Wisconsin Department of Transportation

Division of Transportation Systems
Development
Bureau of Project Development 4802 Sheboygan Avenue, Rm 601 P O Box 7916
Madison, WI 53707-7916
Telephone:
(608) 266-1631

Facsimile (FAX):
(608) 266-8459

1070-00-73, WISC 2016247
La Crosse - Tomah Road (West Salem Safety \& Weight Facility \#53)
IH 90
La Crosse County

Letting of July 12, 2016

This is Addendum No. 03, which provides for the following:

Special Provisions

Revised Special Provisions	
Article No.	Description
4	Prosecution and Progress
41	SWEF Building, General Construction, Item SPV.0105.101
42	SWEF Building, Plumbing, Item SPV.0105.102
43	SWEF Building, Heating and Ventilating, Item SPV.0105.103
44	SWEF Building, Electrical, Item SPV.0105.104

Schedule of Items

Revised Bid Item Quantities						
Bid Item	Item Description	Unit	Old Quantity	Revised Quantity	Proposal Total	
205.0100	Excavation Common	CY	158,408	2,334	160,742	
625.0500	Salvaged Topsoil	SY	58,000	7,900	65,900	
628.1504	Silt Fence	LF	12,250	950	13,200	
628.1520	Silt Fence Maintenance	LF	6,150	460	6,610	
629.0210	Fertilizer Type B	CWT	55	5	60	
630.0120	Seeding Mixture No. 20	LB	2,280	100	2,380	
630.0130	Seeding Mixture No. 30	LB	440	830	1,270	

Added Bid Item Quantities						
Bid Item	Item Description	Unit	Old Quantity	Revised Quantity	Proposal Total	
311.0110	Breaker Run	Ton	0	13,750	13,750	

Plan Sheets

Revised Plan Sheets	
Plan Sheet	Plan Sheet Title (brief description of changes to sheet)
24	Revised Construction Detail (Earthen Berming Detail)
59-61	Revised Erosion Control Plan (updated erosion mat limits with revised earthen berming)
107	Revised Building Architectural Plan (updated G101 Life Safety Plan)
113	Revised Building Architectural Plan (updated A102 Main Level Floor Plan)
117, 119	Revised Building Architectural Plan (updated A106 \& A202 Floor Slab Plan)
123	Revised Building Architectural Plan (updated A206 Enlarged Toilet Plans)
131	Revised Building Architectural Plan (updated A405 Wall Sections)
148	Revised Building Architectural Plan (updated A508 Shower Details)
151	Revised Building Architectural Plan (updated A701 Door Schedule)
156	Revised Building Architectural Plan (updated A706 Door Details)
170	Revised Building Architectural Plan (updated F101 Fire Protection Plan)
175-177	Revised Building Architectural Plan (updated S101, S102, \& S103 Foundation Plan)
178	Revised Building Architectural Plan (updated S104 Pit Plan \& Tunnel Foundation Plan)
179	Revised Building Architectural Plan (updated S105 Low Roof Framing Plan - North)
231	Revised Building Architectural Plan (updated H100 Geothermal Well Plan)
232	Revised Building Architectural Plan (updated H100B Underfloor Piping Plan)
233-234	Revised Building Architectural Plan (updated H101A \& H101B HVAC Piping Plan)
235-236	Revised Building Architectural Plan (updated H102A \& H102B HVAC Ductwork)
237	Revised Building Architectural Plan (updated H202 Enlarged Mechanical Room)
238, 240	Revised Building Architectural Plan (updated H400 \& H402 HVAC Piping Schematic)
241	Revised Building Architectural Plan (updated H403 HVAC Piping Schematic \& Detail)
242, 244	Revised Building Architectural Plan (updated H404 \& H406 HVAC Sections)
245-246	Revised Building Architectural Plan (updated H500 \& H501 HVAC Schedules)
247	Revised Building Architectural Plan (updated E100 Electrical Site Plan \& Symbols)
248	Revised Building Architectural Plan (updated E200 Electrical Lighting Plan)
249	Revised Building Architectural Plan (updated E300 Electrical Power Plan)
251	Revised Building Architectural Plan (updated E302 Electrical Low Voltage Plans)
252	Revised Building Architectural Plan (updated E400 Electric Riser Diagram \& Details)
256	Revised Building Architectural Plan (updated E404 Electric Details)
258	Revised Building Architectural Plan (updated E406 Enlarged Mechanical Room Plans)
260-263	Revised Building Architectural Plan (updated E501, E502, E503, \& E504 Electric Schedules)
279-281	Revised Fencing Plan (updated slope intercepts with revised earthen berming)
308	Revised Earthwork MQ table (updated with revised earthen berming)
309	Revised MQ Table (updated to include Breaker Run)
314	Revised Erosion Control MQ table (updated with revised earthen berming)
315	Revised Finishing Items MQ table (updated with revised earthen berming)
327-328	Revised Plan and Profile Sheets (updated with slope intercepts with revised earthen berming)
461-465	Revised Earthwork Data Sheets (updated with revised earthen berming)
470-477	Revised Ramp Cross Sections (updated with revised earthen berming)
514, 524	Revised Parking Lot Cross Sections (updated with revised earthen berming)

Other

Replace Prop 03 Federal Building Wage Rates Monroe County dated 06/24/2016 with Prop 03 Federal Building Wage Rates Monroe County dated 07/01/2016.

Replace Prop 03 Federal Building Wage Rates La Crosse County dated 06/24/2016 with Prop 03 Federal Building Wage Rates La Crosse County dated 7/01/2016.

The responsibility for notifying potential subcontractors and suppliers of these changes remains with the prime contractor.

Sincerely,

Mike Coleman

Proposal Development Specialist
Proposal Management Section

July 7, 2016

Special Provisions

4. Prosecution and Progress

Replace the entire subsection titled Sparta SWEF Mainline WIM under section titled E Schedule of Operations with the following:

Sparta SWEF Mainline WIM
Complete construction operations at the Sparta SWEF mainline weigh-in-motion (WIM) location along IH 90 utilizing temporary lane closures during off-peak traffic periods except for one continuous four (4) day lane closure. The date for the lane closure must be approved by the engineer.

41. SWEF Building, General Construction, Item SPV.0105.101

Replace the entire SECTION 107300 - PROTECTIVE COVERS with the following:

SECTION 107300 - PROTECTIVE COVERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division Section sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following.

1. Manually operated, horizontal protective canvas over exterior stair.

1.3 SUBMITTALS

A. Product Data
B. Shop Drawings: Show layouts and details to illustrate assembly and operation. Include the following:

1. Plans, sections, and details.
2. Drainage details
3. Anchorage details
4. Frame details
5. Accessories for locking.
C. Samples for Initial Selection: For finishes of cover and accessories.
D. Maintenance and Operation Data: For protective cover to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate layout and installation of protective cover with adjacent construction, including wall framing, stair construction, railings, and light fixtures.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Acceptable Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products specified.

1. Custom Cover Design, Baraboo Tent \& Awning, Baraboo, WI
2. Gallager Tent and Awning, Madison, WI
3. Northrup Awning Company, Janesville, WI
4. La Crosse Tent \& Awning, La Crosse, WI

2.2 HORIZONTAL PROTECTIVE COVER:

A. Manually Operated Cover, General: Provide manufacturer's standard mounting accessories, and other components necessary for a complete installation.
B. Cover: Provide industrial strength, flame retardant vinyl, minimum 17-oz weight.

1. Available products
a. Ferrari 502, by Astron Company
b. BFT by John Boyle Company
C. Support Framing: Provide manufacturer's welded aluminum tube frame with steel supports, designed to withstand structural loads anticipated for this application. Support framing design and structural engineering is the responsibility of the fabricator.
D. Surface-Mounted Tracks and Accessories: Units designed and fabricated for surface mounting on masonry and concrete wall substrates, fabricated from clear anodized aluminum extrusions. Tracks and mounting accessories shall permit manual removal of 15 foot long section of the cover to access the scale tunnel. The remaining portion of the cover may be fixed. When access is not needed, cover shall be secured to prevent the build-up of snow, ice, and water at the stair. Provide a jamb-mounted locking device at the end of the cover to secure it and limit unauthorized access.

PART 3 - EXECUTION

3.1 INSTALLATION

1. General: Install protective cover at locations indicated to comply with manufacturer's written instructions.

42. SWEF Building, Plumbing, Item SPV.0105.102

Delete entire section titled DIVISION 21 - FIRE SUPPRESSION
Delete entire section titled SECTION 210500 - COMMON WORK RESULTS FOR FIRE SUPPRESSION Delete entire section titled SECTION 210529 - HANGERS \& SUPPORTS FOR FIRE SUPPRESSION PIPING \& EQUIPMENT
Delete entire section titled SECTION 211316 - DRY PIPE SPINKLER SYSTEM
43. SWEF Building, Heating and Ventilating, Item SPV.0105.103

Add SECTION 230993 - SEQUENCE OF OPERATION FOR HVAC CONTROLS:

SECTION 230993 - SEQUENCE OF OPERATION FOR HVAC CONTROLS

PART1-GENERAL

SCOPE
This section includes control sequences for HVAC equipment as well as equipment furnished by others that may need monitoring or control.

RELATED WORK

Applicable provisions of Division 1 govern work under this Section.
Section 230593 - Testing, Adjusting, and Balancing for HVAC - Coordination
Division 23 - HVAC - Equipment provided to be controlled or monitored
Division 26 - Electrical - Equipment provided to be controlled or monitored
Division 28 - Electronic Safety and Security
DESCRIPTION OF WORK
Control sequences are hereby defined as the manner and method by which automatic controls function. Requirements for each type of operation are specified in this section.

Operation equipment, devices and system components required for automatic control systems are specified in other Division 23 control sections of these specifications.

SUBMITTALS
Refer to Division 1, General Conditions.
The contractor providing the DDC equipment shall provide a complete narrative of the sequence of operations for equipment that is controlled through the DDC system. The narrative of the sequence of operation shall not be a verbatim copy of the sequences contained herein, but shall reflect the actual operation as applied by the contractor.

OPERATION AND MAINTENANCE DATA
All operations and maintenance data shall comply with the submission and content requirements specified under section GENERAL REQUIREMENTS.

PART2-PRODUCTS

Not applicable to this Section.

PART3-EXECUTION

CONTROL SEQUENCES

Ground Water Loop Temperature Control

A. The groundwater loop temperature shall be maintained between 40 degrees and 75 degrees as measured within Buffer Tank (BT-1). Provide and install an immersion temperature sensor in this tank.
B. If the temperature within the tank falls below 40 degrees, or rises above 75 degrees, the Ground Water Pumps (GP-1 thru GP-2) shall be started and operated continuously until the temperature returns to setpoint.
C. On a call for heat or cooling, one pump shall be started and allow to operate continuously. On a continued call for heat or cooling, additional pumps shall be sequenced on and off at 1 degree intervals.
D. The pumps shall be sequenced in a rotating manner with rotation intervals to not be greater than once per week.
E. The pumps will operate at constant speed. The variable speed pumps will be used to set design water volume only.
F. This Contractor shall provide and install RIB-style relays to control operation of these pumps.
G. Monitor the status of these pumps with differential pressure sensors or current sensors and report all alarms to the Energy Management System.
H. If the temperature falls more than 4 degrees below setpoint in Buffer Tank (BT-1), the gas boiler shall be energized. Prior to energizing the boiler:

1) A 2-position control valve at the manifolds near the Buffer Tank shall be opened and position proven.
2) Once position is proven, boiler pump (BP-1) shall be started.
3) Once the pump is started and flow proven, the boiler shall be started and allowed to operate under its internal controls. Set the outlet temperature to 130 degrees.
4) Boiler operation shall be controlled by the Energy Management System. Once the tank temperature returns to within 2 degrees of setpoint, the boiler shall be turned off, followed by stopping the pump and then closing the control valve.
5) This Contractor shall provide the control valve. Select valve for a maximum of 2 PSI pressure loss.
6) If the boiler is started, an alarm shall be sent to the Energy Management System.
I. If the tank temperature falls more than 5 degrees below setpoint, or 5 degrees above setpoint, an alarm shall be sent to the Energy Management System.
J. The buffer tank water temperature shall be displayed at the Energy Management System and a graphic shall be included to show a daily graph of the tank temperature. Display the tank temperature variation at daily, monthly, and yearly intervals.

Radiant Water Temperature Control

A. The radiant heating water shall be maintained between 90 degrees and 110 degrees as measured within Boiler Buffer Tank (BBT-1). Provide and install an immersion temperature sensor in this tank.
B. The water temperature setpoint shall be reset in proportion to outside air temperature, as follows:

Outside Air Temperature	
-20 degrees F	
40 degrees F	
110 degrees F F	
90 degrees F	

C. The entire system shall be disabled if the outside air temperature rises above 50 degrees F.
D. On a call for heat, circulating pumps P-1 and P-2 shall be started. These pumps will operate simultaneously at a constant speed.
E. This Contractor shall provide and install RIB-style relays to control operation of these pumps.
F. Monitor the status of these pumps with differential pressure sensors or current sensors and report all alarms to the Energy Management System.
G. Once water flow is proven, Heat Pump (WP-1) shall be staged on in proportion to the deviation from setpoint. Verify exact number of control stages with the heat pump manufacturer. Maintain a 2 degree differential between stages of operation.

1) This Contractor shall install and wire all flow switches and safety switches provided by the manufacturer of the heat pump.
H. If the temperature falls more than 4 degrees below setpoint in Boiler Buffer Tank (BBT-1), the gas boiler shall be energized. Prior to energizing the boiler:
2) A 2-position control valve at the manifolds near the Boiler Buffer Tank shall be opened and position proven.
3) Once position is proven, boiler pump (BP-1) shall be started.
4) Once the pump is started and flow proven, the boiler shall be started and allowed to operate under its internal controls. Set the outlet temperature to 130 degrees.
5) Boiler operation shall be controlled by the Energy Management System. Once the tank temperature returns to within 2 degrees of setpoint, the boiler shall be turned off, followed by stopping the pump and then closing the control valve.
6) This Contractor shall provide the control valve. Select valve for a maximum of 2 PSI pressure loss.
I. If the boiler is started, an alarm shall be sent to the Energy Management System.
J. The boiler buffer tank water temperature shall be displayed at the Energy Management System.

Radiant Hot Water Heat Control

A. Each radiant zone will be provided with a separate variable speed pump and a room temperature sensor. Sensors shall be connected to the Energy Management System to provide a modulating output to the pumps. Room temperature sensors shall include an occupant-accessible temperature setpoint adjustment, limited by software programming. 1) All radiant zone temperature sensors in public spaces, or within the Inspection Bay, shall be fitted with clear plastic vandal guards with keyed locks.
B. On a call for space heat at the room temperature sensor, the zone pump shall be started and the pump speed shall be modulated in proportion to the deviation from temperature setpoint. Pump shall be at full speed if the room falls more than 3 degrees from setpoint.
C. Pumps shall not be allowed to operate if the outside air temperature rises above 50 degrees.
D. Temperature sensors shall be single temperature without any night setback cycle.
E. This Contractor shall provide and install RIB-style relays to control operation of these pumps, as well as a modulating signal to the pumps. An "on-off" control will not be required if the modulating signal provides for position pump shut-off.

Unitary Water-to-Air Heat Pumps

A. This Contractor shall provide a room temperature sensor for each unitary heat pump. The sensor shall be connected to the Energy Management System.

1) All unitary heat pump temperature sensors in public spaces shall be fitted with clear plastic vandal guards with keyed locks.
B. An occupancy schedule shall be provided for all unitary heat pumps. The Owner shall supply an occupancy schedule for initial programming, including holidays. Adjustment of the occupancy schedule shall be access to the occupants of the building via the Energy Management System.
C. During occupied periods, the unitary heat pump fans shall operate continuously. During unoccupied periods, the fans shall remain off unless there is a call for heat or cooling.
D. On a call for heat or cooling the heat pump compressor, and reversing valve (in heating mode) shall be energized and allowed to operate until the call for heat or cooling is satisfied. 1) When the outside air temperature is below 50 degrees F, the heating capacity in the unitary heat pumps shall be retarded by 2 degrees to allow the in-floor radiant heat to supply the primary heating source.
2) Each heat pump is paired with a water circulating pump. On a call for heat or cooling, this pump shall be started and flow shall be proven before the heat pump compressor is allowed to operation. This Contractor shall provide a flow switch or a pressure switch to prove flow.
3) This Contractor shall provide and install RIB-style relays to control operation of these pumps.
4) Monitor the status of these pumps with differential pressure sensors or current sensors and report all alarms to the Energy Management System.
E. Room temperature sensors shall include an occupant-accessible temperature setpoint adjustment, limited by software programming.

Energy Recovery Units

A. The energy recovery units shall be allowed to operate during occupied periods only, and shall operate continuously whenever their representative unitary heat pump is in the occupied mode.
B. Each energy recovery unit will be equipped with a motorized damper on the intake and exhaust ductwork. When the system is switched from un-occupied to occupied, these dampers shall be driven open and their position proven before the energy recovery unit fans are allowed to start.
C. This Contractor shall provide a power source, as necessary, and shall install all control wiring between the dampers and the energy recovery units.

Exhaust Fans EF-1 thru EF-4, EF-5 and EF-6, and Make-up Air Unit MU-1

A. Under normal conditions, exhaust fans EF-1 through EF-4 shall be manually indexed on by the occupants for odor or temperature control. A motorized damper shall be installed at each of these fans and shall be driven open when the fan is energized. The Electrical Contractor will provide manual control switches and will wire the motorized dampers. This Contractor shall verify the wiring and the control dampers operate as required.
B. Exhaust fans EF-5 and EF-6 shall operate based on the following:

1) These fans shall operate continuously if the Inspection Bay is in an "occupied" mode, as programmed by the Owner's schedule.
2) These fans shall operate continuously if the main lighting is energized in the Inspection Bay. This Contractor shall provide and install relays, as necessary, to energize these fans if the lighting is on. Coordinate with the electrical contractor.
3) These fans shall operate continuously if carbon monoxide or nitrogen dioxide is detected in the Inspection Bay above acceptable levels.
C. This Contractor shall provide, install, and wire a CO/NO2 detector "system" with multiple point source detectors. Detectors shall be located in each of the depressed inspection pits, and at opposite sides of the Inspection Bay. All sensors shall be low voltage and shall annunciate at the main control panel. This Contractor is responsible for all low and line voltage wiring.
4) If carbon monoxide is detected above a pre-set level, all (6) exhaust fans shall be automatically started, and all associated motorized control dampers shall be opened.
5) If nitrogen dioxide is detected above a pre-set level, all (6) exhaust fans shall be automatically started, and all associated motorized control dampers shall be opened.
6) Verify all setpoints with the Engineer and the Owner.
7) An alarm shall be sent to the Energy Management System if high concentrations of either gas are detected.
D. Each motorized damper at all six (6) exhaust fans shall be equipped with an end switch. If any damper is driven open, the make-up air unit (MU-1) shall be energized and allowed to operate.
8) This Contractor shall extend dedicated wiring from each motorized damper to the make-up air unit control panel.
9) When the make-up air unit is energized, the outside air damper shall first be driven open and position proven.
10) The make-up air unit will be supplied with a remote control panel. This Contractor shall install this panel adjacent to gas monitor panel and shall provide and install all wiring per the manufacturer's directions. The remote control panel will include a manual summer-winter switch, a remote discharge air temperature control, and a number of status indicator lamps.
11) Once the make-up air unit is energized, and the outside air damper is proven open, the unit shall operate under its own internal controls to supply a fixed discharge air temperature and to maintain a fixed air pressure in the Inspection Bay as referenced to the Office Spaces.
a.) This Contractor shall install the air pressure sensor taps per the manufacturer's directions.
b.) The make-up air unit includes a mixing box and will mix return air and outside air to maintain a slightly negative pressure as referenced to the Office Spaces.

Gas Infrared Heaters (IR-1 through IR-4)

A. The gas infrared heater may be supplied with "stand alone", low voltage, 2-stage room thermostats compatible with the infrared heating units.
B. Install the thermostats where shown on the drawings and make all low voltage wiring connections per the manufacturer's directions.
C. Note that IR-1 and IR-2 share a common room thermostat and must operate simultaneously. This contractor shall provide and install isolation relays, if necessary, to allow a single room thermostat to control both infrared units.
D. All infrared unit thermostats shall be heavy duty style. No guards will be required, as the intent is to allow the occupants to manually energize the heaters on an "as needed" basis.

Alarms

Provide all alarmed points with adjustable time delays to prevent nuisance tripping under normal operation and on equipment start-up. For all commanded outputs that have status feedback, provide an alarm that will indicate the commanded output is not in its commanded state. Provide alarms on all points as indicated on point charts. For existing campus automations systems, add/delete what is called on the point charts for after consultation with user Agency to provide consistent alarming throughout the automation system.

Equipment Start/Stop Failure States

All start/stop points for equipment shall utilize normally open contacts unless called out specifically in the individual control sequences.

Lead/Lag Sequencing

For sequences that call for lead/lag of equipment connected to building automation systems, the lead device shall be able to be chosen through a selectable day of the week and time of day through the building automation system. Coordinate with the user Agency for scheduling switchover and frequency. Unless otherwise directed, switchover shall occur at 10AM Tuesday and shall rotate the lead device on a weekly cycle rotating through all devices sequentially. For standalone lead/lag sequence controllers (non-DDC), the lead device shall be selected by a switch on the panel face.

Current Switch Setup

When current switches are used for proving fan or pump status, they shall be set up so that they will detect belt or coupling loss by the reduction in current draw on loss of coupled load. The current switch set up shall be redone by the 230914 contractor after the balancer is complete.

Damper Interlocks for Fans

For fan systems with magnetic starters and shutoff dampers specified with end switches, the damper interlock shall be hardwired in such a way that the damper shall open if the fan starter hand / off / auto switch is in the hand or in the auto position and being called to start. After the damper end switch has proven the damper open, a hardwire interlock from the end switch to the starter holding coil for the fan shall cause the fan to start. For fan systems that are ducted in parallel, see specific sequence for fan system on interlock requirements.

Fan Interlocking

Provide interlocks between supply and return or exhaust fan systems as scheduled on the plans or called out in individual control sequences. If DDC controlled, interlocks shall be done through DDC start/stop points unless otherwise specified in individual control sequences. If not DDC controlled, interlocks shall be accomplished via hardwire interlocks between fan starters or VFD's.

Thermostats and Sensors:

All devices and equipment including terminal units, specified to be controlled in a control sequence by a thermostat or sensor, shall be provided with a thermostat or sensor, whether or not the device is indicated on the plans. Consult the HVAC design engineer for the thermostat or sensor location.

END OF SECTION 230993

43. SWEF Building, Heating and Ventilating, Item SPV.0105.103

Replace the entire section titled SECTION 231100 - FACILITY FUEL PIPING with the following:

SECTION 231100 - FACILITY FUEL PIPING

PART1-GENERAL

SCOPE

This section contains specifications for fuel pipe and fuel pipe fittings for this project.
RELATED WORK
Section 230523 - General-Duty Valves for HVAC Piping
Section 230515 - Piping Specialties
Section 230529 - Hangers and Supports for HVAC Piping and Equipment

REFERENCE

Applicable provisions of Division 1 govern work under this section.

REFERENCE STANDARDS

```
ANSI B16.3 Malleable Iron Threaded Fittings
ASTM A53 Pipe, Steel, Black and Hot-Dipped, Zinc Coated Welded and Seamless
ASTM A234 Pipe Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and Elevated
    Temperatures
NFPA 54-2009 Edition, National Fuel Gas Code
```


SHOP DRAWINGS

Refer to division 1, General Conditions, Submittals.

Contractor shall submit schedule indicating the ASTM specification number of the pipe being proposed along with its type and grade and sufficient information to indicate the type and rating of fittings for each service.

DELIVERY, STORAGE, AND HANDLING

Promptly inspect shipments to insure that the material is undamaged and complies with specifications.

Cover pipe to eliminate rust and corrosion while allowing sufficient ventilation to avoid condensation. Do not store materials directly on grade. Protect pipe, tube, and fitting ends so they are not damaged. Where end caps are provided or specified, take precautions so the caps remain in place.

Offsite storage agreements will not relieve the contractor from using proper storage techniques.
Storage and protection methods must allow inspection to verify products.

DESIGN CRITERIA

Use only new material, free of defects, rust and scale, and meeting the latest revision of ASTM specifications as listed in this specification.

Construct all piping for the highest pressures and temperatures in the respective system in accordance with ANSI B31, but not less than 125 psig unless specifically indicated otherwise.

Non-metallic piping will be acceptable only for the services indicated. It will not be acceptable in occupied spaces and ventilation plenum spaces, including plenum ceilings.

Where weld fittings or mechanical grooved fittings are used, use only long radius elbows having a centerline radius of 1.5 pipe diameters.

Where ASTM A53 grade A pipe is specified, ASTM A53 grade B pipe may be substituted at Contractor's option. Where the grade or type is not specified, Contractor may choose from those commercially available.

WELDER QUALIFICATIONS

Before any metallic welding is performed, Contractor to submit his Standard Welding Procedure Specification together with the Procedure Qualification Record as required by Section IX of the ASME Boiler and Pressure Vessel Code and/or the National Certified Pipe Welding Bureau.

Before any polyethylene fusion welding is performed, Contractor to submit certification that the welders to be used on this project have successfully demonstrated proper welding procedures in accordance with the Code of Federal Regulations, Title 49, Part 192, Section 192.285.

The A/E reserves the right to test the work of any welder employed on the project, at the Contractor's expense. If the work of the welder is found to be unsatisfactory, the welder shall be prevented from doing further welding on the project.

NATURAL GAS SERVICE

All charges for the gas service as shown on the plans, including the connection from the main in the street or other location to the gas meter, shall be paid by this Contractor, including setting of gas meter(s) and all work performed by the gas company.

PART2-PRODUCTS

NATURAL GAS

2" and Smaller: ASTM A53, type E or S, standard weight (schedule 40) black steel pipe with ASTM A197/ANSI B16.3 class 150 black malleable iron threaded fittings or ASTM A234 grade WPB/ANSI B16.9 standard weight, seamless, carbon steel weld fittings.

VENTS AND RELIEF VALVES

Use pipe and pipe fittings as specified for the system to which the relief valve or vent is connected.

UNIONS AND FLANGES

2" and Smaller: ASTM A197/ANSI B16.3 malleable iron unions with brass seats. Use black malleable iron on black steel piping and galvanized malleable iron on galvanized steel piping. Use unions of a pressure class equal to or higher than that specified for the fittings of the respective piping service but not less than 250 psi.

PART3-EXECUTION

PREPARATION

Remove all foreign material from interior and exterior of pipe and fittings.

ERECTION

Install all piping parallel to building walls and ceilings and at heights which do not obstruct any portion of a window, doorway, stairway, or passageway. Where interferences develop in the field, offset or reroute piping as required to clear such interferences. In all cases, consult drawings for exact location of pipe spaces, ceiling heights, door and window openings, or other architectural details before installing piping.

Provide anchors, expansion joints, swing joints and/or expansion loops so that piping may expand and contract without damage to itself, equipment, or building.
Mitered ells, notched tees, and orange peel reducers are not acceptable. On threaded piping, bushings are not acceptable.
"Weldolets" and "Threadolets" may be used for branch takeoffs up to one-half (1/2) the diameter of the main.

Do not route piping through transformer vaults or above transformers, panelboards, or switchboards, including the required service space for this equipment, unless the piping is serving this equipment

Install all valves, and piping specialties, including items furnished by others, as specified and/or detailed. Make connections to all equipment installed by others where that equipment requires the piping services indicated in this section.

WELDED PIPE JOINTS
Make all welded joints by fusion welding in accordance with ASME Codes, ANSI B31, and State Codes where applicable.

Electrodes shall be Lincoln, or approved equal, with coating and diameter as recommended by the manufacturer for the type and thickness of work being done.

THREADED PIPE JOINTS
Use a Teflon based thread lubricant or Teflon tape when making joints; no hard setting pipe thread cement or caulking will be allowed.

NATURAL GAS

Pitch horizontal piping down 1" in 60 feet in the direction of flow. Install a 4" minimum depth dirt leg at the bottom of each vertical run and at each appliance. When installing mains and branches, cap gas tight each tee or pipe end which will not be immediately extended. All branch connections to the main shall be from the top or side of the main.

Do not install gas pipe in a ventilation air plenum.
If an above ground vent terminates in an area subject to snow accumulation, terminate the line at least five feet above grade.

Install a shut off valve at each appliance. Provide a valved connection at the main for equipment and appliances furnished by others.

Piping through a roof shall be run through an approved roof penetration with flashing and counter flashing.

Each gas pressure reducing valve vent and relief valve vent shall be run separately to a point outside of the building, terminated with a screened vent cap, and located according to gas utility regulations.

Clean all welded piping before all regulators and control valves. Test by placing target cloth over piping and blow with compressed air. Clean piping until target cloth is clean and free of debris.

VENTS AND RELIEF VALVES

Install vent and relief valve discharge lines as indicated on the drawings, as detailed, and as specified for each specific valve or piping specialty item. In no event is a termination to occur less than six feet above a roof line.

UNIONS AND FLANGES

Install a union or flange, as required, at each automatic control valve and at each piping specialty or piece of equipment which may require removal for maintenance, repair, or replacement. Where a valve is located at a piece of equipment, locate the flange or union connection on the equipment side of the valve. Concealed unions or flanges are not acceptable.

PIPING SYSTEM LEAK TESTS

Verify that the piping system being tested is fully connected to all components and that all equipment is properly installed, wired, and ready for operation. If required for the additional pressure load under test, provide temporary restraints at expansion joints or isolate them during the test. Verify that hangers can withstand any additional weight load that may be imposed by the test.

Provide all piping, fittings, blind flanges, and equipment to perform the testing.
Conduct pressure test with test medium of air or water unless specifically indicated. Minimum test time is indicated in the table below; additional time may be necessary to conduct an examination for leakage. Each test must be witnessed by the Division's representative. If leaks are found, repair the area with new materials and repeat the test; caulking will not be acceptable.

Do not insulate pipe until it has been successfully tested.
For hydrostatic tests, use clean water and remove all air from the piping being tested by means of air vents or loosening of flanges/unions. Measure and record test pressure at the high point in the system.

For air tests, gradually increase the pressure to not more than one half of the test pressure; then increase the pressure in steps of approximately one-tenth of the test pressure until the required test pressure is reached. Examine all joints and connections with a soap bubble solution or equivalent method. The piping system exclusive of possible localized instances at pump or valve packing shall
show no evidence of leaking. After testing is complete, slowly release the pressure in a safe manner.

Measure natural gas system test pressure with a water manometer or an equivalent device calibrated in increments not greater than 0.1 inch water column. System will not be approved until it can be demonstrated that there is no measurable loss of test pressure during the test period.

Conduct fuel oil system test so as not to impose a pressure of more than 10 psig on the tank. Instead of a pressure test, suction lines may be tested under a vacuum of not less than 20 inches of mercury maintained for at least one hour.
$\frac{\text { System }}{\text { Natural gas }} \quad \frac{\text { Pressure }}{100 \text { psig }} \quad \frac{\text { Medium }}{\text { Air }} \quad \frac{\text { Duration }}{24 \mathrm{hr}}$

END OF SECTION 231100
43. SWEF Building, Heating and Ventilating, Item SPV.0105.103

Replace the entire section titled SECTION 235733 - VERTICAL GROUND LOOP HEAT EXCHANGER, PIPE, AND ACCESSORIES with the following:

SECTION 235733 VERTICAL GROUND LOOP HEAT EXCHANGER, PIPE AND ACCESSORIES

PART1-GENERAL

SCOPE

RELATED WORK

Section 230523 - General-Duty Valves for HVAC Piping
Section 230515 - Piping Specialties
Section 230529 - Hangers and Supports for HVAC Piping and Equipment
Section 230700 - HVAC Insulation
Section 232500 - HVAC Water Treatment.

REFERENCE
Applicable provisions of Division 1 govern work under this section.
REFERENCE STANDARDS

ASTM D1693 Standard Test for Environmental Stress Cracking of Ethylene Plastics.
ASTM D2239-03 Standard Specification for Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter
ASTM D2683-04 Standard Specification for Socket-Type Polyethylene Fittings for Outside Diameter-Controlled PE Pipe and Tubing
ASTM D3350 Standard Specification for Polyethylene Plastic Pipe and Fittings Materials. ASTM D 3261-03 Standard Specification for Butt Heat Fusion PE Plastic Fittings for PE Pipe and Tubing
International Ground Source Heat Pump Association (IGSHPA)
SHOP DRAWINGS
Refer to division 1, General Conditions, Submittals.
Submit manufacturer's catalog sheets, specifications, and installation instructions for each item specified.

QUALITY ASSURANCE

Geothermal System Installer's Qualifications Data:
Name of each person who will be performing the geothermal work and their employer's name, business address and telephone.
Names and addresses of 3 similar projects that each person has worked on. Copy of installer's personal experience demonstrating the use of thermal fusion techniques for polyethylene piping.
The persons performing geothermal work shall be personally trained in polyethylene pipe fusion techniques by IGSHPA or piping manufacturer, personally experienced in geothermal work and shall have been regularly employed by a Company performing geothermal work for a minimum of 2 years.

Geothermal System Supervisor's Qualifications Data:
Name of person overseeing the geothermal work and their name, business address and telephone number.
Names and addresses of 3 similar projects that the supervisor has overseen during the past 5 years.
Copy of installer's personal experience demonstrating the use of thermal fusion techniques for polyethylene piping.
The supervisor overseeing the geothermal work shall be personally trained in polyethylene pipe fusing techniques by IGSHPA or piping manufacturing, personally experienced in geothermal work, and shall have been regularly employed by a Company performing geothermal work for a minimum of 2 years.

Geothermal System Contractor's Qualifications Data:
Names and addresses of 3 geothermal projects that the contractor has completed during the past 5 years.
The contractor shall have completed geothermal work on at least 3 projects with vertical boreholes within the last 5 years.

IGSHPA Installation Manuals: Maintain one copy on site for review. CSA C448-02: Maintain one copy on site for review.

REGULATORY REQUIREMENTS
Perform field testing of piping systems in complete accordance with the local utilities and other agencies having jurisdiction and as specified.

PRODUCT CONDITION
Protection: During test work, protect adjacent buildings, equipment, vehicles, etc., against damage from testing activities.

SEQUENCING AND SCHEDULING

Transmit written notification of proposed date and time of tests to the engineer at least 2 (two) days in advance of such tests. Perform cleaning and testing work in the presence of Owner's Representative.

WARRANTY

Manufacturer's Warranty: Minimum 50 years warranty for polyethylene piping.
Special Warranty: 25 years for butt fusion welds in polyethylene piping against leakage.
WATER, SILT AND SOIL CONTAINMENT AND REMOVAL
The Contractor shall submit a detailed proposal outlining his proposed methodology for containing, removing and runoffs created by the well drilling and piping installation.

Dewater each borehole during drilling utilizing an interceptor and water sump tank arrangement. Remove water from site in a manner in accordance with all authorities having jurisdiction.

PART2-PRODUCTS

HIGH DENSITY POLYETHYLENE (P.E.) PIPE AND FITTINGS
Pipe and fittings shall be manufactured based on polymers made with ethylene as the sole monomer, which meet the requirements of PE Type III for water distribution.

PE Type III pipe shall have a 23.2 kPa design stress at $23^{\circ} \mathrm{C}$ which is listed by the plastics pipe institute (PPI).

The piping shall be PE3408 (high density polyethylene) with minimum cell classification 345434C per ASTM D 3350. Resistance to environmental stress cracking is critical to long life expectancy. Therefore, as a more stringent requirement, the piping shall experience zero failures (Fo) after 5,000 hours under condition "C" (100\% reagent @ $100^{\circ} \mathrm{C}$) when tested in accordance with ASTM D1693. A 50 year limited warranty (in writing) must be issued by the pipe manufacturer. U-type fittings shall be shop fabricated under quality controlled conditions of the same material designation and shall be ASTM D-3261 certified.

Pipe shall conform to ASTM D3035 and ASTM D3261 for butt fusion fittings. U-bend joints shall be butt heat fused or socket welded.

Pipe must be designed and fabricated by manufacturer specifically for geothermal heat pump applications.

The complete assembly of piping within the borehole must be continuous without any joints except at the bottom U-BEND located where only a thermally fused joint or socket welded joint will be acceptable.

All piping shall be sealed at the factory and contain a compressed air charge. The presence of the air charge must be witnessed at the site prior to hydrostatic testing. Piping without an air charge will not be accepted.

ANTI-FREEZE

Provide a 25% by volume solution of polypropylene glycol charge and water for all the entire ground source heat pump closed loop piping.

The performance characteristics shall be as follows:
Viscosity shall be no moiré than 5.00 centipoise at $-1.1^{\circ} \mathrm{C}$ with blend for $-9.4^{\circ} \mathrm{C}$ freeze protection.

Specific heat shall be 1.05 at $21^{\circ} \mathrm{C}$ with blend for $-9.4^{\circ} \mathrm{C}$ freeze protection.
Specific gravity shall be 0.982 at $10^{\circ} \mathrm{C}$ with blend for $-9.4^{\circ} \mathrm{C}$ freeze.
Pressure drop and Reynolds Number for a $11.3 \mathrm{I} / \mathrm{m}$ flow in NPS $3 / 4$ SDR-11 PE pipe of a $-1.1^{\circ} \mathrm{C}$ mixture for a $-9.4^{\circ} \mathrm{C}$ freeze protected blend shall be no more than 0.86 m of HD per 30.0 m of pipe and no less than $\mathrm{Re}=2028$ respectively.

The fluid shall mix easily and readily with water and shall not damage or corrode common tools.

The fluid shall have a good or excellent material compatibility with iron, copper, red and yellow brass, polyethylene, PVC, Viton, Buna "n" neoprene and nylon and shall include an
oxygen scavenger blend to reduce any corrosion capability. The fluid shall not have a low surface tension to prevent leakage.

The fluid shall have a NFPA 704 Health rating of 0 (least risk).
The Contractor shall provide a certified test report from a recognized lab stating glycol concentration.

The product shall be available in plastic 19 liter pails, plastic 208 liter drums, or bulk tanker.

BOREHOLE GROUT

Provide grout for each of the boreholes as indicated on the drawings.
Grout to be a single componite bentonite grout consisting of 25% solids and polymer free mixed with water as follows: 68L water per 22.7 kg bentonite grout.

PART3-EXECUTION

GEOTHERMAL BOREHOLE PIPING INSTALLATION

The contractor shall obtain all necessary permits associated with the described work.
The borehole drilling contractor shall be experienced in deep bore hole drilling and shall have a minimum of 10 years drilling experience within the geographic vicinity of the project or shall subcontract to an approved drilling contractor with equivalent experience.

The vertical holes shall be drilled no closer than 8.0 m apart and shall be held open by a "mud" casing so that the piping can be inserted. The piping shall be tested in accordance with other sections of this specification prior to insertion. Loops must be installed from or by a mechanical device so that the pipe is not rolled out on the ground before installation. Install polyethylene piping in accordance with details on drawings.

The piping shall be capped and protected for future connection.
Approved borehole seals should be tightened to manufacturer's specifications.
The entire piping system shall be pressure tested in accordance with other sections of this specification before any backfilling of trench is permitted.

The Owner's Representative shall be notified 24 hours prior to the test and shall, at his discretion, witness the test.

The contractor shall maintain an accurate record of all borehole locations and at the completion of the work, deliver to the owner a set of "as-built" site plans.

GROUNTING BOREHOLE

Bore holes in vertical heat exchangers shall be tremi-grouted. Grouting of vertical heat exchangers shall be done in accordance with jurisdictional requirements of IGSHPA standards. Grouting shall immediately follow the completion of drilling and installation of each borehole piping. A large capacity grout mixer/separate holding tank are required and a minimum of 25 mm diameter polyethylene tubing shall be used as the tremi-grout pipe. The tremi-grout pipe shall be attached to the u-bend heat exchanger before it is lowered into the ground.

Grouting procedures to be as follows:
Monitor the grouting operation to ensure grout is being adequately mixed in correct proportions and that the viscosity is adequate for pumping down the borehole.

The grout contractor should have spare grout pipes, hoses, fittings, readily available on site.

A screw-type pump or a piston pump shall be used to pump grouts down the boreholes.

A 75 to 100 mm inside diameter suction line and a 25 to 50 mm discharge line shall be used.

Bentonite based grout shall be used mixed with water in proportions recommended by manufacturer. For Volclay Grout II (25% solids) utilize a mixture of 68 L per 22.7 kg of grout. Cement based grout will not be used.

PIPING SYSTEMS TEST

The contractor shall provide all necessary equipment and shall perform all work required in connection with all piping system tests.

At the water working pressure of the pipe installed, all water piping systems shall be tested. Each section tested shall be slowly filled with water. Care shall be taken to expel all air from pipes. If necessary, the pressure, as measured at the point of lowest elevation, shall be applied for not less than $1 / 2$ hour. When the test pressure has fallen over 5%, the point of leakage shall be found, repaired and tested repeated. This procedure shall be followed until the piping systems have been proved absolutely tight. The use of any chemicals, any "StopLeak" compounds, any mastic or any other temporary means shall not be used for repairing leaks during or subsequent to these tests.

Polyethylene pipe testing:
Prior to insertion of the vertical pipe, the contractor shall assembly the "U Bend" and piping, cap both ends, and air pressure test the piping to a pressure of 125 PSI .. The test must be maintained for 8 hours minimum without the pressure falling more than 3 PSI.

Loops shall pass the test at the following milestones:
Before insertion into hole.
After insertion into hole.
Contractor is responsible to provide evidence of and certification of pressure testing, and acceptance of all work performed by signature of the Owner's Representative.

3.4 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

3.5 FIELD QUALITY CONTROL

A. Piping Tests: Fill piping 24 hours before testing and apply test pressure to stabilize piping. Use potable water only.
B. Hydrostatic Tests: Test at not less than 1-1/2 times the pipe working-pressure rating allowing for static pressure of borehole depth.

1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 30 minutes. Slowly increase to next test pressure increment and hold for 30 minutes. After testing at maximum test pressure, reduce pressure to 30 psig . Hold for 90 minutes, and measure pressure at 30 -minute intervals. Repair leaks and retest until no leaks exist.
C. Prepare reports of testing activity and submit to Engineer.

Replace the entire section titled SECTION 238334 - IN-FLOOR HOT WATER RADIANT SYSTEMS AND EQUIPMENT with the following:

SECTION 238334 IN-FLOOR HOT WATER RADIANT SYSTEMS AND EQUIPMENT

PART1-GENERAL

SCOPE
RELATED WORK
Section 230515 - Piping Specialties
Section 230529 - Hangers and Supports for HVAC Piping and Equipment
REFERENCE
Applicable provisions of Division 1 govern work under this section.
REFERENCE STANDARDS
ASTM F876 Standard Specification for Crosslinked Polyethylene Tubing (PEX)
ASTM B75 Seamless Copper Tube
SHOP DRAWINGS
Refer to division 1, General Conditions, Submittals.
Provide manufacturer's literature for tubing, manifolds, valves, and all accessories provided for the project.

Provide a "job-specific" parts list of all parts proposed for this project.
1.03 RECORD DRAWINGS

Provide as-built drawings show precisely document location and spacing of all tubing concealed from future view.

PART2-PRODUCTS

2.1 PLASTIC PIPE AND FITTINGS

A. PEX-a (Engle-method Crosslinked Polyethylene) Piping: ASTM 876 with oxygendiffusion barrier that meets DIN 4726.
B. Basis-of-Design Product: Subject to compliance with requirements, provide Uponor Wirsbo hePEX or a comparable product.
C. PEX-a Fittings, Elbows and Tees ($1 / 2$ inch through 2 inch nominal pipe size): ASTM F1960 cold-expansion fitting manufactured from the following material types:

1. UNS No. C69300 Lead-free (LF) Brass
2. 20% glass-filled polysulfone as specified in ASTM D6394
3. Unreinforced polysulfone (group 01, class 1, grade 2) as specified in ASTM D6394
4. Polyphenylsulfone (group 03, class 1, grade 2) as specified in ASTM D6394
5. Blend of polyphenylsulfone ($55-80 \%$) and unreinforced polysulfone (rem.) as specified in ASTM D6394
6. Reinforcing cold-expansion rings shall be manufactured from the same source as PEX-a piping manufacturer and marked "F1960".
D. PEX-a Fittings ($2 \frac{1}{2}$ inch through 4 inch nominal pipe size): SDR9 compression type fitting consisting of a double O-ring insert with a compression sleeve tightened around the pipe and insert.

2.2 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings:

1. Manufacturers: Provide fittings from the same manufacturer of the piping.
2. Threaded Brass to PEX-a Transition: one-piece brass fitting with male or female threaded adapter and F1960 cold-expansion end, with PEX-a reinforcing cold-expansion ring.
3. Brass Sweat to PEX-a Transition: one-piece brass fitting with sweat adapter and F1960 cold-expansion end, with PEX-a reinforcing cold-expansion ring.

2.3 TRANSITION UNIONS

A. Plastic-to-Metal Transition Unions:

1. Manufacturers: Provide fittings from the same manufacturer of the piping.
2. Threaded Brass to PEX-a Union: one-piece brass fitting with male or female threaded adapter and F1960 cold-expansion end, with PEX-a reinforcing cold-expansion ring.
3. Brass Sweat to PEX-a Union: one-piece brass fitting with sweat adapter and F1960 cold-expansion end, with PEX-a reinforcing cold-expansion ring.

PART3-EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground (2 inch and below) shall be the following:

1. PEX-a piping, with F1960 cold-expansion fittings.
B. Hot-water heating piping installed below ground and within slabs shall be any of the following:
2. 2 inch and below - Sleeved PEX-a piping with engineered polymer (EP) polyphenylsulfone F1960 cold-expansion fittings. Use the fewest possible joints and install per manufacturer's recommendations.
3. 1 inch through 2 inch - Pre-insulated PEX-a piping with multi-layer, closedclosed cell PEX-foam insulation and a corrugated HDPE jacket with engineered polymer (EP) polyphenylsulfone F1960 cold-expansion fittings. Use the fewest possible joints and install per manufacturer's recommendations.
C. Condenser-water piping, aboveground ($21 / 2$ inch through 4 inch) shall be the following:
4. PEX-a piping, with compression fittings.
D. Condenser-water piping installed below ground and within slabs shall be any of the following:
5. 2 inch and below - Sleeved PEX-a piping with engineered polymer (EP) polyphenylsulfone F1960 cold-expansion fittings. Use the fewest possible joints and install per manufacturer's recommendations.
6. 1 inch through 2 inch - Pre-insulated PEX-a piping with multi-layer, closedclosed cell PEX-foam insulation and a corrugated HDPE jacket with
engineered polymer (EP) polyphenylsulfone F1960 cold-expansion fittings. Use the fewest possible joints and install per manufacturer's recommendations.

3.2 PIPING INSTALLATIONS

A. Install PEX-a tubing according to manufacturer's recommendations.

3.3 HANGERS AND SUPPORTS

A. PEX-a Piping Hanger Spacing: Install hangers for PEX-a piping with the following maximum spacing:

1. 1 inch and below: Maximum span, 32 inches.
2. $1 \frac{1}{4}$ inch and above: Maximum span, 48 inches.
B. PEX-a Piping Hanger Spacing with PEX-a Support Channel: Install hangers for PEX-a piping with horizontal support channel in accordance with local jurisdiction and manufacturer's recommendations, with the following maximum spacing:
3. Maximum span, 8 feet.
C. PEX-a Riser Supports: Install CTS riser clamps at the base of each floor and at the top of every other floor. Install mid-story guides between each floor.

3.4 PIPE JOINT CONSTRUCTION

A. PEX-a Connections: Install per manufacturer's recommendations. Use manufacturer-recommended cold-expansion tool for F1960 connections.
3.5 CHEMICAL TREATMENT
(Refer to Specification Section 2325 00.)
3.6 FIELD QUALITY CONTROL
A. Do not expose PEX piping to direct sunlight for more than 30 days. If construction delays are encountered, provide cover to portions of piping exposed to direct sunlight.

3.7 TESTING

A. All in-floor PEX tubing shall be tested at the manufacturer's rated pressure or 100 PSI. 100 PSI shall be used unless the system components are rated at less, at which case the lesser pressure may be used. Pressure test may be done pneumatically. Hold test pressure for a minimum period of 4 hours with no pressure loss.
B. All PEX tubing embedded in concrete or installed under a cast in place concrete floor shall be pressure tested prior to placement of any concrete. This pressure test shall be witnessed and approved by the Owner representative prior to any placement of concrete.
C. During concrete pouring, or any activity that will prevent future access to embedded piping, a minimum of 50 PSI air pressure shall be maintained on the affected piping. This pressure shall be monitored during concrete activities at minimum intervals of 30 minutes.

3.8.1 WARRANTY

A. PEX-a manufacturer system warranty shall cover tubing for a duration of 30 years from the date of installation.

END OF SECTION 232113

44. SWEF Building, Electrical, Item SPV.0105.104

Replace the entire section titled SECTION 263200 - PACKAGED GENERATOR ASSEMBLIES with the following:

SECTION 263200 - PACKAGED GENERATOR ASSEMBLIES

PART 1 - GENERAL

1.01 RELATED WORK
A. Applicable provisions of Division 1 govern work under this section.
B. Section 263600 - Transfer Switches.
1.02 REFERENCES
A. NFPA110 - Emergency and Standby Power Systems.
B. ANSI/NEMA MG 1 - Motors and Generators.
1.03 PERMITS
A. The Contractor shall be responsible for obtaining all necessary permits for the complete installation of the generator fuel system and related equipment. The contractor shall arrange to have a certified tank installer supervise and certify the fuel system installation.
1.04 SUBMITTALS
A. Submit shop drawings showing plan and elevation views with overall and interconnection point dimensions, fuel consumption rate curves at various loads, ventilation and combustion air requirements, and electrical ratings and diagrams including schematic and interconnection diagrams.
B. Submit manufacturer's installation instructions.
1.05 OPERATION AND MAINTENANCE DATA
A. The O\&M manuals shall contain at least the following:

- Instructions for operating equipment.
- Identification of operating limits which may result in hazardous or unsafe conditions.
- Document ratings of equipment and each major component.
- Routine preventive maintenance and lubrication schedule.
- List of special tools, maintenance materials, and replacement parts.
- Technical data sheets.
- Wiring diagrams.
1.06 QUALITY ASSURANCE
A. Manufacturer: Company specializing in packaged engine generator systems with minimum ten years documented experience.
B. Supplier: Authorized distributor of engine generator manufacturer with service facilities within 100 miles of project site.

EXTRA MATERIAL
A. Provide two additional sets of each fuel, oil, and air filter elements required for the engine generator system and one additional set of all required belts.

PART 2-PRODUCTS

2.01 SYSTEM RATINGS

A. Generator Set Rating: 100 kW, 125 kVA, .8pf, 120/208, VAC, Three-phase, 4wire, 12 wire re-connectable, 60 Hz at 1,800 rpm. Standby power rated.
B. Motor starting KVA shall be kVA based on a sustained RMS voltage drop of no more than 10% of no load voltage with the specified kVA load at near zero power factor applied to the engine-generator set.
C. The generator set manufacturer shall verify the engine as capable of driving the generator with all accessories in place and operating at the nameplate rating after de-rating for the range of temperature expected in service and the altitude of the installation.
D. The engine-generator set shall be capable of picking up 100% of nameplate kW , less applicable de-rating factors, in one step with the engine-generator set at operating temperature.
E. Voltage regulation shall be $\pm 1.0 \%$ of rated voltage for any constant load between no load and rated load. Random voltage variation with any steady state load from no load to full load shall not exceed $\pm 1.0 \%$ of rated voltage.
F. Frequency regulation shall be $\pm 0.5 \%$ from steady state no load to steady state rated load.
G. Harmonic distortion shall not exceed 5\% total harmonic distortion at full linear load and no single harmonic shall exceed 3% of rated voltage.
H. Telephone Influence Factor: TIF shall be less than 50.

2.02 ENGINE AND ENGINE EQUIPMENT

A. Engine Type: Water-cooled, turbo-charged, four cycle, internal combustion engine.
B. Fuel Type: Natural gas and LP. Please coordinate thoroughly with Generator manufacturer to include all accessories to accommodate DUAL-FUEL source.
C. Engine Speed: $1,800 \mathrm{rpm}$.
D. Governor: Isochronous electronic type to maintain engine speed within 0.5 percent, steady state, and 1 percent, no load to full load, with recovery to steady state within 2 seconds following sudden load changes.
E. Safety Devices: Engine shutdown on high water temperature, low oil pressure, overspeed, and engine overcrank. Limits as selected by manufacturer.
F. Include remote starting control circuit, with RUN-OFF-AUTO selector switch on engine generator control panel.
G. Engine Accessories: Include intake air filter, fuel filter, fuel priming pump, automatic electric fuel shutoff, fuel/water separator, gear-driven water pump, positive displacement mechanical full pressure lubrication oil pump, full flow lubrication oil filters with replaceable elements, dipstick oil level indicator, and oil drain valve with hose extension. Include engine mounted battery charging alternator with solid state voltage regulator. Include fuel pressure gauge, water temperature gauge, and lube oil pressure gauge on engine-generator control panel.
H. Engine Jacket Heater: Thermal circulation type water heater with integral thermostatic control, sized to maintain engine jacket water at 90 degrees F (32 degrees C). Heater voltage shall be as shown on the drawings.
I. Mounting: Provide unit with suitable spring-type vibration isolators and mount on structural steel base.
J. Cooling System: Unit mounted radiator using glycol coolant, with blower type fan, coolant pump and thermostat temperature control sized to maintain safe engine temperature in ambient temperature of 110 degrees F (43 degrees C). Radiator shall be provided with a duct adapter flange permitting the attachment of air discharge duct directing the discharge of radiator air through the wall. The equipment supplier shall provide 50\% ethylene glycol antifreeze solution to fill engine cooling system.
K. Exhaust System:

1. Provide critical grade silencer, with muffler companion flanges and flexible stainless steel exhaust fitting, suitable for horizontal orientation, sized in accordance with engine manufacturer's instructions. Contractor shall mount muffler so its weight is not supported by the engine.
2. Flexible exhaust connections shall be provided as required for connection between engine exhaust manifold and exhaust line, in compliance with applicable codes and regulations.
3. Provide an exhaust condensation trap with manual drain valve to trap and drain off exhaust condensation and to prevent condensation from entering the engine. Provide drain line to drip pan.
4. Provide a suitable rain cap at the stack outlet. Provide all necessary flanges and special fittings for proper installation.
5. Contractor shall mount and install all exhaust components as shown on drawings and as required to comply with applicable codes and regulations. All components shall be properly sized to assure proper operation without excessive back pressure when installed as shown on the drawings. Make provisions as required for pipe expansion and contraction.
L. Fuel System:
6. Provide LP gas tank, UL listed; State of Wisconsin approved; fuel gauge; low fuel. The fuel tank shall be pressure tested for a minimum of 2 hours to ensure its integrity.
7. Provide flexible supply and return line fittings and all connections for connecting fuel system to the engine in compliance with applicable codes and regulations. All fuel piping shall be pressure tested for minimum 2 hours.
M. Batteries: Heavy duty, starting type, lead-acid storage batteries. Provide a DC volt system with number of batteries and battery capacity as sized by the manufacturer adequate for (4) 30 second cranking periods (total of 2 minutes) along with all additional loads being run on the DC system.

GENERATOR

A. Insulation: ANSI/NEMA MG 1, Class H.
B. The generator shall be single bearing, self aligning 4-pole, brushless, synchronous type, revolving field with amortisseur windings, and with direct driven centrifugal blower for proper cooling and minimum noise. No brushes will be allowed. Generator shall be directly connected to engine fly wheel housing and driven through a flexible coupling to ensure permanent alignment. Generator design shall prevent potentially damaging shaft currents.
C. The generator shall be Single-phase, broad-range, re-connectable and shall have 12 leads brought out to allow connection by user to obtain any of the available voltages for the unit.
D. The regulator design shall include torque-matching characteristics to allow the engine to use its fullest power producing capacity (without exceeding it or over compensating) at speeds lower than rated, to optimize motor starting capability and provide the fastest possible recovery from transient speed dips. Regulators which use a fixed volts per hertz characteristic are not acceptable.
E. Provide an exciter field automatic circuit breaker, mounted on the control panel, of the manual reset only type (cannot be used as a manual disconnect) for protection of exciter field and regulator.
F. The generator, exciter, and voltage regulator shall be designed and manufactured by the engine generator set manufacturer. The exciter shall be 3-phase, full wave, rectified with heavy duty silicone diodes mounted on the common rotor shaft and sized for maximum motor starting loads. Systems utilizing 3-wire, solid state control elements rotating in the rotor, will not be acceptable. The generator design shall be of the self-protecting type as demonstrated by the prototype short circuit test.
G. Provide a mainline molded case circuit breaker 500 amp , on generator output with integral thermal and instantaneous magnetic trip in each pole; number and rating as indicated. Include battery-voltage operated shunt trip, connection to open circuit breaker on engine failure. Mount unit in enclosure to meet ANSI/NEMA 250, Type 1 requirements. Consult manufacturer for circuit breaker size.

2.04 ACCESSORIES

Provide the following accessories with the engine generator set.
A. Enclosure: Weather protective housing with the following features:

1. Galvanized steel body
2. Lifting points on base frame
3. Stainless steel flush fitting latches and hinges
4. Zinc plated or stainless steel fasteners
5. Sheet steel components pre-treated with zinc phosphate prior to polyester powder coating
6. Lockable wide door on each side installed to allow 180 degree opening rotation
7. Radiator fill access door with lockable cover
8. Lube oil and coolant drains piped to the exterior of the enclosure skid base
9. Battery can only be reached through lockable doors
10. Sound attenuation housing to limit noise level not to exceed 70dB at 7 meters
B. Battery Heater: Thermostatically controlled battery blanket heater, 120VAC.
C. Battery Tray: Plastic coated metal tray treated for electrolyte resistance, constructed to contain spillage of electrolyte.
D. Battery Charger: A 10-ampere voltage regulated battery charger shall be provided for the engine-generator set. Charger shall be equipped with float, taper and equalize charge settings. Charger shall include overload protection, voltage surge suppressor, DC voltmeter and fused AC input. Operational monitors shall provide visual output along with individual form C contacts rated at 4 amps, 120 VAC, 30 VDC for remote indication of:
11. Loss of AC power-red light (no relay contact).
12. Low battery voltage-red light.
13. High battery voltage-red light (no relay contact).
14. Charger fail-red light.
E. Engine-Generator Digital Control Panel: Top of control panel shall not be more than six (6) feet above finished floor (this may require remote mounting). NFPA 110 and NFPA - 99, Type 1 generator mounted control panel enclosure with engine and generator controls and indicators. Include the following features:
15. Power source with circuit protection: 12or 24 VDC.
16. Operating temperature range: -40 degree C to +70 degree C.
17. Humidity range: 5\% to 95\% non-condensing.
18. Remote annunciator panel.
19. Alarm horn.
20. Indicators: not on auto, program, systems, warning.
21. Alphanumeric digital display.
22. Keypad with multi-function soft membrane environmentally sealed cover.
23. Frequency Meter.
24. True RMS AC Voltage.
25. AC Output Amperage.
26. Front mounted output voltage adjustment, locking screw driver type, to adjust voltage $\pm 5 \%$ from rated value.
27. Push-to-test indicator lamps, one each for low oil pressure, high water temperature, overspeed, and overcrank.
28. Push-to-test indicator lamps, one each for high engine temperature and low engine oil pressure pre-alarm and one run light.
29. A flashing red light to indicate the generator set is not in automatic start mode.
30. Engine run/off/auto selector switch.
31. Emergency stop "mushroom" switch.
32. Engine running time meter.
33. Oil pressure gauge.
34. Water temperature gauge.
35. Battery voltmeter.
36. Auxiliary Relay: 3PDT, operates when engine runs, with contact terminals prewired to terminal strip.
37. Remote Alarm Contacts: Pre-wire form C contacts to terminal strip for remote alarm functions required by ANSI/NFPA 110.
38. Indicator lamps to include: overcrank, low oil pressure, high engine temperature, overspeed, not-in-auto, system ready, low battery volts, battery charger fault, low fuel, pre-alarm high engine temp, pre-alarm low oil pressure, low water temp, auxiliary alarm, auxiliary pre-alarm.
F. The NEMA 1 enclosed control panel shall be mounted on the generator set with vibration isolators. The control shall include surge suppression for protection of solid state components. A front control panel illumination lamp with On/Off switch shall be provided. The engine-generator set starting batteries shall power the monitor.

PART 3 - EXECUTION

3.01 EXAMINATION
A. Verify that required utilities are available in proper location and ready for use.
3.02 INSTALLATION
A. Install in accordance with manufacturer's instructions.
B. Generator set shall be anchored to the floor or concrete pad.
C. Contractor shall provide all required fuel during testing and a full tank of fuel at the time of Substantial Completion of the project.
3.03 FIELD QUALITY CONTROL
A. Provide full load testing utilizing a portable test bank for four hours continuous, minimum. During the first two hours, step increase the load from 0\% to 100% in at least six equal steps. At the end of two hours, continue running test at 100% load. Record the following in 20 minute intervals throughout the four hour test: kilowatts,
amperes, voltage, coolant temperature, room temperature, generator frequency (Hz), oil pressure, fuel consumption.
B. After the generator has cooled down from the four hour test, shut it down and then simulate a power failure including operation of the transfer switch, automatic cycle, and automatic shutdown and return to normal.
A. Simulate power outage by interrupting normal source, and demonstrate that system operates to provide emergency power.

END OF SECTION 263200

Add section titled SECTION 263600 - TRANSFER SWITCHES:

SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.01 SCOPE
A. The work under this section includes two (2) transfer switches (less than 600V) for standby generator systems.

RELATED WORK
A. Applicable provisions of Division 1 govern work under this section.
B. Section 263200 - Packaged Generator Assemblies.

QUALITY ASSURANCE
A. Manufacturer: Company specializing in automatic transfer equipment with five years documented experience.
1.04 SUBMITTALS
A. Submit product data showing overall dimensions, electrical connections, electrical ratings, all specified accessories, interlock methods, and environmental requirements.
B. Submit manufacturer's installation instructions.
1.05 OPERATION AND MAINTENANCE DATA
A. All operations and maintenance data shall comply with the submission and content requirements specified under section GENERAL REQUIREMENTS.
B. In addition to the general content specified under GENERAL REQUIREMENTS supply the following additional documentation:
C. Instructions for operating equipment under test and emergency conditions.

PART 2 - PRODUCTS

2.01 AUTOMATIC TRANSFER SWITCH
A. Description: NEMA ICS 2; automatic transfer switch. In applications where the switch serves as the service entrance disconnect, the switch shall be rated as suitable for use as a service disconnecting means.
B. Configuration: The transfer switches shall be electrically operated and mechanically held. The electrical operation shall be by a solenoid mechanism operating from the same source to which the load is being transferred.
C. The switch shall be rated for continuous duty and be mechanically interlocked to be in either the normal or the emergency position.
D. The switch shall be controlled by electronic solid state components with printed circuit control boards, and industrial grade plug in control relays.
E. The switch shall be designed and built so that it can be manually operated under noload conditions from behind a barrier partition or with the door closed. The enclosure shall allow for inspection of the internal operation of the switch through a full sequence of the transfer cycle with the door open and the switch de-energized.

RATINGS

A. Ratings:

ATS-\#1: 400 amp., 120/208VAC, 3-Phase, 4-Wire.
ATS-\#2: 60 amp., 120/208VAC, 3-Phase, 4-Wire for 'Life-Safety' branch.
2.03 AUTOMATIC SEQUENCE OF OPERATION
A. Initiate Time Delay to Start Alternate Source Engine Generator: Upon initiation by normal source monitor.
B. Time Delay to Start Alternate Source Engine Generator: 0 to 10 seconds, adjustable.
C. Initiate Transfer Load to Alternate Source: Upon initiation by normal source monitor and permission by alternate source monitor.
D. Time Delay Before Transfer to Alternate Power Source: 0 to 60 seconds, adjustable.
E. Initiate Re-transfer Load to Normal Source: Upon permission by normal source monitor.
F. Time Delay Before Transfer to Normal Power: 0 to 30 minutes adjustable.
G. Time Delay Before Engine Shut Down: 0 to 30 minutes, adjustable, unloaded operation.
H. Operating transfer time of the switch in either direction shall not be greater than 1/6 of a second.
I. Engine Exerciser: Digital control, - start engine every 7 to 30 days adjustable; run for 0 to 120 minutes adjustable, before shutting down. Bypass exerciser control if normal source fails during exercising period.]

2.04

ACCESSORIES

A. Manual Operator: Provide manual operator to allow switch to be operated under noload conditions from behind a barriered partition or with the door closed.
B. Indicating Lights: LED type. Mount in cover of enclosure to indicate NORMAL SOURCE AVAILABLE, ALTERNATE SOURCE AVAILABLE, SWITCH POSITION.
C. Test Switch: Mount in cover of enclosure to simulate failure of normal source by interrupting the power signal to the normal source monitor.
D. Return to Normal Switch: Mount in cover of enclosure to initiate manual transfer from alternate to normal source.
E. Transfer Switch Auxiliary Contacts: Minimum 2 normally open; 2 normally closed.
F. Normal Source Monitor: Monitor each line of normal source voltage; adjustable set points; initiate transfer when voltage drops below 85 percent.
G. Alternate Source Monitor: Monitor alternate source voltage and frequency; adjustable set points; inhibit transfer when voltage is below 85 percent or frequency varies more than 3 Hertz from rated nominal voltage.
H. The switch shall contain an in-phase monitor or adjustable time delay transition to inhibit closing of the switch into high levels of motor residual voltage.
I. A factory installed equipment ground bar shall be provided in each switch enclosure.
J. Four-pole transfer switches shall contain an overlapping neutral contact or a fully rated switched neutral pole.
K. Three-pole transfer switches shall contain a factory installed fully rated solid neutral lug assembly.
L. Provide digital metering on all transfer switches 200A and larger. Metering shall provide, at a minimum, measurement of voltage, current and kW demand for each phase on the load side of the switch.

PART 3 - EXECUTION

3.01 INSTALLATION
A. Install in accordance with manufacturer's instructions.
B. Starting contacts for all transfer switches shall be wired in parallel to the generator starting circuit so that any transfer switch that senses a loss of normal power will start the generator. This control wiring is not shown on the plans but is required to be provided by the electrical contractor.

FIELD ADJUSTMENTS
A. The contractor shall field adjust all timing and voltage settings of the transfer switch as necessary for proper operation of the switch, related loads and sources.

END OF SECTION 263600

Replace the entire section titled SECTION 264313 - SURGE PROTECTIVE DEVICES FOR LOWVOLTAGE ELECTRICAL POWER CIRCUITS with the following:

SECTION 264313 - SURGE PROTECTIVE DEVICES FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.01 SCOPE
A. The work under this section includes Surge Protective Devices (SPD) as indicated on the project drawings and electrical diagrams.

RELATED WORK

A. Applicable provisions of Division 1 govern work under this Section.

REFERENCE STANDARDS

- UL 1449, Third Edition - Standard For Safety For Surge Protective Devices.
- ANSI/IEEE C62.41.1 Guide on the Surge Environment in Low-Voltage AC Power Circuits.
- ANSI/IEEE C62.41.2 Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits.
- ANSI/IEEE C62.45 Recommended Practice on Surge Testing for Equipment Connected to Low Voltage AC Power Circuits.
- IEEE C62.62 Standard Test Specification for Surge Protective Devices For LowVoltage AC Power Circuits.
- NFPA 70, NEC Article 285

QUALITY ASSURANCE
A. The manufacturer shall have been in the Surge Protective Device industry for a minimum of 5 years.

OPERATION AND MAINTENANCE DATA
A. All operations and maintenance data shall comply with the submission and content requirements specified under section GENERAL REQUIREMENTS.

PART 2 - PRODUCTS

2.01 SURGE PROTECTIVE DEVICES

A. The SPD shall be Listed in accordance with UL 1449, Third Edition. The product and ratings shall be included in the database of the UL.com web site.
B. The surge protective device (SPD) shall be designated a location Type 1 or Type 2 device intended for installation on the load side of the service equipment overcurrent device, including SPDs located at the branch panel.
C. The SPD shall be connected in parallel with the facility's electrical system.
D. The SPD shall be made up of metal oxide varistors (MOV's), or a combination of MOV's with selenium cells or silicon avalanche diodes, ensuring that all of the performance requirements are met. Gas tubes shall not be used.
E. The entire SPD shall be enclosed in a metal or ABS enclosure, NEMA rated for the location. SPDs at main service equipment shall be mounted outside the Main Distribution Panelboard (MDP) (not integral to, or installed within the panelboard).
F. The SPD shall have a maximum continuous operating voltage (MCOV) rating not less than 115% of nominal voltage of the system it is protecting.
G. Protection Modes:

1. The SPD shall have line to neutral (L-N), line to ground (L-G), line to line (LL) and neutral to ground ($\mathrm{N}-\mathrm{G}$) protection modes for grounded wye configured systems. For a delta configured system, the device shall have line to line (L-L) and line to ground (L-G) protection modes.
H. Voltage Protection Rating (VPR):
2. The UL 1449 Voltage Protection Rating (VPR) for the device shall not exceed the following:
3. 120/208 volt applications: 900V L-N, L-G, N-G; 1200V L-L
I. Nominal Discharge Current (In):
4. The SPD shall have a UL 1449 Nominal Discharge Current Rating (In) of not less than 20kA.
J. Short Circuit Current Rating (SCCR):
5. The SPD shall have a UL 1449 Short Circuit Current Rating (SCCR) of not less than 230kA.
K. Surge Current Rating:
6. The single-pulse (8×20 microsecond waveform as specified in ANSI/IEEE Standard C62.41) surge current capacity shall not be less than the following:
a. $\quad 100 \mathrm{kA}$ per mode for service entrance, switchboard, and main distribution panel locations
b. $\quad 50 \mathrm{kA}$ per mode for branch panelboard (2nd tier) locations
L. Electrical Noise Filtering:
7. The SPD shall contain a high performance EMI/RFI noise rejection filter.
M. Each SPD shall include externally-mounted LED visual status indicators that indicate the on-line status of the unit, for each phase.
N. Each SPD shall be provided with audible diagnostic monitoring by way of audible alarm with on/off silence function.
O. Each SPD shall be provided with one set of NO/NC dry contracts for alarm conditions.

PART 3 - EXECUTION

INSTALLATION
A. Install SPD units in accordance with manufacturer's written instructions, applicable requirements of NEC and NEMA standards, and recognized industry practices.
B. The SPD units shall be installed at the locations shown on the drawings, or as indicated in the one-line diagram. They shall be parallel-connected to, and located adjacent to the switchboard or panelboard being protected. Locate as close as practical to the bus, keeping lead length as short as possible (less than 3 feet preferred).
C. SPDs shall be connected through a multi-pole circuit breaker or fused disconnect switch, not into main lugs. Circuit breaker or fused disconnect switch shall be 60A for main service device, 30A for branch panelboard device or as recommended by the manufacturer.
D. Use schedule 40 PVC conduit or metallic conduit between the SPD and the switchboard or panelboard as recommended by the manufacturer. Avoid sharp bends, excess length, and splices in the wires. Where possible, use a close-nippled connection with wires going directly to a circuit breaker within the switchboard or panelboard.
E. Setup and test per the manufacturer's recommendations.

END OF SECTION 264313

Schedule of Items

Attached, dated July 12, 2016, are the revised Schedule of Items Pages 2, 8, 9, and 23.

Plan Sheets

The following $81 / 2 \times 11$-inch sheets are attached and made part of the plans for this proposal:
Revised: 24, 59, 60, 61, 107, 113, 117, 119, 123, 131, 148, 151, 156, 170, 179, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 244, 245, 246, 247, 248, 249, 251, 252, 256, 258, 260, 261, 262, 263, 279, 280, 281, 308, 314, 315, 327, 328, 461, 462, 463, 464, 465, 470, 471, 472, 473, 474, 475, 476, 477, 514, and 524.

General Decision Number: WI160011 07/01/2016 WI11
Superseded General Decision Number: WI20150011
State: Wisconsin
Construction Type: Building

Counties: Adams, Ashland, Barron, Bayfield, Buffalo, Burnett, Clark, Columbia, Crawford, Dodge, Door, Dunn, Florence, Fond Du Lac, Forest, Grant, Green, Green Lake, Iowa, Iron, Jackson, Jefferson, Juneau, Kewaunee, Lafayette, Langlade, Lincoln, Manitowoc, Marinette, Marquette, Menominee, Monroe, Oconto, Oneida, Pepin, Polk, Portage, Price, Richland, Rusk, Sauk, Sawyer, Shawano, Taylor, Trempealeau, Vernon, Vilas, Walworth, Washburn, Waupaca, Waushara and Wood Counties in Wisconsin.

BUILDING CONSTRUCTION PROJECTS (does not include residential construction consisting of single family homes and apartments up to and including 4 stories)

Note: Under Executive Order (EO) 13658, an hourly minimum wage of $\$ 10.15$ for calendar year 2016 applies to all contracts subject to the Davis-Bacon Act for which the solicitation was issued on or after January 1, 2015. If this contract is covered by the EO, the contractor must pay all workers in any classification listed on this wage determination at least $\$ 10.15$ (or the applicable wage rate listed on this wage determination, if it is higher) for all hours spent performing on the contract in calendar year 2016. The EO minimum wage rate will be adjusted annually. Additional information on contractor requirements and worker protections under the EO is available at www.dol.gov/whd/govcontracts.

Modification Number	Publication Date
0	$01 / 08 / 2016$
1	$01 / 29 / 2016$
2	$03 / 04 / 2016$
3	$03 / 11 / 2016$
4	$04 / 01 / 2016$
5	$05 / 20 / 2016$
6	$06 / 17 / 2016$
7	$06 / 24 / 2016$
8	$07 / 01 / 2016$

ASBE0019-002 11/30/2015

COLUMBIA, CRAWFORD, DODGE, GRANT, GREEN, IOWA, JEFFERSON, JUNEAU, LAFAYETTE, MARQUETTE, MONROE, RICHLAND, SAULK, VERNON, AND WALWORTH COUNTIES

Asbestos Workers/Insulator
(Includes the application of all insulating materials,

```
protective coverings,
coatings, and finishes to all
types of mechanical systems).....$ 33.83 28.25
---------------------------------------------------------------------
* ASBE0034-005 06/01/2016
BARRON, BUFFALO, DUNN, AND POLK COUNTIES
Rates Fringes
Asbestos Workers/Insulator
(Includes the application of
all insulating materials;
protective coatings,
coverings, and finishes to
all types of mechanical
systems. Does not include
asbestos removal)................$ 35.11
29.89
ASBE0049-003 06/01/2015
ASHLAND, BAYFIELD, BURNETT, IRON, PEPIN, SAWYER, AND WASHBURN
COUNTIES
```

Rates Fringes

Asbestos Workers/Insulator
(Includes the application of all insulating materials; protective coverings, coatings, and finishes to all
types of mechanical systems).....\$27.82 24.15
ASBE0127-002 05/29/2016

ADAMS, CLARK, DOOR, FLORENCE, FOND DU LAC, FOREST, GREEN LAKE, JACKSON, KEWAUNEE, LINCOLN, MANITOWOC, MARINETTE, MENOMINEE, OCONTO, ONEIDA, PORTAGE, PRICE, RUSK, SHAWANO, TAYLOR, TREMMPEALEAU, VILAS, WAUPACA, WAUSHARA, AND WOOD COUNTIES

Rates Fringes

```
Heat and Frost Insulator
(Includes the application of
all insulating materials,
protective coverings,
coatings and finishes to all
types of mechanical systems;
and the application of
firestopping material in
walls, floors, ceilings)........$ 30.79 21.43
---------------------------------------------------------------------
    ASBE0205-005 06/01/1998
ADAMS, CLARK, DOOR, FLORENCE, FOND DU LAC, FOREST, GREEN LAKE,
JACKSON, KEWAUNEE, LANGLADE, LINCOLN, MANITOWOC, MARINETTE,
MENOMINEE, OCONTO, ONEIDA, PORTAGE, PRICE, RUSK, SHAWANO,
TAYLOR, TREMPEALEAU, VILAS, WAUPACA, WAUSHARA, AND WOOD COUNTIES
```

```
Asbestos Removal
worker/hazardous material
handler (Includes
preparation, wetting,
stripping, removal, scrapping
    vacuuming, bagging and
disposing of all insulation
materials from mechanical
systems whether they contain
asbestos or not)................$ 16.56
3.10
    ASBE0205-008 06/01/1999
COLUMBIA, CRAWFORD, DODGE, GRANT, GREEN, IOWA, JEFFERSON,
JUNEAU, LAFAYETTE, MARQUETTE, MONROE, RICHLAND, SAULK, VERNON,
AND WALWORTH COUNTIES
```

Rates Fringes
Asbestos Removal
worker/hazardous material
handler (Includes
preparation, wetting,
stripping, removal,
scrapping, vacuuming,
bagging and disposing of all
insulation materials from
mechanical systems, whether
they contain asbestos or not)...\$ 16.55 3.45

ASBE0205-012 05/01/1998
ASHLAND, BAYFIELD, BURNETT, IRON, PEPIN, SAWYER, AND WASHBURN
COUNTIES
Rates Fringes
HAZARDOUS MATERIAL HANDLER
(Includes preparation,
wetting, stripping, removal,
scrapping, vacuuming,
bagging and disposing of all
insulation materials from
mechanical systems, whether
they contain asbestos or not)...\$19.72 3.69
ASBE0205-013 05/01/1998
BARRON, BUFFALO, AND POLK COUNTIES
Rates Fringes
Asbestos Removal
worker/hazardous material

```
handler (Includes
preparation, wetting,
stripping, removal,
scrapping, vacuuming,
bagging and disposing of all
insulation materials from
mechanical systems whether
they contain asbestos or not)...$ 19.72 3.69
-----------------------------------------------------------------------
BOIL0107-001 01/01/2015
Rates Fringes
BOILERMAKER
    Boilermaker...............$ 33.35 28.60
    Small Boiler Repair (under
    25,000 lbs/hr).............$ 26.91 16.00
BRWIO001-003 06/01/2015
CRAWFORD,JUNEAU, MONROE,TREMPEALEAU, AND VERNON COUNTIES
    Rates Fringes
Bricklayer & Tile Setter........$ 31.22 16.69
-----------------------------------------------------------------------
    BRWIO002-003 06/01/2015
ASHLAND, BURNETT, IRON, WASHBURN
    Rates Fringes
BRICKLAYER
    Bricklayer, Tile Setter.....$ 36.10 16.13
    Cement Mason/Concrete
    Finisher...................$ 34.30
    16.13
    BRWIO002-004 06/01/2015
BAYFIELD COUNTY
    Rates Fringes
BRICKLAYER
    Bricklayer & Tile Setter....$ 36.10 16.13
----------------------------------------------------------------------
    BRWI0003-001 06/01/2015
DOOR, KEWAUNEE, FLORENCE, FOND DU LAC, GREEN LAKE, MANITOWOC,
MARINETTE, MARQUETTE, OCONTO, SHAWANO, WAUPACA, AND WAUSHARA
COUNTIES
    Rates Fringes
BRICKLAYER
            Bricklayer, Cement Mason,
    Tile Setter...............$ 31.59 16.39
---------------------------------------------------------------
    BRWIO004-003 06/01/2013
```


PRICE COUNTY

Rates Fringes

CABINET INSTALLER (Including	
Drywall Hanging \& Acoustical	
Work)............................\$ 30.48	05.80
MILLWRIGHT.......................\$ 32.11	15.80
CARP0361-006 07/11/2011	
BAYFIELD COUNTY (West of Hwy 63)	
Rates	Fringes
Carpenters: (Including	
Drywall Hanging, Acoustical work).............................\$ 27.20	14.75
CARP1348-006 05/03/2015	
BAYFIELD COUNTY (Western 1/3)	
Rates	Fringes
MILLWRIGHT....................... ${ }^{\text {a }} 32.57$	14.73
ELEC0014-001 06/01/2015	
ASHLAND, BARRON, BAYFIELD, BUFFALO, BURNETT, CHIPPEWA, CLARK (Except Colby, Fremont, Lynn, Maryville, Sherman, Sherwood, Unity), CRAWFORD, DUNN, GRANT, IRON, JACKSON, MONROE, PEPIN, POLK, PRICE, RICHLAND, RUSK, SAWYER, TAYLOR, TREMPEALEAU, VERNON, AND WASHBURN COUNTIES	

DOOR, KEWAUNEE, MANITOWOC (except Schleswig),
MARINETTE (Wausuakee and area South thereof), OCONTO, MENOMINEE
(East of a ine 6 miles West of the West boundary of Oconto
County), SHAWANO (Except Area North of Townships of Aniwa and


```
DODGE (Area East of Hwy 26 including Chester Twp but excluding
Emmet Twp), FOND DU LAC (Except Waupun), AND MANITOWOC
(Schleswig) COUNTIES
Rates Fringes
Sound & Communications
    Installer.................$ 16.47 14.84
    Technician................$ 26.00 17.70
Installation, testing, maintenance, operation and servicing of
all sound, intercom, telephone interconnect, closed circuit TV
systems, radio systems, background music systems, language
laboratories, electronic carillion, antenna distribution
systems, clock and program systems and low-voltage systems such
as visual nurse call, audio/visual nurse call systems, doctors
entrance register systems. Includes all wire and cable
carrying audio, visual, data, light and radio frequency
signals. Includes the installation of conduit, wiremold, or
raceways in existing structures that have been occupied for six
months or more where required for the protection of the wire or
cable, but does not mean a complete conduit or raceway system.
work covered does not include the installation of conduit,
wiremold or any raceways in any new construction, or the
installation of power supply outlets by means of which external
electric power is supplied to any of the foregoing equipment or
products
```

ELEC0577-001 06/01/2015
GREEN LAKE (N. Part including Twps of Berlin, St Marie, and
Seneca), MARQUETTE (N. part including Twps of Crystal Lake,
Neshkoro, Newton, and Springfield), WAUPACA, AND WAUSHARA
COUNTIES,

| | Rates |
| :--- | :--- | Fringes

DODGE (Emmet Township only), GREEN, JEFFERSON, LAFAYETTE, AND
WALWORTH COUNTIES
Rates Fringes
Rates Fringes

OPERATOR: Power Equipment
(1) Cranes, Tower Cranes

```
with or w/o attachments
over 100 tons; Cranes,
tower Cranes with boom,
leads and or jib length
176 ft or longer...........$ 38.72 20.60
(2) Cranes, Tower Cranes
with or w/o attachments
100 tons or less; Cranes,
Tower Cranes with boom,
leads, and or jib lengths
175 ft or less.............$ 37.47 20.60
(3) Travelling Crane
(bridge type)..............$ 36.27 20.60
(4) Hydraulic Crane, 10
tons or less..............$ 35.74 20.60
(6) Forklift.............$ 33.04 20.60
```

HAZARDOUS WASTE PREMIUMS:
EPA Level "A" Protection: $\$ 3.00$ per hour
EPA Level "B" Protection: $\$ 2.00$ per hour
EPA Level "C" Protection: \$1.00 per hour
IRONO008-012 06/01/2014
CALUMET, DOOR, FOND DU LAC, KEWAUNEE, MANITOWOC, MARINETTE,
OCONTO, OUTAGAMI, SHAWANO AND WALWORTH (Northeastern part)
COUNTIES

	Rates	Fringes
IRONWORKER. $\$ 29.27$	23.96	

Paid Holidays: New Year's Day, Memorial Day, July 4th, Labor
Day, Thanksgiving Day \& Christmas Day.
---1
IRON0383-004 06/01/2015
ADAMS, COLUMBIA, CRAWFORD, DODGE, FLORENCE, FOREST, GRANT,
GREENE (Except S.E. tip), GREEN LAKE, IOWA, JEFFERSON, JUNEAU,
LAFAYETTE, LANGLADE, MARATHON, MARQUETTE, MENOMINEE, MONROE,
PORTAGE, RICHLAND, SAUK, VERNON, WAUPACA, WAUSHARA, AND WOOD
COUNTIES

	Rates	Fringes
IRONWORKER.	.. ${ }^{\text {S }} 32.85$	21.84
IRON0498-007 06/01/2008		
GREEN (S.E. 1/3) AND WALWORTH	(Except N.E. part)	COUNTIES
	Rates	Fringes
IRONWORKER. \$ 34.34	25.72

```
BARRON, BUFFALO, CLARK, DUNN, JACKSON, PEPIN, POLK, RUSK,
TAYLOR AND TREMPEALEAU COUNTIES
```


Rates Fringes

Laborer, General................... $\$ 26.06$	16.55
Laborer: Asbestos/hazardous	
material remover	
(Preparation, Removal and	
Encapsulation of Hazardous	
Materials from Non-Mechanical	
Systems).......................... 25.02	16.55

 NOTE: Mason Tender \(\$.25\) over general laborer scale; Pipelayer
 \$1.00 over general laborer scale
 LABO0268-001 06/01/2016
 AREA 1: BARRON, CLARK (West 1/3), DUNN, PEPIN, POLK, RUSK
TAYLOR (West 1/3)
AREA 2: CLARK (East 2/3), LANGLADE, LINCOLN, ONEIDA, PRICE,
TAYLOR (East 2/3), VILAS, WOOD
AREA 3: BURNETT, IRON, SAWYER, WASHBURN
Rates Fringes
Laborer, General
Area 1......................\$ 26.0616 .55
Area 2......................\$ $25.31 \quad 16.55$
Area 3...................... 24.4616 .55
Laborer: Asbestos/hazardous
material remover
(Preparation, Removal,
Encapsulation of Hazardous

```
materials from Non-mechanical
Systems)
Area 1....................$ 25.12 16.55
Area 2....................$ 24.57 16.55
Area 3....................$ 25.77 16.55
```

NOTE: Mason Tender \$. 25 over general laborer. Burnett, Iron,
Sawyer \& Washburn $\$.70$ over general laborer.
LABO0330-001 06/01/2016
DODGE, DOOR, FLORENCE, FOND DU LAC, FOREST, GREEN LAKE,
KEWAUNEE, MANITOWOC, MARINETTE, MARQUETTE, MENOMINEE, OCONTO,
PORTAGE, SHAWANO, WAUPACA,WAUSHARA

```
Rates Fringes
```

```
Laborer: Asbestos/hazardous
material remover
(Preparation, Removal,
Encapsulation of Hazardous
materials from Non-mechanical
Systems)......................$ 24.47 15.55
Laborers, General...............$ 25.31 16.55
```

NOTE: Mason Tender \$. 25 over general laborer.
LABO0464-005 06/01/2016
ADAMS, COLUMBIA, GREEN, JEFFERSON, LAFAYETTE, SAUK, AND
WALWORTH COUNTIES
Rates Fringes
Laborer, General
Adams County................\$25.31 16.55
Remaining Area..............\$ 26.0616 .55
Laborer: Asbestos/hazardous
material remover
(Preparation, Removal,
Encapsulation of Hazardous
Materials from Non-mechanical
Systems)
Adams County................\$24.47 15.55
Remaining Area..............\$ 24.4715 .55
LABO0464-008 06/01/2015

| Rates | Fringes |
| ---: | ---: | ---: |
| Landscape Laborer................. 14.33 | 13.90 |

 LABO1091-001 06/01/2016
 BAYFIELD (West of County Trunk A including the Iron River
National Fish Hatchery and Great Lakes Transmission Co.,
Station 6) COUNTY

Rates Fringes

```
Laborer, General................$ 23.16
16.55
Laborer: Asbestos/hazardous
material remover
(Preparation, Removal,
Encapsulation of Hazardous
materials from Non-mechanical
Systems).......................$ 22.91 15.55
```

15
LABO1091-002 06/01/2016
ASHLAND \& BAYFIELD (East of County Trunk A exclusive of the
Iron River National Fish Hatchery and Great Lakes Transmission
Co., Station 6) COUNTIES
Rates Fringes

Laborer, General................... 21.71	16.55
Laborer: Asbestos/hazardous	
material remover	
(Preparation, Removal,	
Encapsulation of Hazardous	
materials from Non-mechanical	
Systems)............................ $\$ 22.91$	15.55

 PLAS0599-003 07/01/2012
 PEPIN COUNTY
Rates Fringes
CEMENT MASON/CONCRETE FINISHER...\$27.80 18.10
PLASTERER........................\$ 31.5618 .18
PLAS0599-007 06/01/2013
BUFFALO, CRAWFORD, JACKSON, JUNEAU, MONROE, POLK, RICHLAND,
TREMPEALEAU, AND VERNON COUNTIES
Rates Fringes
CEMENT MASON/CONCRETE FINISHER...\$ 25.8518 .10
PLASTERER........................\$ 29.6717 .03
PLAS0599-011 06/01/2014
GRANT, GREEN, IOWA, AND LAFAYETTE COUNTIES
Rates Fringes
CEMENT MASON/CONCRETE FINISHER...\$ 33.1516 .78
PLASTERER........................\$ 33.1516 .78

```
    PLAS0633-046 05/01/2012
BAYFIELD, PRICE, AND SAWYER COUNTIES
    Rates Fringes
```



```
----------------------------------------------------------------------
    PLUM0011-009 05/02/2016
ASHLAND BAYFIELD, BURNETT, IRON, SAWYER, AND WASHBURN COUNTIES
Rates Fringes
PLUMBER/PIPEFITTER (Including
HVAC work)......................$ 39.07 18.73
-----------------------------------------------------------------------
    PLUM0075-006 06/01/2015
DODGE (Watertown), GREEN, JEFFERSON, AND LAFAYETTE COUNTIES
    Rates Fringes
PLUMBER (Including HVAC work)....$ 39.87 20.12
-------------------------------------------------
    PLUM0075-008 06/01/2015
COLUMBIA, IOWA, MARQUETTE, RICHLAND, AND SAUK COUNTIES
    Rates Fringes
PLUMBER (Including HVAC work)....$ 38.82 20.12
-----------------------------------------------------------------------
    PLUM0118-003 06/01/2016
WALWORTH COUNTY
                    Rates Fringes
PLUMBER/PIPEFITTER (Including
HVAC work).....................$ 40.95 19.95
----------------------------------------------------------------------
    PLUM0400-002 05/30/2016
ADAMS, CALUMET, DODGE (Except Watertown), DOOR, FOND DU LAC,
GREEN LAKE, KEWAUNEE, MANITOWOC, MARINETTE (Except Niagara),
MENOMINEE, OCONTO, OUTAGAMIE, SHAWANO, WAUPACA, WAUSHARA, AND
WINNEBAGO COUNTIES
```

 Rates Fringes
 PLUMBER/PIPEFITTER (Including
HVAC work)
(1) Small buildings
(except industrial and
power plants) where
plumbing or heating is
$\$ 50,000$ or less............ $\$ 32.1517 .57$

```
PLUM0434-004 05/29/2016
BARRON, BUFFALO, CLARK, CRAWFORD, DUNN, FLORENCE, FOREST,
GRANT, JACKSON, JUNEAU, LANGLADE, LINCOLN, MONROE, ONEIDA,
PEPIN, PIERCE, POLK, PORTAGE, PRICE, RUSK, TAYLOR, TREMPEALEAU,
VERNON, VILAS, AND WOOD COUNTIES
```

 Rates Fringes
 PLUMBER/PIPEFITTER (Including
HVAC work)........................ 38.2016 .72

PLUM0601-006 06/01/2016
DODGE (Watertown), GREEN, JEFFERSON, AND LAFAYETTE COUNTIES
Rates Fringes
PIPEFITTER (Including HVAC
work)........................... 43.26 22.96
--1
PLUM0601-008 06/01/2015
COLUMBIA, IOWA, MARQUETTE, RICHLAND, AND SAUK COUNTIES
Rates Fringes
PIPEFITTER (Including HVAC
work)...........................\$ 45.5518 .44

SHEE0010-031 05/01/2008
ASHLAND, BAYFIELD AND IRON COUNTIES
Rates Fringes
SHEET METAL WORKER...............\$27.53 14.61
SHEE0018-003 06/01/2011
FOND DU LAC AND MANITOWOC COUNTIES
Rates Fringes
Sheet Metal Worker (Including
HVAC work).......................\$ 31.8817 .40

SHEE0018-004 06/01/2015
ADAMS, DOOR, FLORENCE, FOREST, GREEN LAKE, KEWAUNEE, MARINETTE,
MARQUETTE, MENOMINEE, OCONTO, SHAWANO, WAUPACA, AND WAUSHARA
COUNTIES
Rates Fringes
Sheet Metal Worker (Including

SHEE0018-024 06/01/2015
CRAWFORD, GRANT, JUNEAU, MONROE, RICHLAND, AND VERNON COUNTIES

> Rates Fringes

```
SHEET METAL WORKER (Including
HVAC work).....................$ 28.75 21.62
----------------------------------------------------------------------
    TEAM0346-003 05/01/2013
ASHLAND, BAYFIELD, BURNETT, SAWYER & WASHINGTON COUNTIES
    Rates Fringes
TRUCK DRIVER
    2 Axle Trucks..............$ 27.42 14.986
* TEAM0662-002 06/05/2016
ADAMS, BARRON, BUFFALO, CLARK , DOOR, DUNN, JACKSON, JUNEAU,
KEWAUNEE, LANGLADE, LINCOLN, MANITOWOC, MENOMINEE, OCONTO,
ONEIDA, PEPIN, POLK, PORTAGE, PRICE, RUSK, SHAWANO, TAYLOR,
TEMPEALEAU, WAUPACA & WOOD COUNTIES
Rates Fringes
TRUCK DRIVER
    2 Axle Trucks..............$ 28.26
        16.77
------------------------------------------------------------------------------
    SUWI2002-001 01/23/2002
                Rates Fringes
Fence Installers...............$ 15.00 2.37
GLAZIER.......................$ 20.21 1.86
Painters:
    Brush & Roller (Excluding
        Drywall Finishing)........$ 14.64 2.55
    Spray....................$ 13.72 2.25
Power Equipment Operator
    Backhoe..................$ 17.454 7.61
    Excavator.................$ 17.37 7.45
    Front End Loader...........$ 23.36 4.61
ROOFER........................$ 15.52 3.21
TRUCK DRIVER (3-Axle)...........$ 15.28 4.78
```


WELDERS - Receive rate prescribed for craft performing
operation to which welding is incidental.

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29CFR 5.5 (a) (1) (ii)).

The body of each wage determination lists the classification and wage rates that have been found to be prevailing for the cited type(s) of construction in the area covered by the wage determination. The classifications are listed in alphabetical order of "identifiers" that indicate whether the particular rate is a union rate (current union negotiated rate for local), a survey rate (weighted average rate) or a union average rate (weighted union average rate).

Union Rate Identifiers

A four letter classification abbreviation identifier enclosed in dotted lines beginning with characters other than "SU" or "UAVG" denotes that the union classification and rate were prevailing for that classification in the survey. Example: PLUM0198-005 07/01/2014. PLUM is an abbreviation identifier of the union which prevailed in the survey for this classification, which in this example would be Plumbers. 0198 indicates the local union number or district council number where applicable, i.e., Plumbers Local 0198. The next number, 005 in the example, is an internal number used in processing the wage determination. 07/01/2014 is the effective date of the most current negotiated rate, which in this example is July 1, 2014.

Union prevailing wage rates are updated to reflect all rate changes in the collective bargaining agreement (CBA) governing this classification and rate.

Survey Rate Identifiers
Classifications listed under the "SU" identifier indicate that no one rate prevailed for this classification in the survey and the published rate is derived by computing a weighted average rate based on all the rates reported in the survey for that classification. As this weighted average rate includes all rates reported in the survey, it may include both union and non-union rates. Example: SULA2012-007 5/13/2014. SU indicates the rates are survey rates based on a weighted average calculation of rates and are not majority rates. LA indicates the State of Louisiana. 2012 is the year of survey on which these classifications and rates are based. The next number, 007 in the example, is an internal number used in producing the wage determination. 5/13/2014 indicates the survey completion date for the classifications and rates under that identifier.

Survey wage rates are not updated and remain in effect until a new survey is conducted.

Union Average Rate Identifiers

Classification(s) listed under the UAVG identifier indicate that no single majority rate prevailed for those classifications; however, 100\% of the data reported for the classifications was union data. EXAMPLE: UAVG-OH-0010
08/29/2014. UAVG indicates that the rate is a weighted union average rate. OH indicates the state. The next number, 0010 in the example, is an internal number used in producing the wage determination. 08/29/2014 indicates the survey completion date for the classifications and rates under that identifier.

A UAVG rate will be updated once a year, usually in January of each year, to reflect a weighted average of the current negotiated/CBA rate of the union locals from which the rate is based.

WAGE DETERMINATION APPEALS PROCESS

1.) Has there been an initial decision in the matter? This can be :

```
* an existing published wage determination
* a survey underlying a wage determination
* a Wage and Hour Division letter setting forth a position on
    a wage determination matter
* a conformance (additional classification and rate) ruling
```

On survey related matters, initial contact, including requests
for summaries of surveys, should be with the Wage and Hour
Regional Office for the area in which the survey was conducted
because those Regional Offices have responsibility for the
Davis-Bacon survey program. If the response from this initial
contact is not satisfactory, then the process described in 2.)
and 3.) should be followed.

With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction Wage Determinations. Write to:

Branch of Construction Wage Determinations
Wage and Hour Division
U.S. Department of Labor

200 Constitution Avenue, N.W.
Washington, DC 20210
2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to:

Wage and Hour Administrator
U.S. Department of Labor

200 Constitution Avenue, N.W.
Washington, DC 20210
The request should be accompanied by a full statement of the interested party's position and by any information (wage

```
payment data, project description, area practice material,
etc.) that the requestor considers relevant to the issue.
3.) If the decision of the Administrator is not favorable, an
interested party may appeal directly to the Administrative
Review Board (formerly the Wage Appeals Board). Write to:
    Administrative Review Board
    U.S. Department of Labor
    200 Constitution Avenue, N.W.
    Washington, DC 20210
4.) All decisions by the Administrative Review Board are final.
```

```
General Decision Number: WI160003 07/01/2016 WI3
```

Superseded General Decision Number: WI20150003
State: Wisconsin
Construction Type: Building
County: La Crosse County in Wisconsin.
BUILDING CONSTRUCTION PROJECTS (does not include residential
construction consisting of single family homes and apartments
up to and including 4 stories)
Note: Under Executive Order (EO) 13658, an hourly minimum wage
of $\$ 10.15$ for calendar year 2016 applies to all contracts
subject to the Davis-Bacon Act for which the solicitation was
issued on or after January 1, 2015. If this contract is covered
by the EO, the contractor must pay all workers in any
classification listed on this wage determination at least
$\$ 10.15$ (or the applicable wage rate listed on this wage
determination, if it is higher) for all hours spent performing
on the contract in calendar year 2016. The EO minimum wage rate
will be adjusted annually. Additional information on contractor
requirements and worker protections under the EO is available
at www.dol.gov/whd/govcontracts.

Modification Number	Publication Date
0	$01 / 08 / 2016$
1	$01 / 29 / 2016$
2	$03 / 04 / 2016$
3	$06 / 17 / 2016$
4	$06 / 24 / 2016$
5	$07 / 01 / 2016$

ASBE0205-001 06/01/2001
Rates Fringes

Asbestos Removal
worker/hazardous material
handler
Includes preparation,
wetting, stripping,
removal, scrapping,
vacuuming, bagging and
disposing of all
insulation materials from
mechanical systems,
whether they contain
asbestos or not............ $\$ 17.90 \quad 4.45$
BOIL0107-001 01/01/2015

BOILERMAKER
Boilermaker................ $\$ 33.3528 .60$
http://www.wdol.gov/wdol/scafiles/davisbacon/wi3.dvb

[^0]Rates
Fringes

OPERATOR:	Power Equipment	
Group	1.................... \$ 38.72	20.60
Group	2.................... \$ 37.47	20.60
Group	3..................... $\$ 36.27$	20.60
Group	4..................... . ${ }^{\text {S }} 35.74$	20.60
Group	5..................... $\$ 33.67$	20.60
Group	6.................... ${ }^{\text {a }} 33.04$	20.60

HAZARDOUS WASTE PREMIUMS:

EPA Level "A" Protection: $\$ 3.00$ per hour
EPA Level "B" Protection: \$2.00 per hour
EPA Level "C" Protection: \$1.00 per hour
POWER EQUIPMENT OPERATORS CLASSIFICATIONS
GROUP 1: Cranes, Tower Cranes and Derricks with or without attachments with a lifting capacity of over 100 tons; Cranes, Tower Cranes, and Derricks with boom, leads and/or jib lengths 176 ft or longer.

GROUP 2: Backhoes (Excavators) weighing 130,000 lbs \& over; Cranes, Tower Cranes and Derricks with or without attachments with a lifting capacity of 100 tons or less; Cranes, Tower Cranes, and Derricks with boom, leads, and/or jib lengths 175 ft or less; Caisson Rigs; Pile Driver

GROUP 3: Backhoes (Excavators) weighing under 130,000 lbs; Travelling Crane (bridge type); Milling Machine; Concrete Paver over 27 E; Concrete Spreader and Distributor; Concrete Laser Screed; Concrete Grinder and Planing Machine; Slipform Curb and Gutter Machine; Boring Machine (Directional); Dredge Operator; Skid Rigs; Over 46 meter Concrete Pump.

GROUP 4: Hydraulic Backhoe (tractor or truck mounted); Hydraulic Crane, 10 tons or less; Tractor, Bulldozer, or End Loader (over 40 hp) ; Motor Patrol; Scraper Operator; Bituminous Plant and Paver Operator; Screed-Milling Machine; Roller over 5 tons; Concrete Pumps 46 meter \& under; Grout Pumps; Rotec Type Machine; Hydro Blaster, 10,000 psi and over; Rotary Drill Operator; Percussion Drilling Machine; Air Track Drill with or without integral hammer; Blaster; Boring Machine (vertical or horizontal); Side Boom; Trencher, wheel type or chain type having 8 inch or larger bucket; Rail Leveling Machine (Railroad); Tie Placer; Tie Extractor; Tie Tamper; Stone Leveler; Straddle Carrier; Material Hoists; Stack Hoist; Man Hoists; Mechanic and Welder; Off Road Maaerial Haulers

GROUP 5: Tractor, Bulldozer, or Endloader (under 40 hp); Tampers -Compactors, riding type; Stump Chipper, large; Roller, Rubber Tire; Backfiller; Trencher, chain type (bucket under 8 inch); Concrete Auto Breaker, large; Concrete Finishing Machine (road type); Concrete Batch Hopper; Concrete Conveyor Systems; Concrete Mixers, 14 S or over; Pumps, Screw Type and Gypsum) ; Hydrohammers, small; Brooms and Sweeeprs; Lift Slab Machine; Roller under 5 tons; Industrial Locomotives; Fireman (Pile Drivers and

```
    Derricks); Pumps (well points); Hoists, automatic; A-Frames
    and Winch Trucks; Hoists (tuggers); Boats (Tug, Safety,
    Work Barges and Launches); Assistant Engineer
    GROUP 6: Shouldering Machine Operator; Farm or Industrial
    Tractor mounted equipment; Post Hole Digger; Auger
    (vertical and horizontal); Skid Steer Loader with or
    without attachments; Robotic Tool Carrier with or without
    attachments; Power Pack Vibratory/Ultra Sound Driver and
    Extractor; Fireman (Asphalt Plants); Screed Operator; Stone
    Crushers and Screening Plants; Air, Electric, Hydraulic
    Jacks (Slip Form); Prestress Machines; Air Compressor, 400
    CFM or over; Refrigeration Plant/Freese Machine; Boiler
    Operators (temporary heat); Forklifts; Welding Machines;
    Generators; Pumps over 3"; Compressors, under 400 CFM;
    Heaters, Mechanical; Combination small equipment operator;
    Winches, small electric; Oiler; Greaser; Rotary Drill
    Tender; Conveyor; Elevator Operator
```

 IRON0383-002 06/01/2015
 | | Rates | Fringes |
| :---: | :---: | :---: |
| IRONWORKER. | \$ 32.85 | 21.84 |
| LABO0140-001 06/01/2016 | | |
| | Rates | Fringes |
| Laborer, General. | \$ 26.06 | 16.55 |
| Laborer: Asbestos/hazardous
 material remover | | |
| (Preparation, Removal and | | |
| Encapsulation of Hazardous | | |
| Materials from Non-Mechanical | | |
| Systems).................. | \$ 25.02 | 16.55 |

 NOTE: Mason Tender \(\$.25\) over general laborer scale; Pipelayer
 \(\$ 1.00\) over general laborer scale
 PAIN0259-005 05/01/2015
 Rates Fringes
 PAINTER........................... $\$ 22.0312 .45$
---12
PLAS0599-006 07/01/2012
Rates Fringes
CEMENT MASON/CONCRETE FINISHER...\$25.85 18.10
PLASTERER........................\$ 31.5618 .18
PLUM0434-001 05/29/2016
Rates Fringes
PLUMBER/PIPEFITTER (Including

HVAC work)....................... ${ }^{\text {a }} 38.20$	16.72
SFWI0669-002 01/01/2016	
Rates	Fringes
SPRINKLER FITTER................ ${ }^{\text {a }} 38.28$	19.36
SHEE0018-008 06/01/2015	
Rates	Fringes
SHEET METAL WORKER (Including HVAC Duct Work and Technicians)......................\$ 28.75	21.62
* TEAM0662-003 06/05/2016	
Rates	Fringes
TRUCK DRIVER	
1 \& 2 Axles.................\$ 28.26	16.77
3 or more Axles.............\$ 28.26	16.77
SUWI2002-004 01/23/2002	
Rates	Fringes
Asbestos Worker/Heat and	
Frost Insulator.................\$ 25.36	8.37
Laborers:	
Concrete Workers............ $\$ 16.34$	3.59
Landscape.................... 8.73	4.90
ROOFER. \$ 18.01	3.28
Tile \& Marble Finisher..........\$ 13.89	8.33
WELDERS - Receive rate prescribed for cra operation to which welding is incidental.	orming

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29CFR 5.5 (a) (1) (ii)).

The body of each wage determination lists the classification and wage rates that have been found to be prevailing for the cited type(s) of construction in the area covered by the wage determination. The classifications are listed in alphabetical order of "identifiers" that indicate whether the particular
rate is a union rate (current union negotiated rate for local), a survey rate (weighted average rate) or a union average rate (weighted union average rate).

Union Rate Identifiers
A four letter classification abbreviation identifier enclosed in dotted lines beginning with characters other than "SU" or "UAVG" denotes that the union classification and rate were prevailing for that classification in the survey. Example: PLUMO198-005 07/01/2014. PLUM is an abbreviation identifier of the union which prevailed in the survey for this classification, which in this example would be Plumbers. 0198 indicates the local union number or district council number where applicable, i.e., Plumbers Local 0198. The next number, 005 in the example, is an internal number used in processing the wage determination. 07/01/2014 is the effective date of the most current negotiated rate, which in this example is July 1, 2014.

Union prevailing wage rates are updated to reflect all rate changes in the collective bargaining agreement (CBA) governing this classification and rate.

Survey Rate Identifiers
Classifications listed under the "SU" identifier indicate that no one rate prevailed for this classification in the survey and the published rate is derived by computing a weighted average rate based on all the rates reported in the survey for that classification. As this weighted average rate includes all rates reported in the survey, it may include both union and non-union rates. Example: SULA2012-007 5/13/2014. SU indicates the rates are survey rates based on a weighted average calculation of rates and are not majority rates. LA indicates the State of Louisiana. 2012 is the year of survey on which these classifications and rates are based. The next number, 007 in the example, is an internal number used in producing the wage determination. 5/13/2014 indicates the survey completion date for the classifications and rates under that identifier.

Survey wage rates are not updated and remain in effect until a new survey is conducted.

Union Average Rate Identifiers
Classification(s) listed under the UAVG identifier indicate that no single majority rate prevailed for those classifications; however, 100% of the data reported for the classifications was union data. EXAMPLE: UAVG-OH-0010 $08 / 29 / 2014$. UAVG indicates that the rate is a weighted union average rate. OH indicates the state. The next number, 0010 in the example, is an internal number used in producing the wage determination. 08/29/2014 indicates the survey completion date for the classifications and rates under that identifier.

A UAVG rate will be updated once a year, usually in January of each year, to reflect a weighted average of the current negotiated/CBA rate of the union locals from which the rate is based.

WAGE DETERMINATION APPEALS PROCESS
1.) Has there been an initial decision in the matter? This can be:

* an existing published wage determination
* a survey underlying a wage determination
* a Wage and Hour Division letter setting forth a position on a wage determination matter
* a conformance (additional classification and rate) ruling

On survey related matters, initial contact, including requests for summaries of surveys, should be with the Wage and Hour Regional Office for the area in which the survey was conducted because those Regional Offices have responsibility for the Davis-Bacon survey program. If the response from this initial contact is not satisfactory, then the process described in 2.) and 3.) should be followed.

With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction Wage Determinations. Write to:

Branch of Construction Wage Determinations
Wage and Hour Division
U.S. Department of Labor

200 Constitution Avenue, N.W.
Washington, DC 20210
2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to:

Wage and Hour Administrator
U.S. Department of Labor

200 Constitution Avenue, N.W.
Washington, DC 20210
The request should be accompanied by a full statement of the interested party's position and by any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue.
3.) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative Review Board (formerly the Wage Appeals Board). Write to:

Administrative Review Board
U.S. Department of Labor

200 Constitution Avenue, N.W.
Washington, DC 20210
4.) All decisions by the Administrative Review Board are final.

Page 8 of 8

ENLARGED PLAN KEY NOTES		
(1) STEEL COLUMN. SEE STRUCTURAL PLANS.	(10) WALL MOUNTED SHELVING. REFER TO SPEC.	
(2) SINGLE TIER METAL LOCKERS OVER FILE CABINETS. REFER TO SPEC. SECTION 105113.	(11) PAPER TOWEL DISPENSER.	
(3) PRE.FIN. OPEN FACE METAL DOWNSPOUT.	(12) SOAP DISPENSER	
(4) RECESS ENTRANCE FLOOR GRID. SEE DETAIL 2/A106.	(13) 1100 .	
(5) SEMI-RECESSED KNOX BOX. VERIFY LOCATION WITH LOCAL FIRE DEPARTMENT.	(14) VINYL FACED TACKBOARD PER SPEC SECTION $10 \\| 00$.	
(6) MOTORIZED PROJECTION SCREEN	(15) SLOPE FLOOR SLAB TO FLOOR DRAIN	
SEE SPEC. SECTION 064000. (7) WALL MOUNTED SHELF AND COAT HOOK.	(16) CAST STONE COLUMN CAP. SEE DETAILS 243/A202.	
(B) VENDING MACHINES (BY OTHERS). TO PLUMBING PLANS. (9) EMERGENCY EYE WASH \& SHOWER, REFER	(17) ALL PENETRATIONS THROUGH RATED CONSTRUCTION SHALL BE SEALED PER CODE.	

(

Addendum No. 03
ID 1070-00-72
Revised Sheet 148
July 7, 2016

$$
\begin{aligned}
& \text { GLAZING SCHEDULE }
\end{aligned}
$$

DOOR SCHEDULE												
DOOR NO.	DOOR SIZE	DOOR TYPE	$\begin{array}{\|c\|} \hline \text { DOOR } \\ \text { ELEVATION } \\ \hline \end{array}$	FRAME TYPE	FRAME ELEVATION	HEAD DETAIL	JAMB DETAIL	SILL DETA ${ }^{\text {L }}$	LABEL	HARDWARE	DOOR GRILLE/	NOTES
001A	$3^{\prime}-0$ " \times 7'-2'	HM	D-6	HM	F-3	---	---	--- \}		2 20		
101A	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	ALUM	D-1	ALUM	SF-1	1/A706	4/A706	5\&6/A-70\%		\{ 1		
101B	$3^{\prime}-0{ }^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	ALUM	D-1	ALUM	F-2	3/A709 SIM	286/A707	\}		\{ 3		
101C	3'-0" \times 7'-2"	HM	D-9	HM	F-3	2/A708	7/A708	-/A---	$1 \frac{1}{2} \mathrm{HR}$	\{ 4		
103	$3^{\prime}-0{ }^{\prime \prime} \times 7^{\prime}-2^{\prime \prime}$	WOOD	D-3	HM	F-3	2/A708	7/A708			\{ 5		
104	3'-0" \times 7'-2"	WOOD	D-3	HM	F-3	2/A708	7/A708			\{ 5		
105A	$3^{\prime}-0$ " \times 7'-2"	WOOD	D-4	HM	F-5	3/A709	7\&9/A708	2/A709		\{ 11		
105B	3'-0" \times 3'-4"	WOOD	D-5	HM	F-6		7/A708	\}		\{ 12		
106	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	ALUM	D-2	ALUM	SF-10	3/A706	1/A706	5/A706		\{ 13		
107	$3^{\prime}-0{ }^{\prime \prime} \times 7^{\prime \prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-3	2/A708	7/A708	\}) 8		
108	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-3	2/A708	7/A708	\}) 5		
109A	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-7	1/A709 SIM	687/A708	2/A709) 17		
109B	$3^{\prime}-0$ " \times 7'-2"	WOOD	D-3	HM	F-3	2/A708	7/A708	\}) 17		
110	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-3	2/A708	7/A708	\%) 5		
111	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2^{\prime \prime}$	WOOD	D-3	HM	F-3	2/A708	7/A708			6		
112A	$4^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	HM	D-6	HM	F-3	2/A708	7/A708	\}	$1 \frac{1}{2} \mathrm{HR}$	\{ 16		
112B	$4^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-6	HM	F-3	2/A708	7/A708	<) 21		
113	4'-0" $\times 7^{\prime}-2{ }^{\prime \prime}$	HM	D-6	HM	F-3	2/A708	7/A708	\%	$1 \frac{1}{2} \mathrm{HR}$	\} 15		
114	$3^{\prime}-0$ " $\times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-4	2/A708	789/A708	5/A709) 7		
115	$3^{\prime}-0$ " \times 7'-2"	WOOD	D-3	HM	F-4	2/A708	789/A708	5/A709		\{ 7		
116	3'-0" \times 7'-2"	WOOD	D-3	HM	F-3	2/A708	7/A708			$\{6$		
117A	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-3	2/A708	7/A708			\{ 7		
117B	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-4	2/A708	789/A708	5/A709		$\{7$		
118	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	HM	D-6	HM	F-3	2/A708	7/A708		$1 \frac{1}{2} \mathrm{HR}$	$\{15$		
119	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	WOOD	D-3	HM	F-3	2/A708	7/A708			\{ 18		
122A	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	ALUM	D-2	ALUM	F-1	2/A706	3/A706	5/A706		2		
122B	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	ALUM	D-1	ALUM	F-2A	3/A707	286/A707	\}		\{ 3		
123A	$3^{\prime}-0 \prime \times 7{ }^{\prime \prime}-2^{\prime \prime}$	HM	D-9	HM	F-3	2/A708	687/A708		$1 \frac{1}{2} \mathrm{HR}$	\{ 14		
123B	$3^{\prime}-0 \prime \times 7^{\prime \prime}-2^{\prime \prime}$	WOOD	D-4A	HM	F-3	2/A708	3\&7/A708			$\{19$		
123C	3'-0" \times 7'-2"	WOOD	D-3	HM	F-3	2/A708	3\&7/A708	(\{ 7		
124A	$3^{\prime}-0$ " \times 7'-2"	HM	D8	HM	F-3	1/A708	4/A708	8/A708		2 9		
124B	$3^{\prime}-0$ " \times 7'-2"	HM	D8	HM	F-3	1/A708	4/A708	8/A708		\{ 10		
124C	$3^{\prime}-0^{\prime \prime} \times 7^{\prime \prime}-2^{\prime \prime}$	HM	D8	HM	F-3	1/A708	4/A708	8/A708		\{ 10		
124D	$3^{\prime}-0^{\prime \prime} \times 7^{\prime}-2{ }^{\prime \prime}$	HM	D8	HM	F-3	1/A708	4/A708	8/A708 ${ }^{\text {c }}$) 9		
124 E	$14^{\prime}-0^{\prime \prime} \times 16^{\prime}-0^{\prime \prime}$	METAL	D10	-		1/A710	1/A710	1/A710)		
124F	$14^{\prime}-0^{\prime \prime} \times 16^{\prime}-0^{\prime \prime}$	METAL	D10	-		1/A710	1/A710	1/A710)		
124G	$14^{\prime}-0^{\prime \prime} \times 16^{\prime}-0^{\prime \prime}$	METAL	D10	-		1/A710	1/A710	1/A710)		
124H	$14^{\prime}-0^{\prime \prime} \times 16^{\prime}-0^{\prime \prime}$	METAL	D10	-		1/A710	1/A710	1/A710 $\}$)		
$\xrightarrow[\substack{\text { ALUM } \\ \text { HM }}]{\text { ABLUMM }}$	$\frac{\substack{\text { ATIONS } \\ \text { INUM } \\ \text { OW METAL }}}{\text { NW }}$											

P-05

- PROVIDE DOWELS INTO FOOTING SAME SIZE
AND QUANTITY AS PIER VERTICALS.
 1. FINISHED FLOOR - EL 100
(unless noted otherwise)

 3. ($\left(x x^{\prime}-x^{\prime \prime}\right)$ INDICATES TOP OF FOOTING ELEVATIONS.

4. $\left[x x^{\prime}-x^{\prime \prime}\right]$ INDICATES TOP OF PIER ELEVATIONS. 4. [$\left[x x^{\prime}-x^{\prime}\right]$ INDICATES TOP OF PIER ELEVATIONS.
5. WAL FOOTINGS
INTERIOR- 2 - $-0^{\prime \prime} \times 10^{\prime \prime}$ NO REINF

 STOOP SLABS
5"SLAB w/ \#3 @ 12"OC EACH WAY
(UPTO 5 5 -0" SPAN)
 -

Addendum No. 03 ID 1070-00-72 Revised Sheet 176 July 7, 2016

 FOUNDATION PLAN - SOUTH SCALE: $1 / 16^{\prime \prime}=1$ ' $-0 "$

[^1]

Low roof framing notes:	
1.	$11 / 2^{\prime \prime}$ ROOF DECK: 22 GA - TYPE B, MECH FASTENED (unless noted otherwise) SEE 2/S522 FOR FASTENING PATTERN
2.	deck layout must be 3-span minmum
3.	(xxx-x') \|ndicates top of steel elevations
4.	JB xxx-x" \| NDICATES Joist bearing elevations
	[$x^{\prime \prime}$] INDICATES JOIST SEAT HEIGHT 4" SEATS FOR K-SERIES JOISTS - unless noted otherwise)
	JOISTS AS DESIGNATED ARE DESIGNED FOR DRIFT sNow
	PROVIDE BRIDGING PER SJI AND OSHA REQUIREMENTS AT ALL JOISTS
	PROVIDE DIAGONAL BRIDGING AT FIRST TWO JOIST SPACES EA END
	PROVIDE 5x1/4x0'-7" PL w/ (2) 3/8"x0'-4" ANCH AT EACH K-SERIES JOIST END BEARING ON BOND BEAM
10.	LOCATIONS WITH MECHANICAL DRAWING ROOF OPENINGS - VERIIFY ALL SIZES AND
	PROVIDE L4×4x 1/4 FRAME AT ALL ROOF OPENINGS BETWEEN JOISTS SPACED GREATER THAN 5'-6" OC SEE 1/S523
	BEARING PLATES: BP-1 PL1/2x7x0'-7" w/ (2) 1/2"x0'-6" ANCH

Addendum No. 03 ID 1070-00-72 Revised Sheet 179 July 7, 2016

(a)

LOW ROOF FRAMING - NORTH

©
 - PRovide Loose ande Lintes at all bricr vener or
CAST TTONE CORNCO OPENNGSS

SMACNA PRESSURE CLASS

$\underbrace{\substack{\text { 亳 } \\ \text { 竞 }}}$
remars:

											dej fuen jopaepl joond-seupeemeoneg buplimiven	
1	8	4041	प40188	on	sapuou	18d000		Jous	0098	vivex		94∞
$z^{\prime \prime}$	8		प4086	\%	supu 02	1sdor	1028	1049	$0000{ }^{\circ}$	Jopex		r- ${ }^{\text {d }}$
		¢u4 $1 / 2$	पuızı	${ }^{\text {on }}$	supu 02	15102	T $\mathrm{T} / 285$	Ionew	00980	10909	wundonowe	cum
	\checkmark	4041	पии8¢	80	supu0 2	1 IS 02	${ }_{19588}$	(manew	000\%	00901	10109	${ }_{z} \boldsymbol{z}$ ¢
	\checkmark	पurza		\%	sopul ${ }^{2}$	1 ISdoz	195988	(anxew	${ }_{0} 0091$	popow		tume
			3281Men	${ }^{\text {Lamaonv }}$	Sulus zinssys	צanssyd	воом	צมูuvunww				
syevix	ssaoss300	Nouamwos			\%orvine3	Sadsm			avor xvw	Nouvoor צolvinoz		צoumpos

Addendum No． 03
ID 1070－00－72
Revised Sheet 462
July 7， 2016
の

| | の |
| :--- | :--- | :--- |
| | Addendum No．03
 ID 1070－00－72
 Revised Sheet 462
 July 7，2016 |

\qquad

ID 1070-00-72

PROJECT NO: 1070-00-72

[^0]: ENGI0139-002 06/01/2016

[^1]: PLANS PREPARED BY: AMBROSE ENGINEERING, INC. CEDARBURG, WI (AEI\# 012-307)

 | STATE PROJECT NUMBER: $1070-00-72$ | HWY: IH 90 | COUNTY: MONROE |
 | :--- | :--- | :--- |

