
- 12-ft through lanes
- 16-ft TWLTL
- 6-ft Bike Lanes

The options presented were to compare an overlay of STH 21 to adding a TWLTL, however a TWLTL will not fit in the current roadway area. Widening the road to accommodate this option would require a massive real estate acquisition of downtown Omro. As such, no alternative will be presented for this section of roadway.

Project ID: 6180-30-00
STH 21
Created: 6/2/2020
Omro - Oshkosh
STH 116 - Leonard Point Rd
Winnebago County
STH 21 \& CTH FF/Reighmoor Rd Intersection
The intersection of STH 21 and CTH FF has an intersection safety flag. Two alternatives have been suggested to mitigate the crashes occurring they are slotted left turn lanes on STH 21 and a single lane roundabout. A construction cost estimate including estimated real estate costs have been created for the two alternatives and a do-nothing alternative cost estimate.

Existing roadway conditions and assumptions for project:

- STH 21 is on the community's plan for wider shoulders for bike accommodations
- $1 \frac{1}{4}$-Inch Base Aggregate Dense unit weight $=2$ Tons/ CY
- $3 / 4$-Inch Base Aggregate Dense unit weight $=2.1$ Tons/CY
- Fill expansion factor: 1.33
- STH 21 is a concrete roadway with no HMA overlay
- As-built 6184-03-71
- Traffic forecasting:
- Year 1 AADT: 11,090
- Year 20 AADT: 11,090
- The proposed Improvement Type is RSRF10
*NOTE - if this Do nothing alternative. is selected for the preferred alternative the CTH FF work would most likely stop at the radius and not extend down the road. Due to the nature of IHSDM and this process all alternatives need to have the same limits. All design assumptions need to be revisited in final design.

Do Nothing Alternative (Option 1):

No Geometric modifications.
Limits on STH 21: 0+75 - STA 19+90. Mainline length 1915-ft.
Assumptions:

- 10% of the concrete will need to be repaired or replaced.
- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5 -ft shoulders (widen from 3 -ft due to bike comp plan)
- No new BAD is needed for shoulders due to HMA widening. Using Shaping Shoulders to shape gravel section of shoulder. - Anticipated to be used project wide - therefore higher quantity for pices.

Limits on CTH FF: CTH FF from STA $22+58-32+44$. Sideroad lengths: $1020-\mathrm{ft}$
Assumptions:

- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- Mill 2-inches -It is assumed this would be the only milling on the project.
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
305.0500	Shaping Shoulders	STA	18.8	$\$ 50.00$	$\$ 940$
416.1710	Concrete Pavement Repair	SY	315	$\$ 80.00$	$\$ 25,200$
416.1720	Concrete Pavement Replacement	SY	315	$\$ 90.00$	$\$ 28,350$
455.0605	Tack Coat	Gal	510	$\$ 5.00$	$\$ 2,550$
204.0120	Removing Asphaltic Surface Milling	SY	2,500	$\$ 6.00$	$\$ 15,000$
460.5224	HMA Pavement 4LT 58-28S	Tons	1,125	$\$ 70.00$	$\$ 78,750$
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	$\$ 1.00$	$\$ 2,775$
646.1040	Marking Line Grooved Epoxy 4-inch	LF	3,750	$\$ 2.00$	$\$ 7,500$
				Total	$\$ 161,665$
				Rounded	$\$ 170,000$

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 2 - Slotted Left Turn Lane

This option will add a slotted left turn lane with a 6 -ft positive offset along STH 21 . Based off traffic forecast, the left turn lane will be 300-ft. it will be assumed that the final pavement design along STH 21 will be 2inches of HMA over 9 -inches of concrete over 6 inches of base aggregate with 5 - ft shoulders. Outside of the intersection reconstruction limits, a 2 -inch mill and overlay will be applied to CTH FF road between $22+58-32+44$. It is assumed that all the concrete will be hand work on this project.

Limits on STH 21: 0+75 - STA 19+90. Mainline length 1915-ft.
Assumptions:

- 6-ft positive offset of left turn lanes
- 300-ft left turn lanes
- Pavement Structure: 2-inches HMA over 9-inches concrete over 6-inches of $1 \frac{1}{4}$-Inch BAD
- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft shoulders (widen from 3-ft due to bike comp plan) with 5-ft gravel shoulders

Limits on CTH FF: CTH FF from STA $22+58-32+44$. Sideroad lengths: $1020-\mathrm{ft}$
Assumptions:

- 5-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- Mill 2-inches
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
204.0100	Removing Pavement	SY	6,300	$\$ 20.00$	$\$ 126,000$
205.0100	Excavation Common	CY	5,000	$\$ 12.00$	$\$ 120,000$

208.0100	Borrow	CY	1200	\$12.00	\$14,400
305.0110	Base Aggregate Dense $3 / 4$ Inch	Tons	400	\$22.00	\$8,800
305.0120	Base Aggregate Dense 1 114Inch	Tons	3,125	\$18.00	\$56,250
415.0090	Concrete Pavement 9-Inch	SY	6,300	\$55.00	\$346,500
455.0605	Tack Coat	Gal	70	\$5.00	\$350
460.5224	HMA Pavement 4MT 4828 S	Ton	1,125	\$70.00	\$78,750
522.1018	Apron Endwalls for Culvert Pipe Reinforced Concrete 18-Inch	Each	2	\$600	\$1,200
601.0411	Concrete Curb \& Gutter 30-Inch Type D	LF	800	\$30.00	\$24,000
602.0410	Concrete Sidewalk 5-Inch	SF	2,400	\$10.00	\$24,000
608.0318	Storm Sewer Culvert Pipe Reinforced Concrete Class III 18-Inch	LF	60	\$100	\$6,000
611.1004	Catch Basin 4-ft Diameter	Each	2	\$2,000	\$4,000
625.0500	Salvaged Topsoil	SY	400	\$4.00	\$1,600
628.2004	Erosion Mat Class I Type B	SY	400	\$1.50	\$600
629.0210	Fertilizer Type B	CWT	. 1	\$250.00	\$25
630.0120	Seeding Mixture No. 20	LBS	10	\$25.00	\$250
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved Epoxy 4-inch	LF	3,750	\$2.00	\$11,250
	FEE R/W (1 parcel)	Acres	. 2	\$50,000	\$10,000
	TLE R/W (1 parcel)	Acres	. 05	\$10,000	\$500
				Total	\$823,000
				Rounded	\$830,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 3 - Single Lane Roundabout

This option will reconstruct the intersection to a single lane roundabout. In final design the exact configuration will be completed.

Limits on STH 21: 0+75 - STA 19+90. Mainline length 1915-ft.
Assumptions:

- STA 4+77-16+09 will be reconstructed
- STA 0+75 - STA 19+90 -2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft paved shoulders, 5 -ft Gravel at full thickness
- Did not provide grading for Multi-use path
- Lighting lump sum was created by: poles, arms, pull box, Transformer Base, Luminaire LED lights, and Lighting Control Cabinet

Limits on CTH FF: CTH FF from STA 22+58-32+44. Sideroad lengths: 1020-ft
Assumptions:

- STA 22+58-32+44 be reconstructed
- Depth of HMA, 4LT58-28S based off recent As-built
- 3-ft gravel Shoulders

Estimated Costs: See above for some comments. - How come HMA was brought down to 65, less quantity than project above - I would suggest staying at 70 ?

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
205.0100	Excavation Common	CY	10,000	\$12.00	\$120,000
305.0110	Base Aggregate Dense $3 / 4$ Inch	Tons	400	\$22.00	\$8,800
305.0120	Base Aggregate Dense 1 ¼ -Inch	Tons	3,700	\$18.00	\$66,600
415.0090	Concrete Pavement 9-Inch	SY	4,500	\$55.00	\$247,500
416.0512	Concrete Truck Apron 12Inch	SY	457	\$60.00	27,420
460.5244	HMA Pavement 4LT 58-28S	Tons	750	\$70.00	\$52,500
522.1018	Apron Endwalls for Culvert Pipe Reinforced Concrete 18-Inch	Each	8	\$600	\$4,800
608.0318	Storm Sewer Culvert Pipe Reinforced Concrete Class III 18-Inch	LF	120	\$100	\$12,000
601.0411	Concrete Curb \& Gutter 30-Inch Type D	LF	4,562	\$30.00	\$136,860
602.0410	Concrete Sidewalk 5-Inch (at splitter island crossings)	SF	11,721	\$10.00	\$117,210
611.1004	Catch Basin 4-ft Diameter	Each	8	\$2,000	\$16,000
625.0500	Salvaged Topsoil	SY	5,000	\$4.00	\$20,000
628.2004	Erosion Mat Class I Type B	SY	5,000	\$1.50	\$7,500
629.0210	Fertilizer Type B	CWT	. 5	\$250.00	\$125
630.0120	Seeding Mixture No. 20	LBS	200	\$25.00	\$5,000
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved Epoxy 4-inch	LF	3,750	\$2.00	\$7,500
SPV. 0120.01	Lighting Slump Sum	LS	1	\$65,000	\$65,000
	FEE R/W (5 Parcels)	Acres	. 5	\$50,000	\$25,000
				Total	\$942,590
				Rounded	\$950,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Project ID: 6180-30-00
STH 21
Created: 5/20/2020
Omro - Oshkosh
STH 116 - Leonard Point Rd
Winnebago County
STH 21 \& Sand Pit Rd Intersection

The intersection of STH 21 and Sand Pit Rd has an intersection safety flag. Two alternatives have been suggested to mitigate the crashes occurring they are slotted left turn lanes on STH 21 and a single lane roundabout. A construction cost estimate including estimated real estate costs have been created for the two alternatives and a do-nothing alternative cost estimate.

Existing roadway conditions and assumptions for project:

- STH 21 is on the community's plan for wider shoulders for bike accommodations
- $1 \frac{1}{4}$-Inch Base Aggregate Dense unit weight $=2$ Tons/ CY
- $3 / 4$-Inch Base Aggregate Dense unit weight = 2.1 Tons/CY
- Fill expansion factor: 1.33
- STH 21 is a concrete roadway with no HMA overlay
o As-built 6184-03-71
- Traffic forecasting:
- Year 1 AADT: 11,090
- Year 20 AADT: 11,090
- The proposed Improvement Type is RSRF10
*NOTE - if this Do nothing alternative. is selected for the preferred alternative the CTH FF work would most likely stop at the radius and not extend down the road. Due to the nature of IHSDM and this process all alternatives need to have the same limits. All design assumptions need to be revisited in final design.

Do Nothing Alternative (Option 1):

No Geometric modifications.
Limits on STH 21: 54+32 - STA 73+11. Mainline length 1879-ft.
Assumptions:

- 10% of the concrete will need to be repaired or replaced.
- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5 -ft shoulders (widen from 3 -ft due to bike comp plan)
- No new BAD is needed for shoulders due to HMA widening. Using Shaping Shoulders to shape gravel section of shoulder.

Limits on CTH FF: STA 0+00-10+20. Sideroad lengths: 1020-ft
Assumptions:

- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- Mill 2-inches
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
305.0500	Shaping Shoulders	STA	18.8	$\$ 50.00$	$\$ 940$
416.1710	Concrete Pavement Repair	SY	315	$\$ 80.00$	$\$ 25,200$
416.1720	Concrete Pavement Replacement	SY	315	$\$ 90.00$	$\$ 28,350$
455.0605	Tack Coat	Gal	510	$\$ 5.00$	$\$ 2,550$
204.0120	Removing Asphaltic Surface Milling	SY	2500	$\$ 6.00$	$\$ 15,000$
460.5224	HMA Pavement 4LT 58-28S	Tons	1,125	$\$ 70.00$	$\$ 78,750$
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	$\$ 1.00$	$\$ 2,775$
646.1040	Marking Line Grooved Epoxy 4-inch	LF	3,750	$\$ 2.00$	$\$ 7,500$
				Total	$\$ 161,065$
				Rounded	$\$ 170,000$

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 2 - Slotted Left Turn Lane

This option will add a slotted left turn lane with a 6 - ft positive offset along STH 21. Based off traffic forecast, the left turn lane will be 300 -ft. it will be assumed that the final pavement design along STH 21 will be 2 inches of HMA over 9 -inches of concrete over 6 inches of base aggregate with 5 - ft shoulders. Outside of the intersection reconstruction limits, a 2-inch mill and overlay will be applied to CTH FF road between $0+00-10+20$. It is assumed that all the concrete will be hand work on this project.

Limits on STH 21: 54+32 - STA 73+11. Mainline length 1879-ft.
Assumptions:

- 6-ft positive offset of left turn lanes
- 300 -ft left turn lanes
- Pavement Structure: 2 -inches HMA over 9 -inches concrete over 6 -inches of $1 \frac{1}{4}$-Inch BAD
- 2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5 -ft shoulders (widen from 3 -ft due to bike comp plan) with 5 -ft Gravel shoulders
- Limits on CTH FF: STA 0+00-10+20. Sideroad lengths: 1020-ft

Assumptions:

- 5-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 2-inch over lay limits
- Mill 2-inches
- No new BAD for shoulders

Estimated cost:

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
204.0100	Removing Pavement	SY	6,300	\$20.00	\$126,000
205.0100	Excavation Common	CY	500	\$12.00	\$6,000
208.0100	Borrow	CY	1200	\$12.00	\$14,400
305.0120	Base Aggregate Dense $11 / 4$ Inch	Tons	3,125	\$18.00	\$56,250
415.0090	Concrete Pavement 9-Inch	SY	6,300	\$55.00	\$346,500
455.0605	Tack Coat	Gal	70	\$5.00	\$350
460.5224	HMA Pavement 4MT 48- 28 S	Ton	1,125	\$70.00	\$78,750
522.1018	Apron Endwalls for Culvert Pipe Reinforced Concrete 18-Inch	Each	2	\$600	\$1,200
601.0411	Concrete Curb \& Gutter 30-Inch Type D	LF	800	\$30.00	\$24,000
602.0410	Concrete Sidewalk 5-Inch (at splitter island crossings)	SF	2,400	\$10.00	\$24,000
608.0318	Storm Sewer Culvert Pipe Reinforced Concrete Class III 18-Inch	LF	60	\$100	\$6,000
611.1004	Catch Basin 4-ft Diameter	Each	2	\$2,000	\$4,000
625.0500	Salvaged Topsoil	SY	400	\$4.00	\$1,600
628.2004	Erosion Mat Class I Type B	SY	400	\$1.50	\$600
629.0210	Fertilizer Type B	CWT	. 1	\$250.00	\$25
630.0120	Seeding Mixture No. 20	LBS	10	\$25.00	\$250
646.1020	Marking Line Epoxy 4-Inch	LF	2,775	\$1.00	\$2,775
646.1040	Marking Line Grooved Epoxy 4-inch	LF	3,750	\$2.00	\$7,500
	FEE R/W	Acres	. 2	\$50,000	\$10,000
	TLE R/W	Acres	. 05	\$10,000	\$500
				Total	\$710,700
				Rounded	\$720,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

Option 3 - Single Lane Roundabout

This option will reconstruct the intersection to a single lane roundabout. In final design the exact configuration will be completed.

Limits on STH 21: 54+32 - STA 73+11. Mainline length 1879-ft. Assumptions:

- STA 58+32-69+68. will be reconstructed - based off previous As-built depths
- STA 54+32 - STA 73+11 -2-inch HMA of 4LT58-28S based on FDM: 14-10 Attachment 10.3 WisDOT HMA Mixture Selection Process.
- 5-ft paved shoulders, 5 -ft Gravel at full thickness
- Did not provide grading for Multi-use path
- Lighting lump sum was created by: poles, arms, pull box, Transformer Base, Luminaire LED lights, and Lighting Control Cabinet

Limits on CTH FF: STA $0+00-10+20$. Sideroad lengths: 1020-ft Assumptions:

- STA 22+58-32+44 be reconstructed
- Depth of HMA, 4LT58-28S based on previous as-built
- 3-ft gravel shoulders

Item Number	Item Name	Unit	Quantity	Unit Price	Item Cost
205.0100	Excavation Common	CY	6,200	\$12.00	\$74,400
305.0110	Base Aggregate Dense $3 / 4$ Inch	Tons	400	\$22.00	\$8,800
305.0120	Base Aggregate Dense 1 1⁄4 -Inch	Tons	3,700	\$18.00	\$66,600
415.0090	Concrete Pavement 9-Inch	SY	4,500	\$55.00	\$247,500
416.0512	Concrete Truck Apron 12Inch	SY	457	\$60.00	27,420
460.5244	HMA Pavement 4LT 58-28S	Tons	750	\$70.00	\$52,500
522.1018	Apron Endwalls for Culvert Pipe Reinforced Concrete 18-Inch	Each	8	\$600	\$4,800
608.0318	Storm Sewer Culvert Pipe Reinforced Concrete Class III 18-Inch	LF	120	\$100	\$12,000
601.0411	Concrete Curb \& Gutter 30-Inch Type D	LF	4,562	\$30.00	\$136,860
602.0410	Concrete Sidewalk 5-Inch	SF	11,721	\$10.00	\$117,210
611.1004	Catch Basin 4-ft Diameter	Each	8	\$2,000	\$16,000
625.0500	Salvaged Topsoil	SY	5,000	\$4.00	\$20,000
628.2004	Erosion Mat Class I Type B	SY	5,000	\$1.50	\$7,500
629.0210	Fertilizer Type B	CWT	. 5	\$250.00	\$125
630.0120	Seeding Mixture No. 20	LBS	200	\$25.00	\$5,000
SPV.0120.01	Lighting Slump Sum	LS	1	\$65,000	\$65,000
	FEE R/W	Acres	. 5	\$50,000	\$25,000
				Total	\$886,715
				Rounded	\$900,000

Items that are not included in the estimate:

- Traffic control items
- Mobilization
- Field office
- Incentive Items

These items are not included because they are depended on the entire project. To speculate the percentage of these items for this specific location would be very challenging and most-likely not accurate.

ATTACHMENT E

Safety Mitigation Certification Documentation

IHSDM Crash Prediction Evaluation Report for each alternative

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 \& CTH FF Overlay \& Concrete Repair Base Case

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview 1
Disclaimer Regarding Crash Prediction Method 1
Section Types 3
Rural Two Lane Site Set CPM Evaluation 3

List of Tables

Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites 4
Table Predicted Crash Frequencies and Rates by Site 5
Table Predicted Crash Frequencies by Year (4ST) 5
Table Predicted 4ST Crash Type Distribution 6

Report Overview

Report Generated: Aug 6, 2020 9:10 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:00:20 CDT 2020
IHSDM Version: v15.0.0 (Oct 31, 2019)
Site Set Crash Prediction Module: $v \mid$ ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point
Project Comment: Created Wed Jul 01 13:40:49 CDT 2020
Project Unit System: U.S. Customary

Site Set: CTH FF Intersection Overlay \& Concrete Repair
Site Set Comment: Created Wed Jul 01 13:41:29 CDT 2020
Site Set Version: v3

Evaluation Title: CTH FF Predicted Crashes Overlay \& Concrete Repair
Evaluation Comment: Created Thu Aug 06 08:59:07 CDT 2020
Policy for Superelevation: AASHTO 2011 U.S. Customary
Calibration: WisDOT Calibration_v15-0
Crash Distribution: WisDOT Distributions_v15-0
Model/CMF: WisDOT Models_v15-0
Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to Part C, section A.1.3).
First Year of Analysis: 2027
Last Year of Analysis: 2036
Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM- 1 models, then it may be appropriate to directly compare the results.[Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type
Type: 4ST
Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

Site No.	Type	Highway	Site Description	Major AADT	Minor AADT	$\begin{array}{\|c\|} \hline \text { Number of } \\ \text { Approaches with Left- } \\ \text { Turn Lanes } \\ \hline \end{array}$	Number of Approaches with Right-Turn Lanes Right-Turn Lane	Skew Angle 1 (deg)	$\begin{array}{\|c} \text { Skew Angle } \\ \text { (} \text { (deg) } \end{array}$	Presence of Lighting
1	4ST	$\begin{aligned} & \mathrm{STH} 21 \& \mathrm{CTH} \\ & \mathrm{FF} \end{aligned}$	Overlay \& Concrete Repair	$\begin{aligned} & \text { 2027-2036: } \\ & 11090 \end{aligned}$	$2027: 2118 ; 2028: 2133 ; 2029: 2148 ; 2030: 2162 ; 2031: 2177 ;$ 2032: 2192; 2033: 2207; 2034: 2222; 2035: 2237; 2036; 2251	0	2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Type	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	4ST	STH 21 \& CTH FF	Overlay \& Concrete Repair	18.976	1.8975	0.5806	1.3169	0.39	1.8975
		Total	Total	18.976	1.8975	0.5806	1.3169	0.39	1.8975

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO (\%)
2027	1.86	0.57	30.600	1.29	69.400
2028	1.87	0.57	30.600	1.30	69.400
2029	1.88	0.57	30.600	1.30	69.400
2030	1.89	0.58	30.600	1.31	69.400
2031	1.89	0.58	30.600	1.31	69.400
2032	1.90	0.58	30.600	1.32	69.400
2033	1.91	0.58	30.600	1.32	69.400
2034	1.92	0.59	30.600	1.33	69.400
2035	1.93	0.59	30.600	1.34	69.400
2036	1.93	0.59	30.600	1.34	69.400
Total	18.98	5.81	30.600	13.17	69.400
Average	1.90	0.58	30.600	1.32	69.400

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted 4ST Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (\%)	PDO Crashes	$\begin{aligned} & \text { Percent } \\ & \text { PDO (\%) } \end{aligned}$	Total Crashes	Percent Total (\%)
Intersection	Collision with Animal	0.06	0.3	3.35	17.6	3.41	18.0
Intersection	Collision with Bicycle	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	1.19	6.2	2.84	15.0	4.03	21.2
Intersection	Overturned	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Collision with Pedestrian	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Run Off Road	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Total Single Vehicle Crashes	1.25	6.6	6.19	32.6	7.44	39.2
Intersection	Angle Collision	2.66	14.0	2.83	14.9	5.48	28.9
Intersection	Head-on Collision	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Multiple-vehicle Collision	0.22	1.1	0.28	1.5	0.49	2.6
Intersection	Rear-end Collision	1.25	6.6	2.28	12.0	3.53	18.6
Intersection	Sideswipe	0.44	2.3	1.59	8.4	2.03	10.7
Intersection	Total Multiple Vehicle Crashes	4.56	24.0	6.98	36.8	11.54	60.8
Intersection	Total Intersection Crashes	5.80	30.6	13.16	69.4	18.98	100.0
	Total Crashes	5.80	30.6	13.16	69.4	18.98	100.0

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 \& CTH FF Mainline Left Turn Lanes

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview 1
Disclaimer Regarding Crash Prediction Method 1
Section Types 3
Rural Two Lane Site Set CPM Evaluation 3

List of Tables

Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites 4
Table Predicted Crash Frequencies and Rates by Site 5
Table Predicted Crash Frequencies by Year (4ST) 5
Table Predicted 4ST Crash Type Distribution 6

Report Overview

Report Generated: Aug 6, 2020 9:13 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:01:13 CDT 2020
IHSDM Version: v15.0.0 (Oct 31, 2019)
Site Set Crash Prediction Module: $v \mid$ ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point
Project Comment: Created Wed Jul 01 13:40:49 CDT 2020
Project Unit System: U.S. Customary

Site Set: CTH FF Intersection with STH 21 Left Turn Lanes
Site Set Comment: Copied from CTH FF Intersection Overlay \& Concrete Repair (v3)
Site Set Version: v4

Evaluation Title: CTH FF Predicted Crashes Left Turn Lanes
Evaluation Comment: Created Thu Aug 06 09:00:49 CDT 2020
Policy for Superelevation: AASHTO 2011 U.S. Customary
Calibration: WisDOT Calibration_v15-0
Crash Distribution: WisDOT Distributions_v15-0
Model/CMF: WisDOT Models_v15-0
Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to Part C, section A.1.3).
First Year of Analysis: 2027
Last Year of Analysis: 2036
Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM- 1 models, then it may be appropriate to directly compare the results.[Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type
Type: 4ST
Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

Site No.	Type	Highway	Site Description	Major AADT	Minor AADT	$\begin{array}{\|c\|} \hline \text { Number of } \\ \text { Approaches with Left- } \\ \text { Turn Lanes } \\ \hline \end{array}$	Number of Approaches with Right-Turn Lanes Right-Turn Lane	Skew Angle 1 (deg)	$\begin{array}{\|c} \text { Skew Angle } \\ \text { (} \text { (deg) } \end{array}$	Presence of Lighting
1	4ST	$\begin{aligned} & \mathrm{STH} 21 \& \mathrm{CTH} \\ & \mathrm{FF} \end{aligned}$	Overlay \& Concrete Repair	$\begin{aligned} & \text { 2027-2036: } \\ & 11090 \end{aligned}$	$2027: 2118 ; 2028: 2133 ; 2029: 2148 ; 2030: 2162 ; 2031: 2177 ;$ 2032: 2192; 2033: 2207; 2034: 2222; 2035: 2237; 2036; 2251	2	2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Type	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	4ST	STH 21 \& CTH FF	Overlay \& Concrete Repair	9.867	0.9867	0.3019	0.6848	0.20	0.9867
		Total	Total	9.867	0.9867	0.3019	0.6848	0.20	0.9867

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO (\%)
2027	0.97	0.30	30.600	0.67	69.400
2028	0.97	0.30	30.600	0.68	69.400
2029	0.98	0.30	30.600	0.68	69.400
2030	0.98	0.30	30.600	0.68	69.400
2031	0.98	0.30	30.600	0.68	69.400
2032	0.99	0.30	30.600	0.69	69.400
2033	0.99	0.30	30.600	0.69	69.400
2034	1.00	0.30	30.600	0.69	69.400
2035	1.00	0.31	30.600	0.69	69.400
2036	1.00	0.31	30.600	0.70	69.400
Total	9.87	3.02	30.600	6.85	69.400
Average	0.99	0.30	30.600	0.69	69.400

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted 4ST Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO (\%)	Total Crashes	Percent Total (\%)
Intersection	Collision with Animal	0.03	0.3	1.74	17.6	1.77	18.0
Intersection	Collision with Bicycle	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Single-vehicle Collision	0.62	6.2	1.48	15.0	2.10	21.2
Intersection	Overturned	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Collision with Pedestrian	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Run Off Road	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Total Single Vehicle Crashes	0.65	6.6	3.22	32.6	3.87	39.2
Intersection	Angle Collision	1.38	14.0	1.47	14.9	2.85	28.9
Intersection	Head-on Collision	0.00	0.0	0.00	0.0	0.00	0.0
Intersection	Other Multiple-vehicle Collision	0.11	1.1	0.14	1.5	0.26	2.6
Intersection	Rear-end Collision	0.65	6.6	1.19	12.0	1.83	18.6
Intersection	Sideswipe	0.23	2.3	0.83	8.4	1.06	10.7
Intersection	Total Multiple Vehicle Crashes	2.37	24.0	3.63	36.8	6.00	60.8
Intersection	Total Intersection Crashes	3.02	30.6	6.85	69.4	9.87	100.0
	3.02	30.6	6.85	69.4	9.87	100.0	

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 \& CTH FF
Roundabout Alternative

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview 1
Disclaimer Regarding Crash Prediction Method 1
Section Types 3
Roundabout Site Set CPM Evaluation 3

List of Tables

Table Evaluation and Crash Data (CSD) (if applicable) Roundabout - Homogeneous Sites 4
Table Predicted Crash Frequencies and Rates by Site 5
Table Predicted Crash Frequencies by Year (Roundabout RTL 41R) 5
Table Predicted Roundabout RTL 41R Crash Severity 6
Table Predicted Roundabout RTL 41R Crash Type Distribution 6

Report Overview

Report Generated: Aug 6, 2020 9:14 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:01:52 CDT 2020
IHSDM Version: v15.0.0 (Oct 31, 2019)
Site Set Crash Prediction Module: $v \mid$ ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point
Project Comment: Created Wed Jul 01 13:40:49 CDT 2020
Project Unit System: U.S. Customary

Site Set: CTH FF Intersection Single Lane Roundabout
Site Set Comment: Created Wed Jul 01 14:00:43 CDT 2020
Site Set Version: v2

Evaluation Title: CTH FF Crash Prediction Roundabout
Evaluation Comment: Created Thu Aug 06 09:01:29 CDT 2020
Policy for Superelevation: AASHTO 2011 U.S. Customary
Calibration: WisDOT Calibration_v15-0
Crash Distribution: WisDOT Distributions_v15-0
Model/CMF: WisDOT Models_v15-0
Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to Part C, section A.1.3).
First Year of Analysis: 2027
Last Year of Analysis: 2036
Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM- 1 models, then it may be appropriate to directly compare the results.[Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Roundabout Site Set CPM Evaluation

Site Type

Type: Roundabout RTL 41R
Calibration Factor: RTL 41R $=1.0$

Table 1. Evaluation and Crash Data (CSD) (if applicable) Roundabout - Homogeneous Sites

Site No.	Type	Roundabout	Area Type	Entering AADT
	1	41R-Roundabout with 4 legs and a single circulating lane	STH $21 \&$ CTH FF	Rural

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Type	Roundabout	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	41R - Roundabout with 4 legs and a single circulating lane	STH 21 \& CTH FF		18.011	1.8011	0.2360	1.5651	0.81	1.8011
		Total	Total	18.011	1.8011	0.2360	1.5651	0.81	1.8011

Table 3. Predicted Crash Frequencies by Year (Roundabout RTL 41R)

Year	Total Crashes	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO (\%)
2027	1.80	0.23	13.097	1.56	86.903
2028	1.80	0.24	13.098	1.56	86.901
2029	1.80	0.24	13.100	1.56	86.900
2030	1.80	0.24	13.101	1.56	86.898
2031	1.80	0.24	13.103	1.56	86.897
2032	1.80	0.24	13.104	1.56	86.895
2033	1.80	0.24	13.106	1.57	86.894
2034	1.80	0.24	13.107	1.57	86.893
2035	1.80	0.24	13.109	1.57	86.891
2036	1.80	0.24	13.110	1.57	86.890
Total	18.01	2.36	13.104	15.65	86.896
Average	1.80	0.24	13.104	1.56	86.896

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted Roundabout RTL 41R Crash Severity

Site No.	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)
1	0.0178	0.1766	1.1362	1.0295	15.6510
Total	0.0178	0.1766	1.1362	1.0295	15.6510

Table 5. Predicted Roundabout RTL 41R Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO $(\%)$	Total Crashes				
Potal (\%)							$	$	Percent	
---:	:---									
Intersection	Collision with Animal									

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 \& Sand Pit Road
Overlay \& Concrete Repair Base Case

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview 1
Disclaimer Regarding Crash Prediction Method 1
Section Types 3
Rural Two Lane Site Set CPM Evaluation 3

List of Tables

Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites 4
Table Predicted Crash Frequencies and Rates by Site 4
Table Predicted Crash Frequencies by Year (4ST) 5
Table Predicted 4ST Crash Type Distribution 6

Report Overview

Report Generated: Aug 6, 2020 9:16 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:02:36 CDT 2020
IHSDM Version: v15.0.0 (Oct 31, 2019)
Site Set Crash Prediction Module: $v \mid$ ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point
Project Comment: Created Wed Jul 01 13:40:49 CDT 2020
Project Unit System: U.S. Customary

Site Set: Sand Pit Road Intersection Overlay \& Concrete Repair
Site Set Comment: Created Wed Jul 01 15:29:11 CDT 2020
Site Set Version: v2

Evaluation Title: Sand Pit Predicted Crashes Overlay and Concrete Repair
Evaluation Comment: Created Thu Aug 06 09:02:06 CDT 2020
Policy for Superelevation: AASHTO 2011 U.S. Customary
Calibration: WisDOT Calibration_v15-0
Crash Distribution: WisDOT Distributions_v15-0
Model/CMF: WisDOT Models_v15-0
Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to Part C, section A.1.3).
First Year of Analysis: 2027
Last Year of Analysis: 2036
Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM- 1 models, then it may be appropriate to directly compare the results.[Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type
Type: 4ST
Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

Site No.	Type	Highway	Site Description	Major AADT	Minor Aadt	Number of Approaches with Left-Turn Lanes	Number of Approaches with Right-Turn Lane	$\underset{1(\mathrm{deg})}{\text { Skew Angle }}$	$\begin{array}{\|c} \text { Skew Angle } \\ 2 \text { (deg) } \end{array}$	Presence of Lighting
1	4ST	Sand Pit Road		$\begin{aligned} & \text { 2027-2036: } \\ & 14340 \end{aligned}$	2027: 1259; 2028: 1266; 2029: 1274; 2030: 1281; 2031: 1288; 2032: 1296; 2033: 1303; 2034: 1311; 2035: 1318; 2036: 1325	0	2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Type	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	4ST	Sand Pit Road		16.070	1.6071	0.4918	1.1153	0.28	1.6071
		Total	Total	16.070	1.6071	0.4918	1.1153	0.28	1.6071

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO (\%)
2027	1.58	0.48	30.600	1.10	69.400
2028	1.59	0.49	30.600	1.10	69.400
2029	1.59	0.49	30.600	1.11	69.400
2030	1.60	0.49	30.600	1.11	69.400
2031	1.60	0.49	30.600	1.11	69.400
2032	1.61	0.49	30.600	1.12	69.400
2033	1.61	0.49	30.600	1.12	69.400
2034	1.62	0.50	30.600	1.12	69.400
2035	1.63	0.50	30.600	1.13	69.400
2036	1.63	0.50	30.600	1.13	69.400
Total	16.07	4.92	30.600	11.15	69.400
Average	1.61	0.49	30.600	1.11	69.400

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted 4ST Crash Type Distribution

| Element Type | Crash Type | FI
 Crashes | Percent
 FI (\%) | PDO
 Crashes | Percent
 PDO (\%) | Total
 Crashes |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Percent | | | | | | |
| Total (\%) | | | | | | |$|$

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report STH 21 \& Sand Pit Road Mainline Left Turns Alternative

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview 1
Disclaimer Regarding Crash Prediction Method 1
Section Types 3
Rural Two Lane Site Set CPM Evaluation 3

List of Tables

Table Evaluation and Crash Data (CSD) (if applicable) Intersection Sites 4
Table Predicted Crash Frequencies and Rates by Site 4
Table Predicted Crash Frequencies by Year (4ST) 5
Table Predicted 4ST Crash Type Distribution 6

Report Overview

Report Generated: Aug 6, 2020 9:16 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:03:12 CDT 2020
IHSDM Version: v15.0.0 (Oct 31, 2019)
Site Set Crash Prediction Module: $v \mid$ ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point
Project Comment: Created Wed Jul 01 13:40:49 CDT 2020
Project Unit System: U.S. Customary

Site Set: Sand Pit Road Intersection STH 21 Left Turn Lanes
Site Set Comment: Copied from Sand Pit Road Intersection Overlay \& Concrete Repair (v2)
Site Set Version: v2

Evaluation Title: Sand Pit Predicted Crashes Left Turn Lanes
Evaluation Comment: Created Thu Aug 06 09:02:51 CDT 2020
Policy for Superelevation: AASHTO 2011 U.S. Customary
Calibration: WisDOT Calibration_v15-0
Crash Distribution: WisDOT Distributions_v15-0
Model/CMF: WisDOT Models_v15-0
Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to Part C, section A.1.3).
First Year of Analysis: 2027
Last Year of Analysis: 2036
Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM- 1 models, then it may be appropriate to directly compare the results.[Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Rural Two Lane Site Set CPM Evaluation

Site Type
Type: 4ST
Calibration Factor: 1

Table 1. Evaluation and Crash Data (CSD) (if applicable) Intersection Sites

Site No.	Type	Highway	Site Description	Major AADT	Minor Aadt	Number of Approaches with Left-Turn Lanes	Number of Approaches with Right-Turn Lane	$\underset{1(\mathrm{deg})}{\text { Skew Angle }}$	$\begin{array}{\|c} \text { Skew Angle } \\ 2 \text { (deg) } \end{array}$	Presence of Lighting
1	4ST	Sand Pit Road		$\begin{aligned} & \text { 2027-2036: } \\ & 14340 \end{aligned}$	2027: 1259; 2028: 1266; 2029: 1274; 2030: 1281; 2031: 1288; 2032: 1296; 2033: 1303; 2034: 1311; 2035: 1318; 2036: 1325		2	0.0000	0.0000	no

Table 2. Predicted Crash Frequencies and Rates by Site

Site No.	Type	Highway	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	4ST	Sand Pit Road		8.357	0.8357	0.2557	0.5800	0.15	0.8357
		Total	Total	8.357	0.8357	0.2557	0.5800	0.15	0.8357

Table 3. Predicted Crash Frequencies by Year (4ST)

Year	Total Crashes	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO (\%)
2027	0.82	0.25	30.600	0.57	69.400
2028	0.82	0.25	30.600	0.57	69.400
2029	0.83	0.25	30.600	0.57	69.400
2030	0.83	0.25	30.600	0.58	69.400
2031	0.83	0.26	30.600	0.58	69.400
2032	0.84	0.26	30.600	0.58	69.400
2033	0.84	0.26	30.600	0.58	69.400
2034	0.84	0.26	30.600	0.58	69.400
2035	0.85	0.26	30.600	0.59	69.400
2036	0.85	0.26	30.600	0.59	69.400
Total	8.36	2.56	30.600	5.80	69.400
Average	0.84	0.26	30.600	0.58	69.400

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted 4ST Crash Type Distribution

| Element Type | Crash Type | FI
 Crashes | Percent
 FI (\%) | PDO
 Crashes | Percent
 PDO (\%) | Total
 Crashes |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Percent | | | | | | |
| Total (\%) | | | | | | |$|$

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Interactive Highway Safety Design Model

Crash Prediction Evaluation Report

STH 21 \& Sand Pit Road Roundabout Alternative

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview 1
Disclaimer Regarding Crash Prediction Method 1
Section Types 3
Roundabout Site Set CPM Evaluation 3

List of Tables

Table Evaluation and Crash Data (CSD) (if applicable) Roundabout - Homogeneous Sites 4
Table Predicted Crash Frequencies and Rates by Site 5
Table Predicted Crash Frequencies by Year (Roundabout RTL 41R) 5
Table Predicted Roundabout RTL 41R Crash Severity 6
Table Predicted Roundabout RTL 41R Crash Type Distribution 6

Report Overview

Report Generated: Aug 6, 2020 9:18 AM

Report Template: System: Multi-Page, 508 Compliant [System] (sscpm4, Jan 20, 2020 2:20 PM)

Evaluation Date: Thu Aug 06 09:03:53 CDT 2020
IHSDM Version: v15.0.0 (Oct 31, 2019)
Site Set Crash Prediction Module: $v \mid$ ModuleInfo.moduleVersion| (|ModuleInfo.moduleDate|)

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 from STH 116 to Leonard Point
Project Comment: Created Wed Jul 01 13:40:49 CDT 2020
Project Unit System: U.S. Customary

Site Set: Sand Pit Road Intersection Roundabout
Site Set Comment: Copied from Sand Pit Road Intersection STH 21 Left Turn Lanes (v2)
Site Set Version: v4

Evaluation Title: Sand Pit Predicted Crashes Roundabout
Evaluation Comment: Created Thu Aug 06 09:03:27 CDT 2020
Policy for Superelevation: AASHTO 2011 U.S. Customary
Calibration: WisDOT Calibration_v15-0
Crash Distribution: WisDOT Distributions_v15-0
Model/CMF: WisDOT Models_v15-0
Note: A Model Data Set other than the HSM (Highway Safety Manual) Configuration was selected for this Evaluation. If Crash Modification Factors (CMFs) were modified, then the results will not be in accordance with the HSM (see HSM Appendix to Part C, section A.1.3).
First Year of Analysis: 2027
Last Year of Analysis: 2036
Empirical-Bayes Analysis: None

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State

Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.
- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM- 1 models, then it may be appropriate to directly compare the results.[Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

Section Types

Roundabout Site Set CPM Evaluation

Site Type

Type: Roundabout RTL 41R
Calibration Factor: RTL 41R $=1.0$

Table 1. Evaluation and Crash Data (CSD) (if applicable) Roundabout - Homogeneous Sites

Site No.	Type	Roundabout	Area Type	Entering AADT
	4IR - Roundabout with 4 legs and a single circulating lane	Sand Pit Road	Rural	Leg 1:2027: 629; 2028: 633; 2029: 637; 2030: 640; 2031: 644; 2032: 648; 2033: 651; 2034: 655; 2035: 659; 2036: 662; Leg 2:2027-2036: 7170; Leg 3:2027: 629; 2028: 633; 2029: 637; 2030: 640; 2031: 644; 2032: 648; 2033: 651; 2034: 655; 2035: 659; 2036: 662; Leg 4:2027-2036: 7170

Table 2. Predicted Crash Frequencies and Rates by Site

$\begin{aligned} & \text { Site } \\ & \text { No. } \end{aligned}$	Type	Roundabout	Site Description	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Intersection Travel Crash Rate (crashes/million veh)	Intersection Crash Rate (crashes/yr)
1	41R - Roundabout with 4 legs and a single circulating lane	Sand Pit Road		21.610	2.1610	0.2965	1.8645	0.76	2.1610
		Total	Total	21.610	2.1610	0.2965	1.8645	0.76	2.1610

Table 3. Predicted Crash Frequencies by Year (Roundabout RTL 41R)

Year	Total Crashes	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO (\%)
2027	2.16	0.30	13.715	1.86	86.285
2028	2.16	0.30	13.716	1.86	86.284
2029	2.16	0.30	13.717	1.86	86.282
2030	2.16	0.30	13.718	1.86	86.282
2031	2.16	0.30	13.720	1.86	86.280
2032	2.16	0.30	13.721	1.86	86.279
2033	2.16	0.30	13.722	1.86	86.278
2034	2.16	0.30	13.723	1.87	86.277
2035	2.16	0.30	13.725	1.87	86.275
2036	2.16	0.30	13.726	1.87	86.275
Total	21.61	2.96	13.720	18.64	86.280
Average	2.16	0.30	13.720	1.86	86.280

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

Table 4. Predicted Roundabout RTL 41R Crash Severity

Site No.	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)
1	0.0191	0.1898	1.2209	1.5353	18.6452
Total	0.0191	0.1898	1.2209	1.5353	18.6452

Table 5. Predicted Roundabout RTL 41R Crash Type Distribution

Element Type	Crash Type	FI Crashes	Percent FI (\%)	PDO Crashes	Percent PDO $(\%)$	Total Crashes				
Potal (\%)							$	$	Percent	
---:	:---									
Intersection	Collision with Animal									

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

ATTACHMENT E

Safety Mitigation Certification Documentation

IHSDM Economic Analysis Report

Interactive Highway Safety Design Model

Economic Analysis Report

STH 21 \& CTH FF

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Economic Analysis Report 1
Configuration Summary 2
Analysis Output Summary 5
Crash Cost Data 6
Overlay and Concrete Repairs Data 6
STH 21 Left Turn Lanes Added Data 8
STH 21 \& CTH FF Roundabout Data 10
Evaluation Message 13

List of Tables

Table Economic Analysis Configuration 2
Table RTL Segment FI Proportion Data 2
Table RTL Intersection FI Proportion Data 3
Table RML Segment FI Proportion Data 3
Table RML Intersection FI Proportion Data 3
Table USA Segment FI Proportion Data 4
Table USA Intersection FI Proportion Data 4
Table Case Cost Summary 5
Table Case Crash Summary 5
Table Overlay and Concrete Repairs Evaluation Cost 7
Table Overlay and Concrete Repairs Evaluation Crashes 8
Table CTH FF Intersection Overlay \& Concrete Repair Facility Type Crashes 8
Table STH 21 Left Turn Lanes Added Evaluation Cost 9
Table STH 21 Left Turn Lanes Added Evaluation Crashes 10
Table CTH FF Intersection with STH 21 Left Turn Lanes Facility Type Crashes 10
Table STH 21 \& CTH FF Roundabout Evaluation Cost 11
Table STH 21 \& CTH FF Roundabout Evaluation Crashes 12
Table CTH FF Intersection Single Lane Roundabout Facility Type Crashes 12

Economic Analysis Report

Economic Analysis Report Overview

Report Generated: Aug 6, 2020 9:19 AM
Report Template: System: Multi-Page [System] (eam2, Jan 20, 2020 2:20 PM)

Evaluation Title: EAAnalysis Updated 8/6/2020
Evaluation Comment: Created Thu Aug 06 09:06:21 CDT 2020
Evaluation Date: Thu Aug 06 09:06:46 CDT 2020

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 \& CTH FF Evaluation
Project Comment: Created Wed Jul 01 14:29:10 CDT 2020

Configuration Summary

Crash Cost Configuration: WisDOT Economics_v15-0
Configuration Comment: WisDOT Crash Costs

Table 1. Economic Analysis Configuration

Configuration Data	
Crash Unit Cost Zero Year	2016
Crash Cost Index	0.00
Discount Rate	0.03
KABCO Unit Costs	$\mathbf{1 0 , 8 9 7 , 5 8 0 . 0 0}$
K Cost (\$/Crash)	$\mathbf{6 1 3 , 7 8 1 . 0 0}$
A Cost (\$/Crash)	$\mathbf{1 9 4 , 0 2 2 . 0 0}$
B Cost (\$/Crash)	$\mathbf{1 1 0 , 8 3 0 . 0 0}$
C Cost (\$/Crash)	$\mathbf{1 0 , 1 7 3 . 0 0}$

Table 2. RTL Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI $(\%)$	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Two-Lane Undivided	3.502	12.638	43.370	40.490

Table 3. RTL Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Three-Legged w/STOP control	3.070	15.070	42.380	39.480
Four-Legged w/STOP control	3.980	15.280	42.860	37.880
Four-Legged Signalized	2.960	11.750	35.290	50.000

Table 4. RML Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Four-Lane Undivided	3.502	12.638	43.370	40.490
Four-Lane Divided	3.502	12.638	43.370	40.490

Table 5. RML Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Three-Legged w/STOP control	4.090	14.090	40.630	41.190
Four-Legged w/STOP control	4.710	15.910	41.990	37.390
Four-Legged Signalized	0.600	10.010	37.180	52.210

Table 6. USA Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Two-Lane Undivided	1.012	5.785	33.011	60.192
Three-Lane w/Center TWLTL	1.012	5.785	33.011	60.192
Four-Lane Undivided	1.012	5.785	33.011	60.192
Four-Lane Divided	1.012	5.785	33.011	60.192
Five-Lane w/Center TWLTL	1.012	5.785	33.011	60.192

Table 7. USA Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Three-Legged w/STOP control	0.744	6.558	36.725	55.973
Three-Legged Signalized	0.451	4.957	32.024	62.568
Four-Legged w/STOP control	0.864	6.637	38.161	54.338
Four-Legged Signalized	0.715	5.263	32.359	61.663

Analysis Output Summary

Analysis Type: Benefit/Cost

Table 8. Case Cost Summary

Is Base Case	Title	Present Value of Crash Cost $\mathbf{(\$)}$	Present Value of Other Cost $\mathbf{(\$)}$	Net Present Value of Benefits (B) $\mathbf{(\$)}$	Net Present Value of Costs (C) $\mathbf{(\$)}$	Present Value of Net Benefit (B-C) $\mathbf{(\$)}$	Benefit Cost Ratio $(\mathbf{B} / \mathbf{C})$
Yes	Overlay and Concrete Repairs	$3,443,820.60$	$170,000.00$				
	STH 21 Left Turn Lanes Added	$1,790,786.71$	$830,000.00$	$1,653,033.89$	$660,000.00$	$993,033.89$	2.5046
	STH 21 \& CTH FF Roundabout	$698,966.63$	$950,000.00$	$2,744,853.97$	$780,000.00$	$1,964,853.97$	3.5190

Table 9. Case Crash Summary

Is Base Case	Title	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Yes	Overlay and Concrete Repairs	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755
	STH 21 Left Turn Lanes Added	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672
	STH 21 \& CTH FF Roundabout	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111

Crash Cost Data

Overlay and Concrete Repairs Data

Case Title: Overlay and Concrete Repairs
Is Base Case: true
Present Value of Crash Cost: $3,443,820.60$
Present Value of Other Cost: 170,000.00

Table 10. Overlay and Concrete Repairs Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
$6180-30-00$, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Overlay \& Concrete Repair	CTH FF Predicted Crashes Overlay \& Concrete Repair	$3,443,820.60$
Total			$3,443,820.60$

Table 11. Overlay and Concrete Repairs Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) $\begin{array}{c}\text { Crashes } \\ \text { (crashes) }\end{array}$	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Overlay \& Concrete Repair	CTH FF Predicted Crashes Overlay \& Concrete Repair	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755
Total			0.2311	0.8872	2.4887	2.1995	13.1690	18.9755

Table 12. CTH FF Intersection Overlay \& Concrete Repair Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (0) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755
Total	0.2311	0.8872	2.4887	2.1995	13.1690	18.9755

STH 21 Left Turn Lanes Added Data

Case Title: STH 21 Left Turn Lanes Added
Is Base Case: false
Present Value of Crash Cost: $1,790,786.71$
Present Value of Other Cost: 830,000.00

Table 13. STH 21 Left Turn Lanes Added Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost $(\$)$
$6180-30-00$, STH 21 from STH 116 to Leonard Point	CTH FF Intersection with STH 21 Left Turn Lanes	CTH FF Predicted Crashes Left Turn Lanes	$1,790,786.71$
Total			$1,790,786.71$

Table 14. STH 21 Left Turn Lanes Added Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	$\begin{aligned} & \text { No Injury (O) } \\ & \text { Crashes } \\ & \text { (crashes) } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Total Crashes } \\ \text { (crashes) } \end{array}$
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection with STH 21 Left Turn Lanes	CTH FF Predicted Crashes Left Turn Lanes	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672
Total			0.1202	0.4614	1.2941	1.1437	6.8479	9.8672

Table 15. CTH FF Intersection with STH 21 Left Turn Lanes Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672
Total	0.1202	0.4614	1.2941	1.1437	6.8479	9.8672

STH 21 \& CTH FF Roundabout Data

Case Title: STH 21 \& CTH FF Roundabout
Is Base Case: false
Present Value of Crash Cost: 698,966.63
Present Value of Other Cost: $950,000.00$

Table 16. STH 21 \& CTH FF Roundabout Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Single Lane Roundabout	CTH FF Crash Prediction	
Total			$698,966.63$
Roundabout			

Table 17. STH 21 \& CTH FF Roundabout Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	$\begin{array}{\|c\|} \hline \text { No Injury (0) } \\ \text { Crashes } \\ \text { (crashes) } \\ \hline \end{array}$	$\begin{gathered} \text { Total Crashes } \\ \text { (crashes) } \end{gathered}$
6180-30-00, STH 21 from STH 116 to Leonard Point	CTH FF Intersection Single Lane Roundabout	CTH FF Crash Prediction Roundabout	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111
Total			0.0178	0.1766	1.1362	1.0295	15.6510	18.011

Table 18. CTH FF Intersection Single Lane Roundabout Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Roundabout	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111
Total	0.0178	0.1766	1.1362	1.0295	15.6510	18.0111

Evaluation Message

Interactive Highway Safety Design Model

 Economic Analysis Report
STH 21 \& Sand Pit Road

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Economic Analysis Report 1
Configuration Summary 2
Analysis Output Summary 5
Crash Cost Data 7
Sand Pit Overylay \& Concrete Repair Data 7
Sand Pit STH 21 Left Turn Lanes Data 9
Sand Pit Road Roundabout Data 11
Evaluation Message 14
List of Tables
Table Economic Analysis Configuration 2
Table RTL Segment FI Proportion Data 2
Table RTL Intersection FI Proportion Data 3
Table RML Segment FI Proportion Data 3
Table RML Intersection FI Proportion Data 3
Table USA Segment FI Proportion Data 4
Table USA Intersection FI Proportion Data 4
Table Case Cost Summary 6
Table Case Crash Summary 6
Table Sand Pit Overylay \& Concrete Repair Evaluation Cost 8
Table Sand Pit Overylay \& Concrete Repair Evaluation Crashes 9
Table Sand Pit Road Intersection Overlay \& Concrete Repair Facility Type Crashes 9
Table Sand Pit STH 21 Left Turn Lanes Evaluation Cost 10
Table Sand Pit STH 21 Left Turn Lanes Evaluation Crashes 11
Table Sand Pit Road Intersection STH 21 Left Turn Lanes Facility Type Crashes 11
Table Sand Pit Road Roundabout Evaluation Cost 12
Table Sand Pit Road Roundabout Evaluation Crashes 13
Table Sand Pit Road Intersection Roundabout Facility Type Crashes 13

Economic Analysis Report

Economic Analysis Report Overview

Report Generated: Aug 6, 2020 10:05 AM
Report Template: System: Multi-Page [System] (eam2, Jan 20, 2020 2:20 PM)

Evaluation Title: EAAnalysis 4 Updated 8/6/2020
Evaluation Comment: Created Thu Aug 06 10:04:25 CDT 2020
Evaluation Date: Thu Aug 06 10:04:44 CDT 2020

User Name: Scott Nelson
Organization Name: WisDOT NE Region
Phone: 920.366.2109
E-Mail: scott.nelson@dot.wi.gov

Project Title: 6180-30-00, STH 21 \& Sand Pit Road Evaluation
Project Comment: Created Wed Jul 01 16:09:50 CDT 2020

Configuration Summary

Crash Cost Configuration: WisDOT Economics_v15-0
Configuration Comment: WisDOT Crash Costs

Table 1. Economic Analysis Configuration

Configuration Data	
Crash Unit Cost Zero Year	2016
Crash Cost Index	0.00
Discount Rate	0.03
KABCO Unit Costs	$\mathbf{1 0 , 8 9 7 , 5 8 0 . 0 0}$
K Cost (\$/Crash)	$\mathbf{6 1 3 , 7 8 1 . 0 0}$
A Cost (\$/Crash)	$\mathbf{1 9 4 , 0 2 2 . 0 0}$
B Cost (\$/Crash)	$\mathbf{1 1 0 , 8 3 0 . 0 0}$
C Cost (\$/Crash)	$\mathbf{1 0 , 1 7 3 . 0 0}$

Table 2. RTL Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI $(\%)$	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Two-Lane Undivided	3.502	12.638	43.370	40.490

Table 3. RTL Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Three-Legged w/STOP control	3.070	15.070	42.380	39.480
Four-Legged w/STOP control	3.980	15.280	42.860	37.880
Four-Legged Signalized	2.960	11.750	35.290	50.000

Table 4. RML Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Four-Lane Undivided	3.502	12.638	43.370	40.490
Four-Lane Divided	3.502	12.638	43.370	40.490

Table 5. RML Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Three-Legged w/STOP control	4.090	14.090	40.630	41.190
Four-Legged w/STOP control	4.710	15.910	41.990	37.390
Four-Legged Signalized	0.600	10.010	37.180	52.210

Table 6. USA Segment FI Proportion Data

Segment Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Two-Lane Undivided	1.012	5.785	33.011	60.192
Three-Lane w/Center TWLTL	1.012	5.785	33.011	60.192
Four-Lane Undivided	1.012	5.785	33.011	60.192
Four-Lane Divided	1.012	5.785	33.011	60.192
Five-Lane w/Center TWLTL	1.012	5.785	33.011	60.192

Table 7. USA Intersection FI Proportion Data

Intersection Type	Fatal Crash (K) Proportion of FI (\%)	Incapacitating Injury Crash (A) Proportion of FI (\%)	Non-incapacitating Injury Crash (B) Proportion of FI (\%)	Possible Injury Crash (C) Proportion of FI (\%)
Three-Legged w/STOP control	0.744	6.558	36.725	55.973
Three-Legged Signalized	0.451	4.957	32.024	62.568
Four-Legged w/STOP control	0.864	6.637	38.161	54.338
Four-Legged Signalized	0.715	5.263	32.359	61.663

Analysis Output Summary

Analysis Type: Benefit/Cost

Table 8. Case Cost Summary

Is Base Case	Title	Present Value of Crash Cost (\$)	Present Value of Other Cost (\$)	Net Present Value of Benefits (B) (\$)	Net Present Value of Costs (C) $(\$)$	Present Value of Net Benefit (B-C) (\$)	Benefit Cost Ratio (B/C)
Yes	Sand Pit Overylay \& Concrete Repair	2,917,076.43	170,000.00				
	Sand Pit STH 21 Left Turn Lanes	1,516,879.75	720,000.00	1,400,196.68	550,000.00	850,196.68	2.5458
	Sand Pit Road Roundabout	809,019.74	900,000.00	2,108,056.68	730,000.00	1,378,056.68	2.8878

Table 9. Case Crash Summary

Is Base Case	Title	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Yes	Sand Pit Overylay \& Concrete Repair	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705
	Sand Pit STH 21 Left Turn Lanes	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567
	Sand Pit Road Roundabout	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102

Crash Cost Data

Sand Pit Overylay \& Concrete Repair Data

Case Title: Sand Pit Overylay \& Concrete Repair
Is Base Case: true
Present Value of Crash Cost: 2,917,076.43
Present Value of Other Cost: 170,000.00

Table 10. Sand Pit Overylay \& Concrete Repair Evaluation Cost

| Project or Interchange | Selected Facility | Selected Evaluation |
| :---: | :--- | :--- | :--- |
| $6180-30-00$, STH 21 from STH 116 to Leoonard Point | Sand Pit Road Intersection Overlay \& Concrete Repair | |
| Total | | Sand Pit Predicted Crashes Overlay Crash Cost (\$) |

Table 11. Sand Pit Overylay \& Concrete Repair Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	$\begin{gathered} \text { No Injury (O) } \\ \begin{array}{c} \text { Crashes } \\ \text { (crashes) } \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|l} \text { Total Crashes } \\ \text { (crashes) } \end{array}$
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection Overlay \& Concrete Repair	Sand Pit Predicted Crashes Overlay and Concrete Repair	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705
Total			0.1957	0.7514	2.1077	1.8628	11.1530	16.0705

Table 12. Sand Pit Road Intersection Overlay \& Concrete Repair Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705
Total	0.1957	0.7514	2.1077	1.8628	11.1530	16.0705

Sand Pit STH 21 Left Turn Lanes Data

Case Title: Sand Pit STH 21 Left Turn Lanes
Is Base Case: false
Present Value of Crash Cost: $1,516,879.75$
Present Value of Other Cost: 720,000.00

Table 13. Sand Pit STH 21 Left Turn Lanes Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection STH 21 Left Turn Lanes	Sand Pit Predicted Crashes Left Turn Lanes	$1,516,879.75$
Total			$1,516,879.75$

Table 14. Sand Pit STH 21 Left Turn Lanes Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	$\begin{array}{\|c} \text { No Injury (} \mathbf{O} \text { (} \\ \begin{array}{c} \text { Crashes } \\ \text { (crashes) } \end{array} \\ \hline \end{array}$	Total Crashes (crashes)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection STH 21 Left Turn Lanes	Sand Pit Predicted Crashes Left Turn Lanes	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567
Total			0.1018	0.3907	1.0960	0.9686	5.7995	8.3567

Table 15. Sand Pit Road Intersection STH 21 Left Turn Lanes Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Rural Two-Lane Intersection	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567
Total	0.1018	0.3907	1.0960	0.9686	5.7995	8.3567

Sand Pit Road Roundabout Data

Case Title: Sand Pit Road Roundabout
Is Base Case: false
Present Value of Crash Cost: 809,019.74
Present Value of Other Cost: $900,000.00$

Table 16. Sand Pit Road Roundabout Evaluation Cost

Project or Interchange	Selected Facility	Selected Evaluation	Present Value of Crash Cost (\$)
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection Roundabout	Sand Pit Predicted Crashes Roundabout	$809,019.74$
Total			$809,019.74$

Table 17. Sand Pit Road Roundabout Evaluation Crashes

Project or Interchange	Selected Facility	Selected Evaluation	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	$\begin{gathered} \text { No Injury (O) } \\ \text { Crashes } \\ \text { (crashes) } \end{gathered}$	$\begin{array}{\|l\|} \text { Total Crashes } \\ \text { (crashes) } \end{array}$
6180-30-00, STH 21 from STH 116 to Leonard Point	Sand Pit Road Intersection Roundabout	Sand Pit Predicted Crashes Roundabout	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102
Total			0.0191	0.1897	1.2204	1.5359	18.6452	21.6102

Table 18. Sand Pit Road Intersection Roundabout Facility Type Crashes

Facility Type	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	Total Crashes (crashes)
Roundabout	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102
Total	0.0191	0.1897	1.2204	1.5359	18.6452	21.6102

Evaluation Message

Wisconsin Department of Transportation Traffic Signal Warrant Summary Worksheet

The Worksheet(s) attached are provided as an attachment to the Engineering Investigation Study for:

Intersection: WIS 21 \& Sand Pit Road
County: Winnebago
Select one:

Major Street: WIS 21		Minor Street: Sand Pit Road	
Critical Approach Speed:	55 mph	Critical Approach Speed:	55 mph
Lanes:	1 lane		Lanes:

\% Right Turns Included	In built-up area of isolated community of < 10,000 population? Yes
From North (SB) 100%	Total number of approaches at intersection? 4 or more
From East (WB) 0%	If it is a "T" intersection, inflate minor threshold to 150% ? No
From South (NB) 100%	Manually set volume level? No
From West (EB) 0%	

Warrant Evaluation Summary	Warrant Met:
Warrant 1: Eight - Hour Vehicular Volume	No
Condition A: Minimum Vehicular Volume Condition B: Interruption of Continuous Traffic Condition C: Combination: 80% of A and B	No
Warrant 2: Four-Hour Volume	No
Warrant 3: Peak Hour Volume	No
Warrant 4: Pedestrian Volume	No
Criterion A: Four-Hour	N/A
Warrant 5: School Crossing	N/A
Warrant 6: Coordinated Signal System	N/A
Warrant 7: Crash Experience	N/A
Warrant 8: Roadway Network	Yes
Warrant 9: Intersection Near a Grade Crossing	N/A

Warrant Analysis Conducted By:

Name: Randy Asman
Agency: WisDOT

Date: $1 / 23 / 2020$

Warrant 4: Pedestrian Volume

Warrant Evaluated?

Criterion A: Four Hour

Hour (Start)	Pedestrian Volume	Major Road Vol.
		0
		0
		0
		0

Manually Set Major Rd Vol?
Avg. walk speed less than $3.5 \mathrm{ft} / \mathrm{s}$?

Criterion A Satisfied?

Criterion B: Peak Hour

Peak Hour	Pedestrian Vol.	Major Road Vol.
$0: 00$	0	0

Criterion B Satisfied?

Warrant Satisfied? N/A
Manually Set To:

Figure 4C-8 Warrant 4, Pedestrian Peak Hour (70\% Factor)

$\cup \sim$	500	1000	1500	2000

Warrant 5: School Crossing				70\%
	Warrant Evaluated?	Warrant Satisfied? N/A	Manually Set	
Criteria				Fulfilled?
1	There are a MINIMUM of 20 school	hest crossing hour.		
2	There are fewer adequate gaps in t using the crossing than the number	ream during the period whe period.	ool children are	
3	The nearest traffic signal along the within 300 ft but the proposed traffic	ore than 300 ft away. Or, th t the progressive movemen	t traffic signal is c.	

Warrant 6: Coordinated Signal System

Warrant Evaluated? \quad Warrant Satisfied? N/A Manually Set To:
Criteria
1
:---
2
3

Warrant 8: Roadway Network

2	Rural or suburban highway outside of, entering, or traversing a city

3 Appears as a major route on an official plan

Warrant 9: Intersection Near a Grade Crossing

Manually Set To:

| Adjustment Factors | | | | Manually Set Peak Hour? | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rail Traffic
 per Day | \% High Occupancy
 Buses on Minor Road | \% Tractor-Trailer Trucks
 on Minor Road | D | Peak Hour | Major
 Road Vol. | Minor Road
 Vol. | Adjusted
 Minor Vol. |
| 1 | 0 | 0% to 2.5% | 660 | $16: 00$ | 980 | 48 | 16.08 |

Conclusions/Comments:

Updated: 12/6/2017

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2027	North/South Street	Sand Pit Road
Time Analyzed	AM Peak Existing Geometry	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0	
Configuration		LT		R		LT		R			LTR				LTR		
Volume (veh/h)		4	557	14		6	262	11		6	14	4		83	46	13	
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (\%)									0				0				
Right Turn Channelized	No				No												
Median Type \\| Storage	Undivided																

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2027	North/South Street	Sand Pit Road
Time Analyzed	PM Peak Existing Geometry	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0
Configuration		LT		R		LT		R			LTR				LTR	
Volume (veh/h)		16	436	10		11	527	86		7	34	12		30	22	6
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized	No				No											
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	17				12					58				63	
Capacity, c (veh/h)	918				1073					204				174	
v/c Ratio	0.02				0.01					0.28				0.36	
95\% Queue Length, Q ${ }_{95}$ (veh)	0.1				0.0					1.1				1.5	
Control Delay (s/veh)	9.0				8.4					29.5				37.1	
Level of Service (LOS)	A				A					D				E	
Approach Delay (s/veh)		0.5				0.3				29.5				37.1	
Approach LOS										D				E	

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2047	North/South Street	Sand Pit Road
Time Analyzed	AM Peak Existing Geometry	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0
Configuration		LT		R		LT		R			LTR				LTR	
Volume (veh/h)		5	583	16		7	276	14		7	19	4		103	64	16
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized	No				No											
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2047	North/South Street	Sand Pit Road
Time Analyzed	PM Peak Existing Geometry	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	1	1		0	1	0		0	1	0	
Configuration		LT		R		LT		R			LTR				LTR		
Volume (veh/h)		21	458	12		13	547	107		9	47	14		36	31	8	
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (\%)									0				0				
Right Turn Channelized	No				No												
Median Type \\| Storage	Undivided																

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2027	North/South Street	Sand Pit Road
Time Analyzed	AM Peak LTLs	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0
Configuration		L	T	R		L	T	R			LTR				LTR	
Volume (veh/h)		4	557	14		6	262	11		6	14	4		83	46	13
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized	No				No											
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2027	North/South Street	Sand Pit Road
Time Analyzed	PM Peak LTLs	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0	
Configuration		L	T	R		L	T	R			LTR				LTR		
Volume (veh/h)		16	436	10		11	527	86		7	34	12		30	22	6	
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (\%)									0				0				
Right Turn Channelized	No				No												
Median Type \\| Storage	Undivided																

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2047	North/South Street	Sand Pit Road
Time Analyzed	AM Peak LTLs	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0
Configuration		L	T	R		L	T	R			LTR				LTR	
Volume (veh/h)		5	583	16		7	276	14		7	19	4		103	64	16
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized	No				No											
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	CRF	Intersection	STH 21 and Sand Pit Rd
Agency/Co.	Westwood	Jurisdiction	WisDOT NE
Date Performed	$1 / 21 / 2021$	East/West Street	STH 21
Analysis Year	2047	North/South Street	Sand Pit Road
Time Analyzed	PM Peak LTLs	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	STH 21, Omro - Oshkosh		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	1	0	1	1	1		0	1	0		0	1	0
Configuration		L	T	R		L	T	R			LTR				LTR	
Volume (veh/h)		21	458	12		13	547	107		9	47	14		36	31	8
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized	No				No											
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)	4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)	2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)	2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

SITE LAYOUT

∇ Site: 101 [AM 2027 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)
All Movement Classes
\forall Site: 101 [AM 2027 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones.
Click and drag popup boxes to move to preferred positions.

Close All Popups

iN

SIDRA INTERSECTION 9.0 I Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:34 AM Project: Not Saved

INPUT COMPARISON

Site A: 101 [AM 2027 Sand Pit (Site Folder: General)]
Site B:

Intersection - Site Data			
SITE			
	AM 2027 Sand Pit	No Difference	
Intersection - Site Properties			
SITE	AM 2027 Sand Pit	NA	Defaults - US HCM (Customary)

Intersection - Approach \& Exit Data											
SITE	Location	Name	Type	No. of App. Lanes	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) \%	Extra Bunching (Network Analysis) \%	Exit Distance ft	Approach Control	Area Type Factor
AM 2027 Sand Pit	South	$\begin{aligned} & \text { Sand Pit } \\ & \text { Rd } \end{aligned}$	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2027 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2027 Sand Pit	North	$\begin{aligned} & \text { Sand Pit } \\ & R d \end{aligned}$	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	North	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2027 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-

Movement Definitions - Included Movement Classes		Model	
SITE	Included	Name	ID

Movement Definitions - Origin-Destination Movements

SITE	To	Turn
Approach	OD Mov ID	
No Difference	U-Turn Before Intersection	Exclude U-Turn Before Intersection From
Signal Analysis		

Lane Geometry - Lane Configuration

SITE	Leg Item	Config	Type	Control	Slip/ Bypass	Length Width Grade		Island					
								[Front	Back	Fill	Cnct	For	Short
					Control			Width	Width	Style	To	Ped	Strip

Lane Geometry - Lane Disciplines - Lane Change Data			
SITE	Movement Class	\% Lane Change to Left \%	\% Lane Change to Right \%

No Difference

Lane Movements - Flow Proportions					
SITE	Exit Lane	South \%	To East $\%$	eg North \%	West \%
Light Vehicles (LV)					
From: South App. Lane 1					
AM 2027 Sand Pit	Exit Lane 1	-	100	100	100
Defaults - US HCM (Customary)	Exit Lane 1	-	-	100	100
From: East App. Lane 1					
AM 2027 Sand Pit	Exit Lane 1	100	-	100	100
Defaults - US HCM (Customary)	Exit Lane 1	100	-	-	100
From: North App. Lane 1					
AM 2027 Sand Pit	Exit Lane 1	100	100	-	100
Defaults - US HCM (Customary)	Exit Lane 1	100	100	-	-
From: West App. Lane 1					
AM 2027 Sand Pit	Exit Lane 1	100	100	100	-
Defaults - US HCM (Customary)	Exit Lane 1	-	100	100	-
Heavy Vehicles (HV)					
From: South	App. Lane 1				

Lane Movements - Blockage Calibration

SITE	Exit Lane	South	East	North	West
From: South	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	-	1	1	1
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1
From: East	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	1	-	1	1
Defaults - US HCM (Customary)	Exit Lane 1	1	-	-	1
From: North	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	1	1	-	1
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	-
From: West	App. Lane 1				
AM 2027 Sand Pit	Exit Lane 1	1	1	1	-
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-

Roundabouts - Options

SITE

Roundabouts - Geometry											
SITE	Location	Name	Circ. Lanes	Circ. Width ft	Island Diamete ft	Inscribed Diameter ft	Entry Radius ft	Entry Angle	Raindrop Design	Circ Trans Line	Downstre am Circ Lanes
AM 2027 Sand Pit	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-
AM 2027 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-
AM 2027 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-
AM 2027 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-

HCM 2010 Roundabout Model Parameters												
SITE	Location	Name	Single Single Para. A	L.Circ: L.Entry Para. B	Single Multi Para. A	L.Circ: .Entry Para. B	Multi Single Para. A	L.Circ: L.Entry Para. B	Multi Domina Para. A	L.Circ: ant Lane Para. B	Multi Subdo La Para. A	L.Circ: minant ne Para. B
AM 2027 Sand Pit	South	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
AM 2027 Sand Pit	East	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
AM 2027 Sand Pit	North	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
AM 2027 Sand Pit	West	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$

Volumes - Volume Factors				
SITE	To	Peak Flow	Flow	Growth
	Approach	Factor	Scale	Rate
	No Difference	$\%$		
			\%/year	

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:48:54 AM Project(s):

MOVEMENT SUMMARY

바 Site: 101 [AM 2027 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

\square Site: 101 [AM 2027 Sand Pit (Site Folder: General)]

New Site
Site Category: (None)
Roundabout

Lane Use and Performance													
	DEMAND FLOWS		Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Sand Pit Rd													
Lane $1^{\text {d }}$	26	3.0	681	0.038	100	5.7	LOS A	0.1	3.5	Full	1600	0.0	0.0
Approach	26	3.0		0.038		5.7	LOS A	0.1	3.5				
East: STH 21													
Lane $1^{\text {d }}$	303	3.0	1311	0.231	100	4.7	LOS A	1.1	28.6	Full	1600	0.0	0.0
Approach	303	3.0		0.231		4.7	LOS A	1.1	28.6				
North: Sand Pit Rd													
Lane $1^{\text {d }}$	154	3.0	1007	0.153	100	5.0	LOS A	0.6	16.1	Full	1600	0.0	0.0
Approach	154	3.0		0.153		5.0	LOS A	0.6	16.1				
West: STH 21													
Lane $1^{\text {d }}$	625	3.0	1166	0.536	100	9.3	LOS A	3.6	93.1	Full	1600	0.0	0.0
Approach	625	3.0		0.536		9.3	LOS A	3.6	93.1				
Intersection	1109	3.0		0.536		7.4	LOS A	3.6	93.1				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)									
South: Sand Pit Rd									
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{gathered} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{gathered}$
Lane 1	7	15	4	26	3.0	681	0.038	100 NA	NA
Approach	7	15	4	26	3.0		0.038		
East: STH 21									
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	7	285	12	303	3.0	1311	0.231	100 NA	NA
Approach	7	285	12	303	3.0		0.231		

North: Sand Pit Rd									
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	90	50	14	154	3.0	1007	0.153	100 NA	NA
Approach	90	50	14	154	3.0		0.153		
West: STH 21									
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov Lane No.
Lane 1	4	605	15	625	3.0	1166	0.536	100 NA	NA
Approach	4	605	15	625	3.0		0.536		
Total \%HV Deg.Satn (v/c)									
Intersection	1109	3.0		0.536					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis							
$\begin{array}{r} \text { Exit } \\ \text { Lane } \\ \text { Number } \end{array}$	Short Percent Opposing Lane Opng in Flow Rate Length Lane ft $\%$ veh/h pcu/h	Critical Gap sec	Follow-up Lane Headway Flow Rate sec veh/h	Capacity veh/h	Deg. Satn v/c		Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
East Exit: STH 21 Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
North Exit: Sand Pit Rd Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
West Exit: STH 21 Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:34 AM Project: Not Saved

SITE LAYOUT

\forall Site: 101 [PM 2027 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)

All Movement Classes

\forall Site: 101 [PM 2027 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones.
Click and drag popup boxes to move to preferred positions.

Close All Popups

©

SIDRA INTERSECTION 9.0 I Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:41 AM
Project: N:I3001091.001Traffic|AnalysislSand Pit Rd|RoundaboutlSand Pit Rd.sip9

INPUT COMPARISON

Site A: 101 [PM 2027 Sand Pit (Site Folder: General)]
Site B:

Intersection - Site Data			
SITE	PM 2027 Sand Pit		
		No Difference	
Intersection - Site Properties			
SITE	PM 2027 Sand Pit	NA	Defaults - US HCM (Customary)

Intersection - Approach \& Exit Data											
SITE	Location	Name	Type	No. of App. Lanes	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) \%	Extra Bunching (Network Analysis) \%	Exit Distance \qquad ft	Approach Control	Area Type Factor
PM 2027 Sand Pit	South	$\begin{aligned} & \text { Sand Pit } \\ & R d \end{aligned}$	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2027 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2027 Sand Pit	North	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	North	$\underset{\mathrm{e}}{\text { RoadNam }}$	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2027 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-

| Movement Definitions - Included Movement Classes | | |
| :--- | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{llll}\text { SITE } & \text { Included } & \text { Name } & \text { Model } \\ & & \text { No Difference } & \text { Designation } \\ & & \end{array}\right)$ | | |

Movement Definitions - Origin-Destination Movements

SITE	To	Turn
Approach	OD Mov ID	
No Difference	Exclude U-Turn Before Intersection From	
Signal Analysis		

Lane Geometry - Lane Configuration

SITE		Config	Type Control		Slip/ Bypass	Length Width Grade		Island					
	Leg Item				[Front			Back	Fill	Cnct	For	Short	
					Control			Width	Width	Style	To	Ped	Strip

Lane Geometry - Lane Disciplines - Lane Change Data			
SITE	Movement Class	\% Lane Change to Left \%	$\begin{gathered} \text { \% Lane } \\ \text { Change to Right } \\ \text { \% } \end{gathered}$

No Difference

PM 2027 Sand Pit	Exit Lane 1	-	100	100	100
Defaults - US HCM (Customary)	Exit Lane 1	-	-	100	100
From: East	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	100	-	100	100
Defaults - US HCM (Customary)	Exit Lane 1	100	-	-	100
From: North	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	100	100	-	100
Defaults - US HCM (Customary)	Exit Lane 1	100	100	-	-
From: West	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	100	100	100	-
Defaults - US HCM (Customary)	Exit Lane 1	-	100	100	-

Lane Movements - Blockage Calibration

SITE	Exit Lane	South	To Exit Leg		West
			East	North	
From: South	App. Lane 1		1	1	1
PM 2027 Sand Pit	Exit Lane 1	-			
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1
From: East App. Lane 1	App. Lane 1			1	1
PM 2027 Sand Pit	Exit Lane 1	1	-		
Defaults - US HCM (Customary)	Exit Lane 1	1	-	-	1
From: North App. Lane 1					1
PM 2027 Sand Pit	Exit Lane 1	1	1	-	
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	
From: West	App. Lane 1				
PM 2027 Sand Pit	Exit Lane 1	1	1	1	-
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-

Roundabouts - Options

Roundabouts - Geometry											
SITE	Location	Name	Circ. Lanes	Circ. Width	Island Diameter ft	Inscribed Diameter ft	Entry Radius ft	Entry Angle	Raindrop Design	Circ Trans Line	$\begin{gathered} \text { Downstre } \\ \text { am } \\ \text { Circ } \\ \text { Lanes } \end{gathered}$
PM 2027 Sand Pit	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-
PM 2027 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-
PM 2027 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-
PM 2027 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-

HCM 2010 Roundabout Model Parameters												
SITE	Location	Name	Single Single Para. A	L.Circ: L.Entry Para. B	Single Multi Para. A	L.Circ: .Entry Para. B	Multi Single Para. A	L.Circ: L.Entry Para. B	Multi Domina Para. A	L.Circ: ant Lane Para. B	Multi Subdo La Para. A	L.Circ: minant ne Para. B
PM 2027 Sand Pit	South	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
PM 2027 Sand Pit	East	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
PM 2027 Sand Pit	North	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
PM 2027 Sand Pit	West	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$

Volumes - Volume Factors				
SITE	To Approach	Peak Flow Factor \%	Flow Scale \%	Growth Rate \%/year

Gap Acceptance - Gap Acceptance Data							
SITE	Opposed Movement	Critica Gap sec	Follow-up Headway sec	Minimum Departures veh/min	Exiting Flow Effect \%	\% Opp. By Nearest Lane \%	Opng. Peds (UnSig)

Parameter Settings - Cost							
Efficiency Parameters							
SITE	Movement Class			Desired Speed	Lower Limit of Speed Efficiency for TTI		
	No Difference						
Vehicle Cost Parameters							
SITE	Movement Class	Veh Cost Method	Veh Operating Cost			Veh Time Cost	
			[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]
			\$/Gal			\$/h	
PM 2027 Sand Pit	Light Vehicles (LV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Light Vehicles (LV)	Operating Cost	2.5	0.7	3	29	0.4
PM 2027 Sand Pit	Heavy Vehicles (HV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Heavy Vehicles (HV)	Operating Cost	2.5	0.7	3	29	0.4

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:54:07 AM Project(s): $\mathrm{N}: 13001091.00 \mid$ Traffic/AnalysislSand Pit Rd|Roundabout|Sand Pit Rd.sip9

MOVEMENT SUMMARY

\forall Site: 101 [PM 2027 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{ft} \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed mph
South: Sand Pit Rd													
3 L2	7	3.0	8	3.0	0.071	5.2	LOS A	0.3	6.8	0.51	0.43	0.51	34.8
8 T1	34	3.0	37	3.0	0.071	5.2	LOS A	0.3	6.8	0.51	0.43	0.51	34.7
18 R2	12	3.0	13	3.0	0.071	5.2	LOS A	0.3	6.8	0.51	0.43	0.51	33.7
Approach	53	3.0	58	3.0	0.071	5.2	LOS A	0.3	6.8	0.51	0.43	0.51	34.5
East: STH 21													
1 L2	11	3.0	12	3.0	0.536	8.8	LOS A	3.9	101.0	0.31	0.14	0.31	33.3
6 T1	527	3.0	573	3.0	0.536	8.8	LOS A	3.9	101.0	0.31	0.14	0.31	33.2
16 R2	86	3.0	93	3.0	0.536	8.8	LOS A	3.9	101.0	0.31	0.14	0.31	32.3
Approach	624	3.0	678	3.0	0.536	8.8	LOS A	3.9	101.0	0.31	0.14	0.31	33.1
North: Sand Pit Rd													
7 L2	30	3.0	33	3.0	0.083	5.6	LOS A	0.3	7.9	0.54	0.48	0.54	33.5
4 T1	22	3.0	24	3.0	0.083	5.6	LOS A	0.3	7.9	0.54	0.48	0.54	33.4
14 R2	6	3.0	7	3.0	0.083	5.6	LOS A	0.3	7.9	0.54	0.48	0.54	32.5
Approach	58	3.0	63	3.0	0.083	5.6	LOS A	0.3	7.9	0.54	0.48	0.54	33.3
West: STH 21													
5 L2	16	3.0	17	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	34.3
2 T 1	436	3.0	474	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	34.2
12 R 2	10	3.0	11	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	33.2
Approach	462	3.0	502	3.0	0.399	6.7	LOS A	2.4	60.2	0.26	0.12	0.26	34.2
All Vehicles	1197	3.0	1301	3.0	0.536	7.7	LOS A	3.9	101.0	0.31	0.17	0.31	33.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:41 AM
Project: N:\3001091.00\Traffic\AnalysislSand Pit Rd\Roundabout|Sand Pit Rd.sip9

LANE SUMMARY

\forall Site: 101 [PM 2027 Sand Pit (Site Folder: General)]

New Site
Site Category: (None)
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \qquad \%	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE [Veh Dist]		Lane Config	Lane Length	Cap. Adj. \%	Prob. Block. \%
South: Sand Pit Rd													
Lane $1^{\text {d }}$	58	3.0	808	0.071	100	5.2	LOS A	0.3	6.8	Full	1600	0.0	0.0
Approach	58	3.0		0.071		5.2	LOS A	0.3	6.8				
East: STH 21													
Lane $1^{\text {d }}$	678	3.0	1266	0.536	100	8.8	LOS A	3.9	101.0	Full	1600	0.0	0.0
Approach	678	3.0		0.536		8.8	LOS A	3.9	101.0				
North: Sand Pit Rd													
Lane $1^{\text {d }}$	63	3.0	756	0.083	100	5.6	LOS A	0.3	7.9	Full	1600	0.0	0.0
Approach	63	3.0		0.083		5.6	LOS A	0.3	7.9				
West: STH 21													
Lane $1^{\text {d }}$	502	3.0	1258	0.399	100	6.7	LOS A	2.4	60.2	Full	1600	0.0	0.0
Approach	502	3.0		0.399		6.7	LOS A	2.4	60.2				
Intersection	1301	3.0		0.536		7.7	LOS A	3.9	101.0				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)									
South: Sand Pit Rd									
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{gathered} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{gathered}$
Lane 1	8	37	13	58	3.0	808	0.071	100 NA	NA
Approach	8	37	13	58	3.0		0.071		
East: STH 21									
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	12	573	93	678	3.0	1266	0.536	100 NA	NA
Approach	12	573	93	678	3.0		0.536		

North: Sand Pit Rd									
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	33	24	7	63	3.0	756	0.083	100 NA	NA
Approach	33	24	7	63	3.0		0.083		
West: STH 21									
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	17	474	11	502	3.0	1258	0.399	100 NA	NA
Approach	17	474	11	502	3.0		0.399		
Total \%HV Deg.Satn (v/c)									
Intersection	1301	3.0		0.536					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis							
	Short Percent Opposing Lane Opng in Flow Rate Length Lane ft \% veh/h pcu/h	Critical Gap sec	Follow-up Lane Headway Flow Rate sec veh/h	Capacity veh/h	Deg. Satn v/c		Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
East Exit: STH 21 Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
North Exit: Sand Pit Rd Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
West Exit: STH 21 Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:41 AM Project: N:13001091.001Traffic\Analysis\Sand Pit Rd\RoundaboutlSand Pit Rd.sip9

SITE LAYOUT

∇ Site: 101 [AM 2047 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)
All Movement Classes

- Site: 101 [AM 2047 Sand Pit (Site Folder: General)]

New Site
Site Category: (None)
Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones.
Click and drag popup boxes to move to preferred positions.

Close All Popups

iN

SIDRA INTERSECTION 9.0 I Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:30 AM Project: Not Saved

INPUT COMPARISON

Site A: 101 [AM 2047 Sand Pit (Site Folder: General)]
Site B:

Intersection - Site Data			
SITE			
	AM 2047 Sand Pit	No Difference	
Intersection - Site Properties			
SITE	AM 2047 Sand Pit	NA	Defaults - US HCM (Customary)

Intersection - Approach \& Exit Data											
SITE	Location	Name	Type	No. of App. Lanes	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) \%	Extra Bunching (Network Analysis) \%	Exit Distance ft	Approach Control	Area Type Factor
AM 2047 Sand Pit	South	$\begin{aligned} & \text { Sand Pit } \\ & \text { Rd } \end{aligned}$	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2047 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2047 Sand Pit	North	$\begin{aligned} & \text { Sand Pit } \\ & R d \end{aligned}$	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	North	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
AM 2047 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-

| Movement Definitions - Included Movement Classes | | |
| :--- | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{llll}\text { SITE } & \text { Included } & \text { Name } & \text { Model } \\ & & \text { No Difference } & \text { Designation } \\ & & \end{array}\right)$ | | |

Movement Definitions - Origin-Destination Movements

SITE	To	Turn
Approach	OD Mov ID	
No Difference	U-Turn Before Intersection	Exclude U-Turn Before Intersection From
Signal Analysis		

Lane Geometry - Lane Configuration

SITE	Leg Item	Config	Type	Control	Slip/ Bypass	Length Width Grade		Island					
								[Front	Back	Fill	Cnct	For	Short
					Control			Width	Width	Style	To	Ped	Strip

Lane Geometry - Lane Disciplines - Lane Change Data			
SITE	Movement Class	\% Lane Change to Left \%	$\begin{gathered} \text { \% Lane } \\ \text { Change to Right } \\ \text { \% } \end{gathered}$

No Difference

Lane Movements - Blockage Calibration

SITE	Exit Lane	South	To Exit Leg		West
			East	North	
From: South	App. Lane 1		1		
AM 2047 Sand Pit	Exit Lane 1	-		1	1
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1
From: East	App. Lane 1				
AM 2047 Sand Pit	Exit Lane 1	1	-	1	1
Defaults - US HCM (Customary)	Exit Lane 1	1	-	-	1
From: North	App. Lane 1				
AM 2047 Sand Pit	Exit Lane 1	1	1	-	1
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	-
From: West	App. Lane 1				
AM 2047 Sand Pit	Exit Lane 1	1	1	1	-
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-

Roundabouts - Options

SITE

Roundabouts - Geometry											
SITE	Location	Name	Circ. Lanes	Circ. Width ft	Island Diamete ft	Inscribed Diameter ft	Entry Radius ft	Entry Angle	Raindrop Design	Circ Trans Line	Downstre am Circ Lanes
AM 2047 Sand Pit	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-
AM 2047 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-
AM 2047 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-
AM 2047 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-

HCM 2010 Roundabout Model Parameters												
SITE	Location	Name	Single Single Para. A	L.Circ: L.Entry Para. B	Single Multi Para. A	L.Circ: .Entry Para. B	Multi Single Para. A	L.Circ: L.Entry Para. B	Multi Domina Para. A	L.Circ: ant Lane Para. B	Multi Subdo La Para. A	L.Circ: minant ne Para. B
AM 2047 Sand Pit	South	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
AM 2047 Sand Pit	East	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
AM 2047 Sand Pit	North	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
AM 2047 Sand Pit	West	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$

Volumes - Volume Factors				
SITE	To Approach	Peak Flow Factor \%	Flow Scale \%	Growth Rate \%/year

Gap Acceptance - Gap Acceptance Data							
SITE	Opposed Movement	Critica Gap sec	Follow-up Headway sec	Minimum Departures veh/min	Exiting Flow Effect \%	\% Opp. By Nearest Lane \%	Opng. Peds (UnSig)

Parameter Settings - Cost							
Efficiency Parameters							
SITE	Movement Class			Desired Speed	Lower Limit of Speed Efficiency for TTI		
	No Difference						
Vehicle Cost Parameters							
SITE	Movement Class	Veh Cost Method	Veh Operating Cost			Veh Time Cost	
			[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]
			\$/Gal			\$/h	
AM 2047 Sand Pit	Light Vehicles (LV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Light Vehicles (LV)	Operating Cost	2.5	0.7	3	29	0.4
AM 2047 Sand Pit	Heavy Vehicles (HV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Heavy Vehicles (HV)	Operating Cost	2.5	0.7	3	29	0.4

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:29:12 AM Project(s):

MOVEMENT SUMMARY

바 Site: 101 [AM 2047 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { ft } \end{aligned}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: Sand Pit Rd													
3 L2	7	3.0	8	3.0	0.050	6.1	LOS A	0.2	4.5	0.58	0.53	0.58	34.0
8 T1	19	3.0	21	3.0	0.050	6.1	LOS A	0.2	4.5	0.58	0.53	0.58	34.0
18 R2	4	3.0	4	3.0	0.050	6.1	LOS A	0.2	4.5	0.58	0.53	0.58	33.0
Approach	30	3.0	33	3.0	0.050	6.1	LOS A	0.2	4.5	0.58	0.53	0.58	33.8
East: STH 21													
1 L2	7	3.0	8	3.0	0.248	4.9	LOS A	1.2	31.2	0.14	0.05	0.14	35.3
6 T1	276	3.0	300	3.0	0.248	4.9	LOS A	1.2	31.2	0.14	0.05	0.14	35.2
16 R2	14	3.0	15	3.0	0.248	4.9	LOS A	1.2	31.2	0.14	0.05	0.14	34.2
Approach	297	3.0	323	3.0	0.248	4.9	LOS A	1.2	31.2	0.14	0.05	0.14	35.2
North: Sand Pit Rd													
7 L2	103	3.0	112	3.0	0.201	5.6	LOS A	0.9	21.9	0.45	0.35	0.45	33.4
4 T1	64	3.0	70	3.0	0.201	5.6	LOS A	0.9	21.9	0.45	0.35	0.45	33.3
14 R2	16	3.0	17	3.0	0.201	5.6	LOS A	0.9	21.9	0.45	0.35	0.45	32.4
Approach	183	3.0	199	3.0	0.201	5.6	LOS A	0.9	21.9	0.45	0.35	0.45	33.3
West: STH 21													
5 L2	5	3.0	5	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	32.5
2 T1	583	3.0	634	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	32.4
12 R 2	16	3.0	17	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	31.5
Approach	604	3.0	657	3.0	0.587	10.6	LOS B	4.1	105.7	0.56	0.41	0.56	32.4
All Vehicles	1114	3.0	1211	3.0	0.587	8.1	LOS A	4.1	105.7	0.43	0.31	0.43	33.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:30 AM
Project: Not Saved

LANE SUMMARY

$\sqrt{7}$ Site: 101 [AM 2047 Sand Pit (Site Folder: General)]

New Site
Site Category: (None)
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Sand Pit Rd													
Lane $1^{\text {d }}$	33	3.0	648	0.050	100	6.1	LOS A	0.2	4.5	Full	1600	0.0	0.0
Approach	33	3.0		0.050		6.1	LOS A	0.2	4.5				
East: STH 21													
Lane $1^{\text {d }}$	323	3.0	1301	0.248	100	4.9	LOS A	1.2	31.2	Full	1600	0.0	0.0
Approach	323	3.0		0.248		4.9	LOS A	1.2	31.2				
North: Sand Pit Rd													
Lane $1^{\text {d }}$	199	3.0	990	0.201	100	5.6	LOS A	0.9	21.9	Full	1600	0.0	0.0
Approach	199	3.0		0.201		5.6	LOS A	0.9	21.9				
West: STH 21													
Lane $1^{\text {d }}$	657	3.0	1119	0.587	100	10.6	LOS B	4.1	105.7	Full	1600	0.0	0.0
Approach	657	3.0		0.587		10.6	LOS B	4.1	105.7				
Intersection	1211	3.0		0.587		8.1	LOS A	4.1	105.7				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)									
South: Sand Pit Rd									
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{gathered} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{gathered}$
Lane 1	8	21	4	33	3.0	648	0.050	100 NA	NA
Approach	8	21	4	33	3.0		0.050		
East: STH 21									
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	8	300	15	323	3.0	1301	0.248	100 NA	NA
Approach	8	300	15	323	3.0		0.248		

North: Sand Pit Rd									
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	112	70	17	199	3.0	990	0.201	100 NA	NA
Approach	112	70	17	199	3.0		0.201		
West: STH 21									
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	5	634	17	657	3.0	1119	0.587	100 NA	NA
Approach	5	634	17	657	3.0		0.587		
Total \%HV Deg.Satn (v/c)									
Intersection	1211	3.0		0.587					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis						
	Short Percent Opposing Lane Opng in Flow Rate Length Lane $\mathrm{ft} \quad \%$ veh/h pcu/h	Critical Gap sec	Follow-up Lane Headway Flow Rate sec veh/h	Capacity veh/h	Deg. Min. Satn Delay v/c sec	Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
East Exit: STH 21 Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
North Exit: Sand Pit Rd Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
West Exit: STH 21 Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:30 AM Project: Not Saved

SITE LAYOUT

\forall Site: 101 [PM 2047 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT FLOWS FOR SITE (INPUT)

Approach movement input flow rates (veh/h)

All Movement Classes

- Site: 101 [PM 2047 Sand Pit (Site Folder: General)]

New Site
Site Category: (None)
Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones.
Click and drag popup boxes to move to preferred positions.

Close All Popups

©

SIDRA INTERSECTION 9.0 I Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:38 AM
Project: N:I3001091.001Traffic|AnalysislSand Pit Rd|RoundaboutlSand Pit Rd.sip9

INPUT COMPARISON

Site A: 101 [PM 2047 Sand Pit (Site Folder: General)]
Site B:
$\left.\begin{array}{|llll|}\hline \text { Intersection - Site Data } & & & \\ \hline \text { SITE } & \text { PM } 2047 \text { Sand Pit } & & \text { No Difference }\end{array}\right)$

Intersection - Approach \& Exit Data											
SITE	Location	Name	Type	No. of App. Lanes	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) \%	Extra Bunching (Network Analysis) \%	Exit Distance \qquad ft	Approach Control	Area Type Factor
PM 2047 Sand Pit	South	$\begin{aligned} & \text { Sand Pit } \\ & R d \end{aligned}$	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	South	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2047 Sand Pit	East	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	East	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2047 Sand Pit	North	Sand Pit Rd	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	North	$\underset{\mathrm{e}}{\text { RoadNam }}$	Two Way	1	1	1600.0	0	-	-	Yield	-
PM 2047 Sand Pit	West	STH 21	Two Way	1	1	1600.0	0	-	-	Yield	-
Defaults - US HCM (Customary)	West	RoadNam e	Two Way	1	1	1600.0	0	-	-	Yield	-

| Movement Definitions - Included Movement Classes | | |
| :--- | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{llll}\text { SITE } & \text { Included } & \text { Name } & \text { Model } \\ & & \text { No Difference } & \text { Designation } \\ & & \end{array}\right)$ | | |

Movement Definitions - Origin-Destination Movements

SITE	To	Turn
Approach	OD Mov ID	
No Difference	Exclude U-Turn Before Intersection From	
Signal Analysis		

Lane Geometry - Lane Configuration

SITE	Leg Item	Config	Type	Control	Slip/ Bypass	Length Width Grade		Island					
								[Front	Back	Fill	Cnct	For	Short
					Control			Width	Width	Style	To	Ped	Strip

Lane Geometry - Lane Disciplines - Lane Change Data			
SITE	Movement Class	\% Lane Change to Left \%	$\begin{gathered} \text { \% Lane } \\ \text { Change to Right } \\ \text { \% } \end{gathered}$

No Difference

PM 2047 Sand Pit Defaults - US HCM (Customary)	Exit Lane 1	Exit Lane 1	-	100	100
100					

Lane Movements - Blockage Calibration

SITE	Exit Lane	South	To Exit Leg		West
			East	North	
From: South App. Lane 1	App. Lane 1		1	1	1
PM 2047 Sand Pit	Exit Lane 1	-			
Defaults - US HCM (Customary)	Exit Lane 1	-	-	1	1
From: East PM 2047 Sand Pit Defaults - US HCM (Customary)	App. Lane 1				
	Exit Lane 1	1	-	1	1
	Exit Lane 1	1	-	-	1
From: North	App. Lane 1				
PM 2047 Sand Pit	Exit Lane 1	1	1	-	1
Defaults - US HCM (Customary)	Exit Lane 1	1	1	-	-
From: West	App. Lane 1				
PM 2047 Sand Pit	Exit Lane 1	1	1	1	-
Defaults - US HCM (Customary)	Exit Lane 1	-	1	1	-

Roundabouts - Options

Roundabouts - Geometry											
SITE	Location	Name	Circ. Lanes	Circ. Width	Island Diameter ft	Inscribed Diameter ft	Entry Radius ft	Entry Angle	Raindrop Design	Circ Trans Line	$\begin{gathered} \text { Downstre } \\ \text { am } \\ \text { Circ } \\ \text { Lanes } \end{gathered}$
PM 2047 Sand	South	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	South	RoadName	2	30	100	-	65	30	No	No	-
PM 2047 Sand Pit	East	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	East	RoadName	2	30	100	-	65	30	No	No	-
PM 2047 Sand Pit	North	Sand Pit Rd	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	North	RoadName	2	30	100	-	65	30	No	No	-
PM 2047 Sand Pit	West	STH 21	1	20	100	-	100	30	No	No	-
Defaults - US HCM (Customary)	West	RoadName	2	30	100	-	65	30	No	No	-

HCM 2010 Roundabout Model Parameters												
SITE	Location	Name	Single Single Para. A	L.Circ: L.Entry Para. B	Single Multi Para. A	L.Circ: .Entry Para. B	Multi Single Para. A	L.Circ: L.Entry Para. B	Multi Domina Para. A	L.Circ: ant Lane Para. B	Multi Subdo La Para. A	L.Circ: minant ne Para. B
PM 2047 Sand Pit	South	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	South	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
PM 2047 Sand Pit	East	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	East	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
PM 2047 Sand Pit	North	Sand Pit Rd	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	North	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
PM 2047 Sand Pit	West	STH 21	1385	$\begin{gathered} 0.00094 \\ 4 \end{gathered}$	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$
Defaults - US HCM (Customary)	West	RoadName	1380	0.00102	1420	0.00091	1420	0.00085	1420	0.00085	1350	$\begin{gathered} 0.0009 \\ 2 \end{gathered}$

Volumes - Volume Factors				
SITE	To Approach	Peak Flow Factor \%	Flow Scale \%	Growth Rate \%/year

Gap Acceptance - Gap Acceptance Data							
SITE	Opposed Movement	Critica Gap sec	Follow-up Headway sec	Minimum Departures veh/min	Exiting Flow Effect \%	\% Opp. By Nearest Lane \%	Opng. Peds (UnSig)

Parameter Settings - Cost							
Efficiency Parameters							
SITE	Movement Class			Desired Speed	Lower Limit of Speed Efficiency for TTI		
	No Difference						
Vehicle Cost Parameters							
SITE	Movement Class	Veh Cost Method	Veh Operating Cost			Veh Time Cost	
			[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]
			\$/Gal			\$/h	
PM 2047 Sand Pit	Light Vehicles (LV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Light Vehicles (LV)	Operating Cost	2.5	0.7	3	29	0.4
PM 2047 Sand Pit	Heavy Vehicles (HV)	Operating Cost	2.3	0.7	3	27	0.4
Defaults - US HCM (Customary)	Heavy Vehicles (HV)	Operating Cost	2.5	0.7	3	29	0.4

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Created: Wednesday, March 24, 2021 9:56:30 AM Project(s): $\mathrm{N}: 13001091.00 \mid$ Traffic/AnalysislSand Pit Rd|Roundabout|Sand Pit Rd.sip9

MOVEMENT SUMMARY

$\forall \sqrt{ } \sqrt{ }$ Site: 101 [PM 2047 Sand Pit (Site Folder: General)]
New Site
Site Category: (None)
Roundabout

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:38 AM
Project: N:\3001091.00\Traffic\AnalysislSand Pit Rd\Roundabout|Sand Pit Rd.sip9

LANE SUMMARY

\forall Site: 101 [PM 2047 Sand Pit (Site Folder: General)]

New Site
Site Category: (None)
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Sand Pit Rd													
Lane $1^{\text {d }}$	76	3.0	780	0.098	100	5.6	LOS A	0.4	9.3	Full	1600	0.0	0.0
Approach	76	3.0		0.098		5.6	LOS A	0.4	9.3				
East: STH 21													
Lane $1^{\text {d }}$	725	3.0	1240	0.585	100	9.8	LOS A	4.6	117.8	Full	1600	0.0	0.0
Approach	725	3.0		0.585		9.8	LOS A	4.6	117.8				
North: Sand Pit Rd													
Lane $1^{\text {d }}$	82	3.0	737	0.111	100	6.0	LOS A	0.4	10.5	Full	1600	0.0	0.0
Approach	82	3.0		0.111		6.0	LOS A	0.4	10.5				
West: STH 21													
Lane ${ }^{\text {d }}$	534	3.0	1236	0.432	100	7.3	LOS A	2.6	67.4	Full	1600	0.0	0.0
Approach	534	3.0		0.432		7.3	LOS A	2.6	67.4				
Intersection	1416	3.0		0.585		8.4	LOS A	4.6	117.8				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)									
South: Sand Pit Rd									
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{gathered} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{gathered}$
Lane 1	10	51	15	76	3.0	780	0.098	100 NA	NA
Approach	10	51	15	76	3.0		0.098		
East: STH 21									
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	14	595	116	725	3.0	1240	0.585	100 NA	NA
Approach	14	595	116	725	3.0		0.585		

North: Sand Pit Rd									
Mov. From N To Exit:	L2 E	T1 S	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	39	34	9	82	3.0	737	0.111	100 NA	NA
Approach	39	34	9	82	3.0		0.111		
West: STH 21									
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	23	498	13	534	3.0	1236	0.432	100 NA	NA
Approach	23	498	13	534	3.0		0.432		
Total \%HV Deg.Satn (v/c)									
Intersection	1416	3.0		0.585					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis							
	Short Percent Opposing Lane Opng in Flow Rate Length Lane ft \% veh/h pcu/h	Critical Gap sec	Follow-up Lane Headway Flow Rate sec veh/h	Capacity veh/h	Deg. Satn v/c		Merge Delay sec
South Exit: Sand Pit Rd Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
East Exit: STH 21 Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
North Exit: Sand Pit Rd Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
West Exit: STH 21 Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: WESTWOOD INFRASTRUCTURE | Licence: PLUS / 1PC | Processed: Wednesday, March 24, 2021 9:27:38 AM Project: $\mathrm{N}: \mid 3001091.001$ Traffic\Analysis\Sand Pit RdIRoundaboutlSand Pit Rd.sip9

