Wisconsin Department of Transportation

Division of Transportation Systems Development
Bureau of Project Development 4802 Sheboygan Avenue, Rm 601
P O Box 7916
Madison, WI 53707-7916

Telephone:
(608) 266-1631

Facsimile (FAX): (608) 266-8459

NOTICE TO ALL CONTRACTORS:

1150-60-71, WISC 2016225
Green Bay - Oconto
USH 141 - Kruegers Quarry Road
USH 41
Oconto County

Letting of June 14, 2016

This is Addendum No. 01, which provides for the following:
Special Provisions

Revised Special Provisions	
Article No.	Description
26	Installing Pole Mounted Cabinet, Item SPV.0060.01
27	Installing 2 Solar Panels on one Bracket, Item SPV.0060.02
28	Installing Wavetronix Click 200 Module, Item SPV.0060.03
29	Installing Wavetronix Detector Module, Item SPV.0060.04
30	Installing Concrete Maintenance Platform, Item SPV.0060.05
31	Grading, Shaping \& Finishing for ATR Site, Item SPV.0060.06

Added Special Provisions	
Article	
No.	Description
32	HMA Pavement 4 LT 58-28 S 3.0\% Va Regression Special, Item SPV.0195.01; HMA Pavement 4 MT 58-28 S 3.0\% Va Regression Special, Item SPV.0195.02

Deleted Special Provisions	
Article	Description
No.	HMA Pavement 4 LT 58-28 S, Item 460.5224; HMA Pavement 4 MT 58-28 S, Item 460.6224
18	

Schedule of Items

Added Bid Item Quantities						
Bid Item	Item Description	Unit	Old Quantity	Revised Quantity	Proposal Total	
SPV.0195.01	HMA Pavement 4 LT 58-28 S 3.0\% Va Regression Special	TON	0	13,858	13,858	
SPV.0195.02	HMA Pavement 4 MT 58-28 S 3.0\% Va Regression Special	TON	0	17,357	17,357	

Deleted Bid Item Quantities						
Bid Item	Item Description	Unit	Old Quantity	Revised Quantity	Proposal Total	
460.5224	HMA Pavement 4 LT 58-28 S	TON	13,858	$-13,858$	0	
460.6224	HMA Pavement 4 MT 58-28 S	TON	17,357	$-17,357$	0	

Plan Sheets

Revised Plan Sheets	
Plan Sheet	Plan Sheet Title (brief description of changes to sheet)
53	The new asphalt items had to be replaced with the old in the Miscellaneous Quantities tables.

Added Plan Sheets	
Plan Sheet	Plan Sheet Title (brief description of why sheet was added)
44A	Wavetronix Pole Mounted Cabinet Detail
44B	Wavetronix Pole Mounted Cabinet Layout Detail
44C	Wavetronix Detector Installation on Type 3 Pole Detail

The responsibility for notifying potential subcontractors and suppliers of these changes remains with the prime contractor.
Sincerely,

Mike Coleman

Proposal Development Specialist Proposal Management Section

ADDENDUM NO. 01

1150-60-71

June 02, 2016

Special Provisions

18. DELETED

26. Installing Pole Mounted Cabinet, Item SPV.0060.01.

Replace entire article language with the following:

A Description

This special provision describes installing a department furnished aluminum cabinet on a Type 3 pole for traffic counting equipment, as shown on the plans and as hereinafter provided.

B Materials

The unit will consist of a pole-mounted cabinet. All mounting hardware such as the U-bolts, nuts, and washers that are subject to corrosion shall be stainless steel unless otherwise specified. The Cabinet and U-bolt mounts can be picked up at the Green Bay, WI DOT - Contact Randy Asman at 920-492-7719. Notify Jane Oldenburg, Wisconsin DOT, Travel Survey Shop 608-245-2679 three weeks prior to pickup, so items can be placed at the pickup location.
All conductors, terminals, and parts that could be hazardous to maintenance personnel shall be protected with suitable insulating material.

The cabinet and detector will protected by a Wavetronix Click 200 Surge arrestor module.

C Construction

The Contractor shall securely fasten the field cabinet onto a pole (pole paid separately) with bolted stainless steel connections with lock washers, lock nuts, or other engineer-approved means to prevent the connection nuts from backing off. When applicable, install the bottom U-bolt so that it is above the battery case. Isolate dissimilar materials from one another by stainless steel fittings.

Make all power connections to the cabinet as specified in detail plans.
The cabinet shall be drilled and tapped, as necessary, to mount the "Din Rail and other attachments, to provide an entrance on the bottom back of the cabinet for the cable from the pole mounted Wavetronix Detector equipment. Sharp edges, or burrs, caused by the cutting or drilling process shall be removed. All openings shall be sealed to prevent water from entering the cabinet.

The surge protector shall be mounted to the Din Rail.

D Measurement

The department will measure Install Pole Mounted Cabinet as each individual assembly acceptably completed.

E Payment

The department will pay for measured quantities at the contract unit price under the following bid items:

ITEM NUMBER	DESCRIPTION	UNIT
SPV.0060.01	Installing Pole Mounted Cabinet	Each

Payment for Install Pole Mounted Cabinet is full compensation for installing the pole mounted cabinet, for making all connections (to Traffic Detector and electrical service pedestal) and conduit/wire entrances, and for all testing.

27. Installing 2 Solar Panels on one Bracket, Item SPV.0060.02.

Replace entire article language with the following:

A Description

This section describes installing department furnished solar power units.

B Materials

The units will consist of 2 solar panels, solar panel rack, 2 U-bolts, 10 AWG Gauge stranded-wire wiring. Provide any other mounting or wiring hardware not furnished by the State. The 2 solar panels, solar panel rack, 2 U-bolts, and 10 AWG Gauge stranded-wire wiring can be picked up at the Green Bay, WI DOT - Contact Randy Asman at 920-492-7719. Notify Jane Oldenburg, Wisconsin DOT, Travel Survey Shop 608-245-2679 three weeks prior to pickup, so items can be placed at the pickup location.

C Construction

Install and test the solar charge regulator and solar batteries (in parallel). Make the necessary electrical connections between the components of the solar power unit. Mount the solar panels and enclosure; all necessary hardware for mounting is incidental. Connect solar panels to the solar power unit according to the manufacturer's instructions.

The solar power unit shall be activated and left on for 30 consecutive days. During this period, all materials and components of the solar power unit shall operate as specified and without any failure. In event of a failure, the project engineer will suspend the 30-day test until the failures are corrected, at which time the test will resume.

D Measurement

The department will measure Installing 2 Solar Power Panels on one Bracket as each individual assembly acceptably completed.

E Payment

The department will pay for measured quantities at the contract unit price under the following bid items:
ITEM NUMBER DESCRIPTION UNIT
SPV.0060.02 Installing 2 Solar Power Panels on one Each Bracket

Payment for Installing 2 Solar Power Panels on one Bracket is full compensation for installing the solar power unit on a pole, for making all connections, and for all testing.

28. Installing Wavetronix Click 200 Module, Item SPV.0060.03.

Replace entire article language with the following:

A Description

This special provision describes installing State Furnished Wavetronix Click 200 Module as shown on the plans and as hereinafter provided.

B Materials

The units will consist of Wavetronix Click 200 Module. DIN racks, terminal block, wiring, and stainless steel bolts. Provide any other mounting or wiring hardware not furnished by the State. The Wavetronix Click 200 Module units can be picked up at the Green Bay, WI DOT - Contact Randy Asman at 920-492-7719. Notify Jane Oldenburg, Wisconsin DOT, Travel Survey Shop 608-2452679 three weeks prior to pickup, so items can be placed at the pickup location.

C Construction

Install the Wavetronix Click 200 Module in the cabinet on to the DIN rail as shown on the plans.
Connect the Wavetronix Click 200 Module to the Wavetronix Power Module and to the Wavetronix unit as shown on the plan. The power is wired to the bottom of the Click 200 Module.

After the Wavetronix Click 200 Module is installed and the Wavetronix cable is connected to the Wavetronix unit, test to see that all of the traffic lanes are being collected correctly.

D Measurement

The department will measure Install Wavetronix Click 200 Module, as each Wavetronix Click 200 Module is acceptably installed and operational.

E Payment.

The department will pay for measured quantities at the contract unit price under the following bid item:
ITEM NUMBER DESCRIPTION UNIT

SPV.0060.03 Installing Wavetronix Click 200 Module EACH
The payment is full compensation for installing antennas and connections; for furnishing and installing mast brackets and mounting hardware; for testing; and for all labor, tools, equipment, transportation, and incidentals necessary to complete the work.

29. Installing Wavetronix Detector Module, Item SPV.0060.04.

A Description

This special provision describes installing, testing, and completing the calibration of the statefurnished Wavetronix Detector (HD 126) Module, mounting bracket and stainless steel hose clamps as shown on the Plans and as hereinafter provided.

B Materials

The department will furnish the Wavetronix Detector (HD 126) Module, Wavetronix Cable, Mounting Bracket, and stainless steel hose clamps from the Project ID. The department will provide a Wavetronix Service Report form for the completion of the calibration requirements. The Wavetronix Detector (HD126) Module, mounting bracket and stainless steel hose clamps can be picked up at the Green Bay, WI DOT- Contact Randy Asman at 920-492-7719. Notify Jane Oldenburg, Wisconsin DOT, Travel Survey Shop 608-245-2679 three weeks prior to pickup, so items can be placed at the pickup location.

C Construction

Attach the Wavetronix Detector (HD126) Module to a 30 ft . Type 3 pole utilizing the Wavetronix Mounting Bracket and stainless steel hose clamps. Do not use permanent straps. The bracket may need to be moved if it the Detector goes out of alignment. Use manual installation height guidelines located at website: http://www.wavetronix.com/support/

Connect the Wavetronix 40 ft . Detector cable to the Wavetronix Detector (HD125) Module mounted up on the pole, put drip loop outside the pole and then snake the cable down through the pole (leave slack in cable so the unit can be moved up or down and do not cut the cable) and make the appropriate cable connections to the Click 200 Surge Arrestor inside the pole-mounted cabinet.

The Contractor shall demonstrate the functionality and operational accuracy of the Wavetronix Detector (HD126) Module. The contractor using a laptop computer running Windows and the Wavetronix Setup and Calibration software program SSM HD and manual located website: http://www .Wavetronix .com / support/ to connect to the Wavetronix unit and verify the detector is properly aimed. Under the Sensor Setting heading, enter the last four digits of the Wavetronix number. Description is "USH 41, N. OF USH 41-141. Location is 420256521111. Follow the manual for the remaining setup. Use the software, run the "lane auto-configuration" to detect all traffic lanes. All lanes must be open to free-flowing traffic to complete this process.

The Wavetronix Detector (HD126) Module shall be setup to collect 4-bin length data. Bin length (ft) shall be 0-7, 7-19, 19-33, 33+. Collect speed into 15 bins starting with 20-25, 25-30 and 5 mph increments until $85+$.

In the "lane verification" mode of the software, set display so speed is indicated on each vehicle crossing the screen. The Wavetronix Detector unit needs to be adjusted so that speed is indicated for 98% (normal accuracy) of vehicles with a minimum of 95% accuracy, per lane. Vehicles not being detected for speed, display "no speed (blank)". Record the data on the Wavetronix Service Report Form.

In the class 1 (C1) display mode, vehicles detected must be 90% accurate, per lane. Record the data on the Wavetronix Service Report Form.

A 15-minute volume count shall be taken. The accuracy between the display and the manual count must be $98 \%-99 \%$ typical with a minimum of 95% accuracy per lane. Recommend counting each lane in one direction at once. Record the data on the Wavetronix Service Report Form.

A field test shall be successfully conducted by (insert Installer's name) of (insert Installation Contractor Name). A signed and dated Wavetronix Service Report Form, indicating the results of accuracy, speed, and class tests, shall be provided to Jane Oldenburg, Wisconsin DOT, Travel Survey Shop, 3633 Pierstorff St., Madison, WI 53704, 608-245-2679. You may scan and email document to: jane.oldenburg@dot.wi.gov or fax to 608-246-5401.
The Travel Survey Shop will verify the data after all of the construction work, wire and cable connections are made, the Wavetronix Service Report calibration form is complete, and the detector is declared operational by the contractor. The test is designed to demonstrate that Wavetronix Detector (HD 126) Module operates correctly, and that all functions are in conformance with these Specifications.

Following successful completion of the above tests, the Wavetronix Detector (HD 126) Module shall be activated and left on for 30 consecutive days. During this period, all materials and components of the Wavetronix Detector (HD 126) Module shall operate as specified and without any failure.

In the event any component of the Wavetronix (HD 126) Detector Module system malfunctions or operates below the level specified, the test period will be terminated, and the contractor shall be required to determine the problem, repair the problem and report the findings to the Travel Survey Shop within 7 to 10 calendar days of notification. Upon correction of the problems, to the satisfaction of the Travel Survey Shop, a new 30-day test period will be started.

D Measurement

The department will pay for installing the Wavetronix Detector (HD 126) Module, Wavetronix Cable, Wavetronix Mounting bracket, and a completed Wavetronix Service Report after they are acceptably installed and operational.

WAVETRONIX SERVICE REPORT

REPORT TYPE	STATION NAME	STATION ID.	
\square	CALIBRATION		
\square	SERVICE		
WORK ORDER:			

SPEED CALIBRATION (NUMBER OF VEHICLES WITH "NO SPEED") ACCURACY REQUIREMENT: 98\% NORMAL, 95% MIN.			CLASS CALIBRATION ACCURACY REQUIREMENT: 90\%			
LANE \#	SPEED CALIBRATION \# NO SPEED	SPEED CALIBRATION TOTAL SAMPLE \#	LANE \#	CLASS CALIBRATION \#WRONG CLASS	CLASS CALIBRATION TOTAL SAMPLE \#	LENGTH ADJUSTMENT FT.
Lane 1			Lane 1			
Lane 2			Lane 2			
Lane 3			Lane 3			
Lane 4			Lane 4			
Lane 5			Lane 5			
Lane 6			Lane 6			
Lane 7			Lane 7			
Lane 8			Lane 8			

VOLUME CALIBRATION MANUAL VS WAVETRONIX 15 MINUTE COUNT ACCURACY REQUIREMENT: 98\% TYPICAL (95\% MINIMUM)*	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7	Lane 8
Manual								
Wavetronix (WTX)								
Accuracy Percentage (\%) (Manual \div WTX $\times 100=\%$)								

*May use "per direction" totals for obstructed views. Accuracy Requirement: 98\% (95\% minimum)

EQUIPMENT NO: WAVETRONIX UNIT (LAST 4 DIGITS)\#		MODEM NO:(LAST 6 DIGITS) \#							
	LANE 1	LANE 2	LANE 3	LANE 4	LANE 5	LANE 6	LANE 7	LANE 8	
LANE WIDTH									

E Payment

The department will pay for measured quantities at the contract unit price under the following bid item:

ITEM NUMBER	DESCRIPTION	UNIT
SPV.0060.04	Installing Wavetronix Detector Module	EACH

The payment is full compensation for installing the Wavetronix Detector (HD 125) Module, Wavetronix Cable and Wavetronix Mounting Bracket; for making all cable connections; for all testing and completion of the Wavetronix Service Report form; and for all labor, tools, equipment, transportation, and incidentals necessary to complete this item of work.

30. Installing Concrete Maintenance Platform, Item SPV.0060.05.

Replace entire article language with the following:

A Description

This special provision describes installing a concrete maintenance platform at an automatic traffic recorder station.

B Materials

The Contractor may furnish a pre-cast concrete slab, or furnish materials conforming to the following:
For concrete, provide materials in accordance with subsection 602.2 of the standard specifications.
For forms, provide materials in accordance with subsection 602.3.2.2 of the standard specifications.

C Construction

Install concrete maintenance platform as specified in the plan details.
Before installation of the pre-cast concrete slab, or concrete maintenance platform, the earth shall be leveled and compacted around the type 2 concrete or helix pole base.

Earth shall be removed and leveled on the side of the pole opposite the roadway. (When you are standing on the platform looking into the cabinet you are also looking straight ahead at the roadway.)

If pouring a concrete maintenance platform, 2×4 lumber forms shall be constructed and laid in the area that the earth was removed from. The forms shall be leveled and squared before the concrete is poured.

Place and finish the platform or concrete in accordance to subsection 602.3.2.3 (1) of the standard specifications.

D Measurement

The department will measure concrete maintenance platform as each individual concrete maintenance platform completed.

E Payment

The department will pay for measured quantities at the contract unit price under the following bid item:

ITEM NUMBER	DESCRIPTION	UNIT
SPV.0060.05	Installing Concrete Maintenance Platform	Each

Payment is full compensation for furnishing all materials, including concrete and for furnishing all labor, tools, equipment and incidentals necessary to complete the contract work.

31. Grading, Shaping \& Finishing for ATR Site, Item SPV.0060.06.

Replace entire article language with the following:

A Description

This special provision describes the excavating, filling, grading, shaping, compacting, and finishing necessary to accommodate ATR Site, as shown on the plans, in accordance to the pertinent requirements of the standard specifications, and as hereinafter provided.

B Materials

The contractor will furnish the topsoil, fertilizer, seed, and mulch for placement around the base and maintenance platform.

C Construction

Construct embankment slopes as shown on the plans.
Properly dispose of all surplus and unsuitable material in accordance to 205.3.12 of the standard specifications.

D Measurement

The department will measure Grading, Shaping \& Finishing for ATR Site as each individual terminal acceptably completed.

E Payment

The department will pay for measured quantities at the contract unit price under the following bid item:

ITEM NUMBER	DESCRIPTION	UNIT
SPV.0060.06	Grading, Shaping \& Finishing for ATR Site	Each

Payment is full compensation for all excavating, grading, shaping and compacting; furnishing and placing fill, topsoil, fertilizer, seed, and mulch; and for furnishing all labor, tools, equipment, and incidentals necessary to complete the contract work.
32. HMA Pavement 4 LT 58-28 S 3.0\% Va Regression Special, Item SPV.0195.01; HMA Pavement 4 MT 58-28 S 3.0\% Va Regression Special, Item SPV.0195.02.

A Description

This special provision describes providing HMA pavement including the binder under a combined bid item along with air void regression as described here within.

Define gradations, traffic levels, and asphaltic binder designation levels as follows:
$1 \frac{\text { GRADATIONS }}{\frac{(\text { NMAS })}{37.5 ~ m m}}$

TRAFFIC VOLUME
LT
Low
DESIGNATION LEVEL
S
Standard

2	25.0 mm	MT	Medium	H	Heavy
3	19.0 mm	HT	High	V	Very Heavy
4	12.5 mm			E	Extremely Heavy
5	9.5 mm				
6	4.75 mm				

Construct HMA pavement of the type the bid item indicates encoded as follows:

Conform to standard spec 460 as modified in this special provision.

B Materials

Add the following to standard spec 460.2:
Design mixtures conforming to tables 460-1 and 460-2 to 4.0\% air voids to establish the aggregate structure.

Determine the target JMF Asphalt Binder content for production from the mix design data corresponding to 3.0% air voids ($97 \% \mathrm{Gmm}$) target at Ndes. The air voids at the design number of gyrations, (Ndes) shall be achieved by the addition of liquid asphalt meeting the contract specifications.

Production shall conform to VMA and Dust to Binder Ratio requirements of table 460-1 and 460-2.
Replace standard spec table 460-1 with the following to change the footnotes to refer to LT and MT mixes instead of E-0.3 and E-3 mixes:

TABLE 460-1 AGGREGATE GRADATION MASTER RANGE AND VMA REQUIREMENTS

SIEVE	PERCENTS PASSING DESIGNATED SIEVES						
	NOMINAL SIZE						
	37.5 mm (\#1)	$\begin{gathered} 25.0 \mathrm{~mm} \\ (\# 2) \end{gathered}$	$\begin{gathered} 19.0 \mathrm{~mm} \\ (\# 3) \end{gathered}$	$\begin{gathered} 12.5 \mathrm{~mm} \\ (\# 4) \end{gathered}$	$\begin{aligned} & 9.5 \mathrm{~mm} \\ & (\# 5) \end{aligned}$	SMA 12.5 mm (\#4)	SMA 9.5 mm (\#5)
50.0-mm	100						
$37.5-\mathrm{mm}$	90-100	100					
$25.0-\mathrm{mm}$	90 max	90-100	100				
$19.0-\mathrm{mm}$		90 max	90-100	100		100	
$12.5-\mathrm{mm}$			90 max	90-100	100	90-97	100
$9.5-\mathrm{mm}$				90 max	90-100	58-72	90-100
$4.75-\mathrm{mm}$					90 max	25-35	35-45
$2.36-\mathrm{mm}$	15-41	19-45	23-49	28-58	20-65	15-25	18-28
75- $\mu \mathrm{m}$	0-6.0	1.0-7.0	2.0-8.0	2.0-10.0	2.0-10.0	8.0-12.0	10.0-14.0
\% MINIMUM VMA	11.0	12.0	13.0	$14.0{ }^{[1]}$	$15.0{ }^{[2]}$	16.0	17.0

[1] $\quad 14.5$ for LT and MT mixes
${ }^{[2]} \quad 15.5$ for LT and MT mixes

Replace standard spec table 460-2 with the following to switch from E mixes to $L T, M T$, and HT mixes; and change the tensile strength ratio requirements to 0.75 without antistripping additive and 0.80 with antistripping additive.

TABLE 460-2 MIXTURE REQUIREMENTS

Mixture type	LT	MT	HT	SMA
ESALs x 106 (20 yr design life)	<2.0	$2-<8$	>8	> 5 mil
LA Wear (AASHTO T96) 100 revolutions(max \% loss) 500 revolutions(max \% loss)	$\begin{aligned} & 13 \\ & 50 \end{aligned}$	$\begin{aligned} & 13 \\ & 45 \end{aligned}$	$\begin{aligned} & 13 \\ & 45 \end{aligned}$	$\begin{aligned} & 13 \\ & 40 \end{aligned}$
Soundness (AASHTO T104) (sodium sulfate, max \% loss)	12	12	12	12
Freeze/Thaw (AASHTO T103) (specified counties, max \% loss)	18	18	18	18
Fractured Faces (ASTM 5821) (one face/2 face, \% by count)	65/ -	$75 / 60$	98/90	100/90
Flat \& Elongated (ASTM D4791) (max \%, by weight)	$\begin{gathered} 5 \\ (5: 1 \text { ratio }) \end{gathered}$	$\begin{gathered} 5 \\ (5: 1 \text { ratio }) \end{gathered}$	$\begin{gathered} \hline 5 \\ (5: 1 \text { ratio }) \end{gathered}$	$\begin{gathered} 20 \\ (3: 1 \text { ratio) } \end{gathered}$
Fine Aggregate Angularity (AASHTO T304, method A, min)	40	43	45	45
Sand Equivalency (AASHTO T176, min)	40	40	45	50
Gyratory Compaction Gyrations for Nini Gyrations for Ndes Gyrations for Nmax	$\begin{gathered} 6 \\ 40 \\ 60 \end{gathered}$	$\begin{gathered} 7 \\ 75 \\ 115 \end{gathered}$	$\begin{gathered} 8 \\ 100 \\ 160 \end{gathered}$	$\begin{gathered} 8 \\ 65 \\ 160 \end{gathered}$
Air Voids, \%Va (\%Gmm Ndes)	$\begin{gathered} 4.0 \\ (96.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (96.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (96.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (96.0) \\ \hline \end{gathered}$
\% Gmm Nini	<= 91.5 ${ }^{[1]}$	<= 89.0 $0^{[1]}$	<= 89.0	
\% Gmm Nmax	<=98.0	<= 98.0	<= 98.0	
Dust to Binder Ratio ${ }^{[2]}$ (\% passing 0.075/Pbe)	0.6-1.2	0.6-1.2	0.6-1.2	1.2-2.0
Voids filled with Binder (VFB or VFA, \%)	68-80 ${ }^{[4]}[5]$	$65-75^{[3]}[4]$	65-75 ${ }^{[3][4]}$	70-80
Tensile Strength Ratio (TSR) (ASTM 4867) no antistripping additive with antistripping additive	$\begin{aligned} & 0.75 \\ & 0.80 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.80 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.80 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.80 \\ & \hline \end{aligned}$
Draindown at Production Temperature (\%)	-	-	-	0.30

${ }^{[1]}$ The percent maximum density at initial compaction is only a guideline.
${ }^{[2]}$ For a gradation that passes below the boundaries of the caution zone (ref. AASHTO MP3), the dust to binder ratio limits are 0.6-1.6.
${ }^{[3]}$ For \#5 $(9.5 \mathrm{~mm})$ and \#4 (12.5 mm) nominal maximum size mixtures, the specified VFB range is 70-76\%.
${ }^{[4]}$ For \#2 (25.0 mm) nominal maximum size mixes, the specified VFB lower limit is 67%.
${ }^{[5]}$ For \#1 (37.5 mm) nominal maximum size mixes, the specified VFB lower limit is 67%.
Replace standard spec 460.2.8.2.1.7 paragraph six with the following to base payment adjustment on the combined bid item unit price:
(6)The department will reduce payment for nonconforming QMP HMA mixtures, starting from the stop point to the point when the running average is back inside the warning limits, as follows:
ITEM
Gradation
Asphalt Content
Air Voids
VMA

WARNING BANDS
90\%
85\%
70\%
90\%

PRODUCED OUTSIDE JMF LIMITS
 75%
 75\%
 50\%
 75%

${ }^{[1]}$ For projects or plants where the total production of each mixture design requires less than 4 tests refer to CMM 8-36.
${ }^{[2]}$ Payment is in percent of the contract unit price for the HMA Pavement bid item. The department will reduce pay based on the nonconforming property with lowest percent pay. The department will administer pay reduction under the Nonconforming QMP HMA Mixture administrative item.

Replace standard spec 465.2 with the following:
(1) Under the Asphaltic Surface, Asphaltic Surface Detours, and Asphaltic Surface Patching bid items; submit a mix design. Furnish asphaltic mixture meeting the requirements specified for either type LT or MT mix under 460.2; except the engineer will not require the contractor to conform to the quality management program specified under 460.2.8.
(2) Under the other 465 bid items, the contractor need not submit a mix design. Furnish aggregates mixed with a type AC asphaltic material. Use coarse and fine mineral aggregates uniformly coated and mixed with the asphaltic material in an engineer-approved mixing plant. The contractor may include reclaimed asphaltic pavement materials in the mixture.

C Construction

Replace standard spec table 460-3 with the following to switch from E mixes to LT, MT, and HT mixes and to increase field density requirements by 1.5% when operating under this HMA Pavement 3.0\% Va Regression SPV:

TABLE 460-3 MINIMUM REQUIRED DENSITY ${ }^{[1]}$

LOCATION	LAYER	PERCENT OF TARGET MAXIMUM DENSITY		
		MIXTURE TYPE		
	LTAND MT	HT	SMA $^{[5]}$	
TRAFFIC LANES ${ }^{[2]}$	LOWER	$93.0^{[3]}$	$93.0^{[4]}$	-
	LOWPER	93.0	93.0	-
CROSSOVERS, 	UPPER	93.0	$93.00^{[3]}$	-
RAMPS		93.0	-	
SHOULDERS \&	LOWER	91.0	91.0	-
APPURTENANCES	UPPER	92.0	92.0	-

${ }^{[1]}$ The table values are for average lot density. If any individual density test result falls more than 3.0 percent below the minimum required target maximum density, the engineer may investigate the acceptability of that material.
${ }^{[2]}$ Includes parking lanes as determined by the engineer.
${ }^{[3]}$ Minimum reduced by 2.0 percent for a lower layer constructed directly on crushed aggregate or recycled base courses.
[4] Minimum reduced by 1.0 percent for a lower layer constructed directly on crushed aggregate or recycled base courses.
${ }^{\text {[5] }}$ The minimum required densities for SMA mixtures are determined according to CMM 8-15.

Delete standard spec 460.2.8.2.1.5(1) and replace with the following:
${ }^{(1)}$ Conform to the following control limits for the JMF and warning limits based on a running average of the last 4 data points:

ITEM
Percent passing given sieve:
$37.5-\mathrm{mm}$
$25.0-\mathrm{mm}$
$19.0-\mathrm{mm}$
$12.5-\mathrm{mm}$
$9.5-\mathrm{mm}$
2.36-mm
$75-\mu \mathrm{m}$
Asphaltic content in percent
Air voids in percent
VMA in percent ${ }^{[1]}$

JMF LIMITS
+/- 6.0
+/- 6.0
+/- 5.5
+/- 5.5
+/- 5.5
+/- 5.0
+/- 2.0

- 0.3
$+1.3 /-1.0$
- 0.5

WARNING LIMITS
+/- 4.5
+/- 4.5
+/- 4.0
+/- 4.0
+/- 4.0
+/- 4.0
+/- 1.5

- 0.2
$+1.0 /-0.7$
- 0.2
${ }^{\text {[1] }}$ VMA limits based on minimum requirement for mix design nominal maximum aggregate size in table 460-1.

Delete standard spec 460.2.8.3.1.6(1) and replace with the following:
${ }^{(1)}$ The engineer will provide test results to the contractor within 2 mixture-production days after obtaining the sample. The quality of the product is acceptably verified if it meets the following limits:

1. \quad - $\quad V a$ is within a range of 2.0 to 4.3 percent.
2. - VMA is within minus 0.5 of the minimum requirement for the mix design nominal maximum aggregate size.

D Measurement

The department will measure HMA Pavement (type) 3.0\% Va Regression Special conforming to standard spec 460.4 .

E Payment

Add the following to standard spec 460.5 to switch from E mixes to $L T$, MT, and HT mixes; to combine the pavement and binder bid items; and to specify a pay reduction for pavement placed with nonconforming binder:

The department will pay for measured quantities at the contract unit price under the following bid items:

ITEM NUMBER	DESCRIPTION	UNIT
SPV.0195.01	HMA Pavement 4 LT 58-28 S 3.0\% Va Regression Special	TON
SPV.0195.02	HMA Pavement 4 MT 58-28 S 3.0\% Va Regression Special	TON

Payment is full compensation for providing HMA Pavement including asphaltic binder.
In addition to any pay adjustment under standard spec 460.2.8.2.1.7(6), the department will adjust pay for nonconforming binder under the Nonconforming QMP Asphaltic Material administrative item.

The department will deduct 25 percent of the contract unit price of the HMA Pavement bid item per ton of pavement placed with nonconforming PG binder the engineer allows to remain in place.

Delete standard spec 460.5.2.3(1) and replace with the following:
(1)If the lot density is greater than the minimum specified in table 460-3 and all individual air voids test results for that mixture placed during the same day are within 2.5-4.0 percent, the department will adjust pay for that lot as follows:

INCENTIVE PAY ADJUSTMENT FOR HMA PAVEMENT DENSITY
PERCENT LOT DENSITY ABOVE SPECIFIED MINIMUMPAY ADJUSTMENT PER TON ${ }^{[1]}$
From -0.4 to 1.0 inclusive
From 1.1 to 1.8 inclusive $\$ 0.40$
More than 1.8
$\$ 0.80$
[1] The department will prorate the pay adjustment for a partial lot.

APPENDIX A: Test Procedures for HMA Pavement 3\% Va Regression SPV

Delete CMM 8-15.10.1 Target maximum Density and replace with the following:

For pavement density determination, the target value in $\mathrm{lb} / \mathrm{ft}^{3}$ (PCF) is established using the mixture maximum specific gravity $\left(G_{m m}\right)$. For the first day of a paving mixture design, the target maximum density will be the $G_{m m}$ value corresponding to 3.0% air voids on the mix design multiplied by $62.24 \mathrm{lb} / \mathrm{ft}^{3}$ (PCF). The target maximum density for all other days will be the four G_{mm} test running average value from the end of the previous days' production multiplied by $62.24 \mathrm{lb} / \mathrm{ft}^{3}$ (PCF). If four tests have not been completed by the end of the first day, the average of the completed G_{mm} test values multiplied by $62.24 \mathrm{lb} / \mathrm{ft}^{3}(\mathrm{PCF})$ will be used until a running average of 4 is established.
The following data must be recorded for each test on the worksheet for MRS entry

- Density standard and moisture standard
- Density count, moisture counts or contact and air gap counts
- Total wet density or bulk density
- \% Compaction
- Manufacturer name and serial number
- Operators name
- Mix design number (WisDOT 250 ID) and daily Target max density target number ($\mathrm{Gmm}_{\mathrm{mm}} \times 2.24$ $\mathrm{lb} / \mathrm{ft}^{3}$)

Delete CMM 8-15.15.2.1 Examples of Computing Incentive/Disincentive for Density and replace with the following:

Example 1 (nominal tonnage lots):

HMA Pavement, Type 4 HT 58-34 S Lot 2R
Total HMA Tonnage for Project: 20,000 Tons
\% Density of Target Maximum $\left(\mathrm{G}_{\mathrm{mm}}\right)=90.4 \%$
Required \% Density of the $\mathrm{Gmm}_{\mathrm{mm}}=93.0 \%$
Lot Tonnage $=750$
Contract Price per Ton $=\$ 26.50$
From Table 460-3 of this SPV. 0195 and 460.5.2.2:

- Amount below Specified Minimum (Table 460-3 of this SPV) $=93.0-90.4=2.6$
- Payment Factor (SS 460.5.2.2) = 70\% (30\% Credit to the Department)
- Credit to the Department (HMA Mix) $=30 \% \times \$ 26.50 /$ Ton $\times 750$ Tons $=\$ 5,962.50$

If this were the only failing lot on the project, the final quantities on the estimate would be as shown in Table 3.

Example 2 (nominal tonnage lots):

HMA Pavement, Type 4 HT 58-34 S Lot 3R
\% Density of Target Maximum ($\mathrm{Gmm}_{\mathrm{m}}$) $=94.6 \%$
Required \% Density of the $\mathrm{Gmm}_{\mathrm{mm}}=\quad 93.0 \%$
Lot Tonnage $=750$
Air Voids for day $=2.9-3.2 \%$
Payment Factor $=94.6-93.0($ Table 460-3 $)=1.6$
Adjusted Unit Price $=\$ 0.40 /$ Ton $\times 750$ Tons (SS 460.5.2.3(1) of this SPV) $=\$ 300$

If this is the only lot with a higher density than required on the project, the final quantities
on the estimate would be as shown in Table 3 below:
Table 3 Estimate for Pay Adjustment for Incentive/Disincentive Density

Bid Item	Description	Unit	Cost/Unit	Total Quantity	Total
460.7244	HMA Type 4 HT 58-34 S	TON	$\$ 26.50$	20,000	$\$ 530,000.00$
460.2000	Incentive Density HMA Pavement	DOL	$\$ 1.00$	300.00	$\$ 300.00$
804.2005	Disincentive Density HMA Pavement	DOL	$\$ 1.00$	$-(5,962.5)$	$-(\$ 5,962.50)$

Project Information for Examples 3 and 4 (daily tonnage lots \& linear sublots):

A project begins at station $56+78$ and ends at station $234+25$. It is a 2 -lane roadway with a shoulder on each side. The traffic lanes are 12 feet wide and the shoulders are 3 feet wide. Shown in the figure below is the eastbound traffic lane and shoulder for the length of the project. The contractor will be paving the shoulder integrally with the traffic lane. The pavement is a 2-inch overlay and the same HMA mix type is used on the entire project. The HMA mixture includes 5.5% asphaltic material. The bid price for the HMA pavement item is $\$ 41.75$ per ton. The specified target density for the traffic lane is 93.0%. The target density for the shoulder is 92.0%.
Day 1 :
The contractor begins paving at station 56+78 and ends the day at station 102+97, a total length of 4,619 feet. A quantity of 677 tons was placed on the eastbound traffic lane, and 169 tons was placed on the integral shoulder.
Day 2 :
The contractor begins paving at station 102+97. Due to traffic staging requirements, the contractor stops paving at station $159+93,5,696$ feet, and begins paving again at station $202+36$. They end the day at the end of the project, station $234+25,3,189$ additional feet. A quantity of 1303 tons was paved on the eastbound traffic lane, and 326 tons was placed on the integral shoulder.
Day 3:
The contractor begins paving at station 159+93 and ends the day at station 202+36, 4,243 feet. A total of 622 tons was placed on the eastbound traffic lane, and 156 tons was placed on the integral shoulder.

Figure 6 Linear Sublot Example Project

Example 3 (daily tonnage lot \& linear sublots):

Use the example project information and the following test results from day 1. All of the day's air voids tests were acceptable. (Density Calculated off the PCF value, sublot is the average of the density \%)

Sublot ID	Test ID	\% Density	Sublot Avg \% Density
A	1	93.8	94.1
$\begin{gathered} 56+78 \\ \text { to } \\ 71+78 \end{gathered}$	2	94.2	
	3	94.4	
$\begin{gathered} \text { B } \\ 71+78 \\ \text { to } \\ 86+78 \end{gathered}$	4	94.1	94.5
	5	94.7	
	6	94.6	
$\begin{gathered} \text { C } \\ 86+78 \\ \text { to } \\ 101+78 \end{gathered}$	7	93.6	94.1
	8	94.5	
	9	94.3	
M	37	93.2	93.2
N	38	94.2	94.2
0	39	93.0	93.0

3. Compute the average density for each traffic lane sublot and each shoulder sublot.

SOLUTION: See the results in the table above.
2. Compute the density incentive or disincentive for the day's paving.

SOLUTION:

- Traffic Lane:

The specified target density for the traffic lane is 93.0%. All of the sublot averages were no more than one percent below the target density, so all of the day's traffic lane test results are used to compute the daily lot density and the lot incentive pay.

- Lot density $=(93.8+94.2+94.4+94.1+94.7+94.6+93.6+94.5+94.3) / 9$ tests $=94.2 \%$ According to 460.5 .2 .3(1) of this SPV, this lot density is eligible for incentive pay of $\$ 0.40$ per ton. 677 tons of HMA was placed on the traffic lane on day 1 , therefore the contractor receives $\$ 270.80$ density incentive for the day 1 traffic lane lot. This is for all of sublot $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ and the 119^{\prime} in sublot D that did not reach the random number.
- Shoulder:

The minimum required density is 92.0%. All of the sublot averages were acceptable, so all of the day's shoulder tests are used to compute the shoulder lot density. The average of all the shoulder
tests is 93.5%. According to the specification, this lot density is eligible for incentive pay of $\$ 0.40$ per ton. 169 tons of HMA was placed on the shoulder on day 1 , therefore the contractor receives $\$ 67.60$ density incentive for the day 1 shoulder lot.

Example 4 (daily tonnage lot \& linear sublots):

Use the example project information and the following test results from day 3. All of the day's air voids tests were acceptable.

Sublot ID	Test ID	\% Density	Sublot Avg \% Density
H	22	91.8	91.8
$\begin{gathered} 161+78 \\ \text { to } \\ 176+78 \end{gathered}$	23	91.9	
	24	91.7	
$\begin{gathered} 176+78 \\ \text { to } \\ 191+78 \end{gathered}$	25	95.1	94.9
	26	94.8	
	27	94.9	
$\begin{gathered} J \\ 191+78 \\ \text { to } \\ 202+36 \end{gathered}$	28	92.0	91.9
	29	91.8	
	30	91.9	
T	44	91.9	91.9
U	45	94.4	94.4
V	46	92.1	92.1

Compute the density incentive or disincentive for the day's paving.

SOLUTION:

1. Traffic Lane:

According to the specification, a minimum density of 93.0% is required for the traffic lane. When verifying whether or not the sublot densities meet the requirements, it is found that sublot H and sublot J have average densities that are more than one percent below the required minimum. According to the specification, the quantity of HMA pavement placed this day in each of these sublots is subject to disincentive, and the day's test results within these sublots are not included when computing the incentive for the remainder of the lot.
2. Sublot H:

Day 3 began inside the limits of sublot G, at station 159+93, but beyond its random test location.
The tests for sublot G represent material placed on day 2 . The tests in sublot H represent the day 3 material from station 159+93 to 176+78, a total length of 1685 feet long (185' from sublot G, paved on day 3 , and 1500 ' in sublot H) by 12 feet wide.
Quantity represented by tests in sublot $\mathrm{H}=$
$\frac{\left(1685^{\prime} \times 12^{\prime}\right)}{(9 \mathrm{sf} / \mathrm{sy})} \times \frac{(2 \mathrm{in} . \times 110 \mathrm{lb} / \mathrm{sy} / \mathrm{in})}{(2000 \mathrm{lb} / \text { ton })}=247$ tons

According to the disincentive pay table in the specification, the quantities are subject to a pay factor equal to 95 percent of the contract price. This is equivalent to a 5 percent pay reduction.
Disincentive Density HMA Pavement $=247$ tons $\times(\$ 41.75 /$ ton $\times 0.05)=-\$ 515.61$
3. Sublot I:

Quantity represented by tests in sublot $\mathrm{I}=$

$$
\frac{\left(1500^{\prime} \times 12^{\prime}\right)}{(9 \mathrm{sf} / \mathrm{sy})} \times \frac{(2 \mathrm{in} . \times 110 \mathrm{lb} / \mathrm{sy} / \mathrm{in})}{(2000 \mathrm{lb} / \mathrm{ton})}=220 \text { tons }
$$

According to the incentive pay table, 220 tons of the HMA pavement item are eligible for an incentive of $\$ 0.80$ per ton, or a total of $\$ 176.00$.
4. Sublot J:

Day 3 ended within the limits of sublot J , beyond its random test location. The day 3 quantity placed within sublot J , from station $191+78$ to $202+36$, at length of 1,058 feet, is represented by its tests. The day 2 quantity placed toward the end of sublot J is represented by the tests taken on day 2 within sublot K.
Quantity represented by tests in sublot $J=$

$$
\frac{\left(1058^{\prime} \times 12^{\prime}\right)}{(9 \mathrm{sf} / \mathrm{sy})} \times \frac{(2 \mathrm{in} . \times 110 \mathrm{lb} / \mathrm{sy} / \mathrm{in})}{(2000 \mathrm{lb} / \text { ton })}=155 \text { tons }
$$

According to the disincentive pay table in the specification, the quantities are subject to a pay factor equal to 95 percent of the contract price. This is equivalent to a 5 percent pay reduction.
Disincentive Density HMA Pavement $=155$ tons $\times(\$ 41.75 /$ ton $\times 0.05)=-\$ 323.56$
5. Shoulder:

All of the day 3 shoulder sublots have acceptable density values, so we use all of the results to compute the day's shoulder lot density.
Day 3 shoulder lot density $=(91.9+94.4+92.1) / 3$ tests $=92.8 \%$
The lot density of 92.8% is not more than 1.0% above the required minimum of 92.0%, therefore the day 3 shoulder pavement does not receive any density incentive.

Day 3 Incentive/Disincentive Summary:

Incentive Density HMA Pavement (Lot I) = \$176.00
Disincentive Density HMA Pavement (Lot H) $=-\$ 515.61$
Disincentive Density HMA Pavement (Lot J) $=-\$ 323.56$

Delete CMM 8-36.6.1 QC Tests and replace with the following:

QC testing must be completed, and data posted, on the day the sample was taken or as approved by the engineer.
For administration of projects requiring only one, two, or three single tests per mix design, apply the following tolerances table for mixture evaluation:

- $\mathrm{Va}=2.0-5.0 \%$
- VMA = - 1.3 from required minimums for Table 460-1 as revised in STSP 460-025
- $\mathrm{AC}=$ within -0.1 of JMF Pb after regression

Delete CMM 8-36 Figure 8 HMA Verification Dispute Resolution Scenarios and replace with the following:

Delete CMM 8-66.2.2(3) and replace with the following:
3. Determine trial asphalt binder contents (estimated by experience or by calculation based on aggregate properties of trial blends).

- Compact gyratory specimens using a minimum of 3 asphalt binder contents (0.5% increments) and covering a range to include the estimated optimum design binder content as well as 3.0% air voids. Use $\mathrm{N}_{\text {des }}$ for compaction effort.
- Compare trial binder content results. The design binder content (by either graphing or interpolating the trial data results) is determined as that meeting requirements stated in standard spec 460. The department will determine the optimum binder content corresponding to 3.0% air voids by linear regression of the trial gyratory specimens.

Schedule of Items

Attached, dated June 02, 2016, are the revised Schedule of Items Pages 1 - 9 .
Plan Sheets
The following $81 / 2 \times 11$-inch sheets are attached and made part of the plans for this proposal:
Revised: 53
Added: 44A, 44B, and 44C

