Glossary of Terms

The definitions in this Glossary are for use with this Chapter and the references cited. They are not necessarily definitions as established by case or statutory law.

Acre-Foot:	A unit of measurement for volume of water. It is equal to the quantity of water required to cover one acre to a depth of one foot and is equal to 43,560 cubic feet or 325,851 gallons. The term is commonly used in measuring volumes of water used or stored. The highest peak discharge in a water year.		
Annual Flood:			
Antecedent Precipitation Index:		\quad	An index of moisture stored within a drainage basin before a storm (Linsley and others,
:---			
1949, p. 414).			

Critical Depth (depth at which specific energy is a minimum):
The depth of water in a conduit at which under certain other conditions the maximum flow will occur. These other conditions are when the conduit is on the critical slope with the water flowing at its critical velocity and when there is an adequate supply of water. The depth of water flowing in an open channel or a conduit partially filled for which the velocity head equals one-half the hydraulic mean depth.
Critical Flow: \quad A condition that exists at the critical depth. Under this condition, the sum of the velocity head and static head is a minimum.
Critical Slope: \quad That slope at which the maximum flow will occur at the minimum velocity. The slope or grade that is exactly equal to the loss of head per foot resulting from flow at a depth that will give uniform flow at critical depth; the slope of a conduit that will produce critical flow.
Critical Velocity: \quad Mean velocity of flow when flow is at critical depth.
Cubic Feet Per Second: A unit expressing rates of discharge. One cubic foot per second is equal to the discharge of a stream of rectangular cross section, one foot wide and one foot deep, flowing water an average velocity of one foot per second.
Culvert: \quad A closed conduit, other than a bridge, that allows water to pass under a highway. A culvert has a span of 20 feet or less as measured between the interior walls of the outside bents.
Depression Storage: The volume of water contained in natural depressions in the land surface, such as puddles (After Horton, 1935, p. 2).
Design Discharge: The quantity of flow that is expected at a certain point as a result of a design storm. Usually expressed as a rate of flow in cubic feet per second.
Design Frequency: The recurrence interval for hydrologic events used for design purposes. As an example, a design frequency of 50 years means a storm of a magnitude that would be expected to recur on the average of once every 50 years.
Design Storm: \quad That particular storm that contributes runoff that the drainage facilities were designed to handle. This storm is selected for design on the basis of its probable recurrence; i.e., a 50 -year design storm would be a storm for which its maximum runoff would occur on the average of once every 50 years.
Direct Runoff: The runoff entering stream channels promptly after rainfall or snowmelt. Superposed on base runoff, it forms the bulk of the hydrograph of a flood. Also see "Surface Runoff." The terms base runoff and direct runoff are time classifications of runoff. The terms groundwater runoff and surface runoff are classifications according to source.
Discharge: A volume of water flowing out of a drainage structure or facility. Measured in cubic feet per second.
Discharge Rating Curve:See "Stage-Discharge Relation."
Drainage:
(1) The process of removing surplus groundwater or surface water by artificial means.
(2) The system by which the waters of an area are removed. (3) The area from which waters are drained; a drainage basin.
Drainage Area (Drainage Basin) (Basin):
That portion of the earth's surface upon which falling precipitation flows to a given location. With respect to a highway, this location may be either a culvert, the farthest point of a channel, or an inlet to a roadway drainage system.
Drainage Divide: \quad The rim of a drainage basin. A series of high points from which water flows in two directions, into the basin and away from the basin.
Drainage System: Usually a system of underground conduits and collector structures that flow to a single point of discharge.
Eddy Loss: The energy lost (converted into heat) by swirls, eddies, and impact, as distinguished from friction loss.
(1) That part of the precipitation that produces runoff. (2) A weighted average of current and antecedent precipitation that is "effective" in correlating with runoff. (3) As described by U.S. Bureau of Reclamation (1952, p. 4), that part of the precipitation falling on an irrigated area that is effective in meeting the consumptive use requirements.
Energy Grade Line: A hydraulic term used to define a line representing the total amount of energy available at any point along a watercourse, pipe, or drainage structure. Where the water is motionless, the water surface would coincide with the point or the energy grade line. As the flow of water is accelerated, the water surface drops further away from the energy grade line. If the flow is stopped at any point, the water surface jumps back to the energy grade line.
Energy Head: \quad The elevation of the hydraulic grade line at any section plus the velocity head of the mean velocity of the water in that section.
Entrance Head: \quad The head required to cause flow into a conduit or other structure. It includes both entrance loss and velocity head.
Entrance Loss: \quad The head lost in eddies and friction at the inlet to a conduit or structure.
Equalizer: \quad A drainage structure similar to a culvert but different in that it is not intended to pass a design flow in a given direction. Instead, it is often placed level so as to permit passage of water in either direction. It is generally used where there is no place for the water to go. Its purpose is to maintain the same water surface elevation on both sides of the highway embankment.
Evaporation: A process whereby water as a liquid is changed into water vapor through heat supplied by the sun.
Flood-Frequency Curve:
(1) A graph showing the number of times per year on the average, plotted as abscissa, that floods of magnitude, indicated by the ordinate, are equaled or exceeded. (2) A similar graph but with recurrence intervals of floods plotted as abscissa (see Dalrymple, 1960).

Flood Peak: \quad The highest value of the stage or discharge attained by a flood, thus peak stage or peak discharge. Flood crest has nearly the same meaning, but since it connotes the top of the flood wave, it is properly used only in referring to stage, thus crest stage but not crest discharge.
Floodplain:
Flood Profile:
Strip of land adjacent to a river or channel that has a history of overflow.
A graph of elevation of the water surface of a river in flood, plotted as ordinate, against distance, measured in the downstream direction, plotted as abscissa. A flood profile may be drawn to show elevation at a given time, crests during a particular flood, or to show stages of concordant flows.
Flood Routing: The process of determining progressively the timing and shape of a flood wave at successive points along a river (see Carter and Godfrey, 1960).
Flood Stage: \quad The elevation at which overflow of the natural banks of a stream begins to cause damage in the reach in which the elevation is measured.
Flow Line: \quad A term used to describe the line connecting the low points in a watercourse.
Freeboard: The distance between the normal operating level and the top of the sides of an open conduit; the crest of a dam, etc., designed to allow for wave action, floating debris, or any other condition or emergency, without overtopping the structure.
Flow-Duration Curve: A cumulative frequency curve that shows the percentage of time that specified discharges are equaled or exceeded.
Free Outlet: \quad A condition under which water discharges with no interference such as a pipe discharging into open air.
Gage Height: The water surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term stage, although gage height is more appropriate when used with a reading on a gage.
Gaging Station: A particular site on a stream, canal, lake, or reservoir where systematic observations of gage height or discharge are obtained (also see "Stream Gaging Station").
Grade to Drain: \quad A construction note often inserted on a plan for the purpose of directing the contractor to slope a certain area in a specific direction so that the storm waters will flow to a designated location.

Gradient (Slope):	The rate of ascent or descent, expressed as a percent or as a decimal as determined by the ratio of the change in elevation to the length.
Groundwater Runoff:	
That part of the runoff that passed into the ground, has become groundwater, and has	
been discharged into a stream channel as spring or seepage water (also see "Base	
Runoff" and "Direct Runoff").	
When used as a hydraulic term, this represents an available force equivalent to a	
certain depth of water. This is the motivating force in effecting the movement of water.	
The height of water above any point or plane of reference. Used also in various	
compound expressions, such as energy head, entrance head, friction head, static head,	
pressure head, lost head, etc.	
A line which represents the relative force available due to the potential energy available.	

Mean Velocity:	Average velocity within a cross section. The winding of a stream channel.
Meander:	A central value (such as arithmetic average or median) of annual quantities for a 30- year period ending with an even 10-year period, thus 1921-50, 1931-60, and so forth. This definition accords with that recommended by the Subcommittee on Hydrology of the Federal Inter-Agency Committe on Water Resources.
The depth at which flow is steady and hydraulic characteristics are uniform.	
Discharge or point of discharge of a culvert or other closed conduit.	

Silt:	(1) Water-Borne Sediment: Detritus carried in suspension or deposited by flowing water, ranging in diameter from 0.0002 to 0.002 inch. The term is generally confined to fine earth, sand, or mud, but is sometime's broadened to include all material carried, including both suspended and bed load. (2) Deposits of Water-Borne Material: As in a reservoir, on a delta, or on floodplains.
Uhen a drainage structure is not normal (perpendicular) to the longitudinal axis of the	
highway, it is said to be on a skew. The skew angle is the smallest angle between the	
perpendicular and the axis of the structure.	
(1) Gradient of a stream. (2) Inclination of the face of an embankment, expressed as the	
ratio of horizontal to vertical projection. (3) The face of an inclined embankment or cut	
slope. In hydraulics it is expressed as percent or in decimal form.	
Flow in culvert or drainage structure that alternates between full and partly full.	
Pulsating flow--mixed water and air.	

Supercritical Flow: Surface Runoff:

Tapered Inlet:
Time of Concentration: The time required for storm runoff to flow from the most remote point, in flow time, of a drainage area to the point under consideration. It is usually associated with the design storm (see Inlet Time).
Total Storage: \quad The volume of reservoir below the maximum controllable level, including dead storage (Thomas and Harbeck, 1956, p. 13).
Trunk (or Trunk Line): In a roadway drainage system, the main conduit for transporting the storm waters. This main line is generally quite deep in the ground so that laterals coming from fairly long distances can drain by gravity into the trunk line.
Turbulent Flow: That type of flow in which any particle may move in any direction with respect to any other particle, and in which the head loss is approximately proportional to the square of the velocity.
Unit Hydrograph: \quad The hydrograph of direct runoff from a storm uniformly distributed over the drainage basin during a specified unit of time; the hydrograph is reduced in vertical scale to correspond to a volume of runoff of one inch from the drainage basin (after American Society of Civil Engineer, 1949, p. 105). The hydrograph of surface runoff (not including groundwater runoff) on a given basin due to an effective rain falling for a unit of time (Sherman, 1949, p. 514) (also see Hoyt and others, 1936, p. 124).
Velocity Head: \quad A term used in hydraulics to represent the kinetic energy of flowing water. This "head" is represented by a column of standing water equivalent in potential energy to the kinetic energy of the moving water calculated as $\mathrm{V} \$ 2 \$ / 2 \mathrm{~g}$, where " V " represents velocity in feet per second and " g " represents potential acceleration due to gravity in feet per second per second.
Watershed:
Water Year:
Flow with a velocity head more than half the hydraulic mean depth of the water. The movement of water on the earth's surface, whether flow is over surface of ground or in channels.
A transition to direct the flow of water into a channel or culvert. A smooth transition to increase hydraulic efficiency of an inlet structure.

The area drained by a stream or stream system.
In Geological Survey reports dealing with surface water supply, the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes nine of the 12 months. Thus, the year ended September 30, 1959, is called the "1959 water year."

SURFACE DRAINAGE STUDIES

Input - Output Data \& Design Aids

		P.C. program that mirror procedures in Urban Hydrology for Small Watershed Technical Release 55, June 1986
	Hydrain * HYDRA	Storm/sanitary sewers

Alternate Project No.		Schedule No.					District No.		
		County					Designer		
	Name of Road	Hwy.							
	Design quency	------	---	Da					
Major Drainage Summary Sheet									
Input						Output			Remarks
Sat. or Loc.	Drainage Area (Acres)	Chief Land Use or Cover	Description of Terrain	Head- Water Allow- able	Existing Facility Size \& Type	Design Discharge	Proposed Facility Size \& Type	Cost	Remarks Special Limitation, Channel Changes

Sample Stormwater-Drainage-WQ Report Spreadsheet: Drainage-Summary Worksheet
Download a zipped working copy of the spreadsheets at:
http://wisconsindot.gov/rdwy/fdm/files/WisDOT-Stormwater-Drainage-WQ-Channel-Spreadsheets.zip

Sample Stormwater-Drainage-WQ Report Spreadsheet: Data Worksheet (Use link on FDM 13-1 Attachment 10.1 to download a zipped working copy of the spreadsheets.

Drainage Data
Project ID: XXXX-XX-XX
Title: Example Project
Designer/Checker:
DOT Region/Firm Name:
Date:

OUTFALL INFORMATION						
Outfall number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Outfall discharges to:						
Waterway crossing type	DD Menu					
If discharging to environmentally sensitive area, what kinds of buffers were used at outfall?	DD Menu					
Previous flooding issues or flow restrictions?	DD Menu					
Is the drainageway in the DOT ROW a navigable waterway?	DD Menu					
Classify the drainageway in the DOT ROW	DD Menu					

BASIC SUB BASIN DRAINAGE INFORMATION						
Outfall number	1	2	3	4	5	6
Stormwater conveyance type	DD Menu	OD Menu	DD Menu	DD Menu	DD Menu	DD Menu
Outfall station						
Subbasin starting station						
Subbasin ending station						
Proposed roadway length (ft)	0	0	0	0	0	0
Flow conveyance change						
Flood design frequency (yrs)						
Check design frequency (yrs)						
Is the check design storm safely passed?	DD Menu					
DOT right-of-way area (acres)						
Subbasin drainage area (acres)						
DOT right-of-way compared to subbasin drainage area (\%)	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!
DOT impervious area - existing (acres)						
DOT impervious area - proposed (acres)						
Change in impervious area (acres)	0	0	0	0	0	0
Percent change in DOT impervious area	\#DIV/0!	\#DIV/0!	\#DIV/O!	\#DIV/0!	\#DIV/0!	\#DIV/0!
Design software used						
Method used to estimate peak flows						
Complete lines 36-46 for culverts only						
Existing peak flow (cfs)						
Proposed peak flow (cfs) (before detention)						
Proposed peak flow (cfs) (after detention/in-line storage/other)						
Change in peak flow (cfs)	0	0	0	0	0	0
Percent change in peak flow	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!
Existing 2-yr peak flow (cfs)						
Proposed 2-yr peak flow (cfs) (before detention)						
Proposed 2-yr peak flow (cfs) (after detention/in-line storage/other)						
Change in 2-yr peak flow (cfs)	0	0	0	0	0	0
Percent change in 2-yr peak flow	\#DIV/0!	\#DIVIO!	\#DIVIO!	\#DIV/0!	\#DIV/0!	\#DIV/0!
Existing Tc (min)						
Proposed Tc (min)						
C or CN (existing)						
C or CN (proposed)						
Rainfall intensity (in/hr) (rational method only)						
Rainfall depth used for design storm, if applicable (in)						

CULVERT DESIGN Existing Culvert						
Outfall number	1	2	3	4	5	6
Culvert present? (Yes or No)	DD Menu					
Existing culvert shape	DD Menu					
Existing culvert material	DD Menu					
Existing culvert size (tt)						
Existing number of culverts						
Existing Manning's n						
Inlet entrance type	DD Menu					
Inlet loss coefficient (Ke)						
Upstream invert (ft)						
Downstream invert (ft)						
Length (ft)						
Slope (\%)	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!
Floodplain Management						
Is culvert in a mapped floodplain?	DD Menu					
Will proposed culvert increase water surface profile?	DD Menu	DD Menu	OD Menu	DD Menu	DD Menu	DD Menu
Drainage District Issues						
Is culvert in a drainage district?	DD Menu					
Drainage District Name						
Will proposed culvert raise the culvert invert or increase water surface profile?	DD Menu					
Has drainage board approved increases?	DD Menu					
Aquatic Organism Passage						
Is aquatic organism passage a concern?	DD Menu					
Does WDNR agree with AOP design?	DD Menu					
Proposed Culvert Design						
Design ADT						
Design flow						
Design year frequency						
Hydrological method used						
Assumed tailwater condition						
Maximum allowable headwater						
Maximum allowable headwater design criteria	DDMenu	DDMenu	DDMenu	DDMenu	DDMenu	DDMenu
Proposed culvert shape	DD Menu					
Proposed culvert material	DD Menu					
Proposed culvert size						
Proposed number of culverts						
Manning's n						
Type of endwalls	DD Menu					
Inlet loss coefficient (Ke)						
Proposed upstream invert (ft)						
Proposed downstream invert (ft)						
Proposed length (ft)						
Proposed slope (\%)	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!
Embedment depth (ft)						
Embedment material						
Discharge velocity (ft/s)						
Riprap outfall (Size riprap or None)						
Station of lowest subgrade shoulder point in subbasin ($0+00$)						
Elevation of lowest subgrade shoulder point in subbasin (ft)						
Headwater distance below subgrade shoulder point (ft)						
Headwater to pipe diameter ratio						
Design software used						
Proposed tailwater condition						
Discharge pipe end submerged?	DD Menu	DD Menu	OD Menu	DD Menu	DD Menu	DD Menu
Assumed tailwater elevation (ft)						

POTENTIAL FOR BACTERIAL CORROSION OF ZINC GALVANIZED STEEL CULVERT PIPE

INDIVIDUAL SITES IN AREA 3 MAY BE STRONGLY TO MODERATELY CORROSIVE DUE TO LOCAL CONDITIONS SUCH AS FARM RUNOFF, ANAEROBIC BACTERIA IN THE SOIL, ETC.

STORM SEWER - FILL HEIGHT TABLE FOR CONCRETE PIPE

Type/Class of Pipe	AASHTO Materials Designation	Pipe Size I.D. (inches)	Maximum Height of Cover Over Top of Pipe (feet)
Reinforced Concrete Class II	M 170	$12-108$	11
Reinforced Concrete Class III	M 170	$12-108$	15
Reinforced Concrete Class IV	M 170	$12-84$	25
Reinforced Concrete Class V	M 170	$12-72$	35

Surface Loadings

The minimum concrete pipe class required based on depth to subgrade is as follows:

Depth of Subgrade Cover (feet)	0 to 2	2 to 3	3 to 6
Minimum Class of Concrete Pipe Required	IV	III	II

The desired minimum cover is 2 feet below subgrade. Where less than two feet of cover is provided special measures may be required during construction to minimize equipment loading impacts on the pipe. At a minimum, locations with reduced subgrade cover should be identified on the plans so that the contractor can take precautionary measures.

Design Criteria

The above table refers to Class C bedding using sand/gravel backfill weighing $120 \mathrm{lb} / \mathrm{ft}^{3}$ with zero projecting embankment condition and trench widths as specified Standard Spec 608.

FILL HEIGHT TABLE 1
Corrugated Steel, Aluminum, Polyethylene, Polypropylene and Reinforced Concrete Pipe HS20 Loading 2" $\times 2 / 3$ " Corrugations - Standard Specification Bedding Unless Otherwise Noted

		Height of Cover Over Top Pipe in Feet - "H"																	
		Min. to 15^{\prime} (2)			16' to 20'			21' to 25^{\prime}			26' to 30'			31' to 35'			36 ' to 40'		
$\begin{aligned} & \text { Dia. } \\ & \text { In. (5) } \end{aligned}$	Area S.F.	Thickness		RCCP Class	Thickness		RCCP Class Pipe	Thickness		RCCP Class Pipe	Thickness		RCCP Class Pipe	Thickness		RCCP Class Pipe	Thickness		RCCP Class Pipe
		Steel	Alum																
12 *	0.8	0.064	0.060	III	0.064	0.060	IV	0.064	0.060	IV	0.064	0.060	V	0.064	0.060	V	0.064	0.075	V (4)
15 *	1.2	0.064	0.060	III	0.064	0.060	IV	0.064	0.060	IV	0.064	0.060	V	0.064	0.075	V	0.064	0.105	V (4)
18 *	1.8	0.064	0.060	III	0.064	0.060	IV	0.064	0.060	IV	0.064	0.075	V	0.064	0.105	V	0.064	0.135	V (4)
21 *	2.4	0.064	0.060	III	0.064	0.060	IV	0.064	0.075	IV	0.064	0.105	V	0.064	0.135	V	0.079	X	V (4)
24 *	3.1	0.064	0.075	III	0.064	0.075	IV	0.079	0.075	IV	0.079	0.105	V	0.079	0.164	V	0.079	X	V (4)
30 *	4.9	0.079	0.075	III	0.079	0.075	IV	0.079	0.105	IV	0.079	0.135	V	0.109	X	V	0.109	X	V (4)
36 *	7.1	0.079	0.105	III	0.079	0.105	IV	0.109	0.135	IV	0.109	0.164	V	0.138	X	V	0.138	X	V (4)
42	9.6	0.109	0.105	III	0.109	0.135	IV	0.109	0.164	IV	0.138	0.164	V	0.138	X	V	0.168	X	V (4)
48	12.6	0.109	0.105	III	0.109	0.135	IV	0.138	0.164	IV	0.168	X	V	0.168	X	V	0.138 E	X	V (4)
54	15.9	0.109	0.105	III	0.138	0.135	IV	0.168	0.164	IV	0.168	X	V	0.109 E	X	V	0.138 E	X	V (4)
60	19.6	0.138	0.164	III	0.138	X	IV	0.168	X	IV	0.138 E	X	V	0.138 E	X	V	0.168 E	X	V (4)
66	23.8	0.138	0.164	III	0.168	X	IV	0.168	X	IV	0.138 E	X	V	0.138 E	X	V	0.168 E	X	V (4)
72	28.3	0.138(3)	0.164	III	0.168	X	IV	0.168	X	IV	0.138 E	X	V						
78	33.2	0.168	X	III	0.168	X	IV	0.168 E	X	IV	(1)								
84	38.5	0.168	X	III	0.168	X	IV												

E = Elongated, Vertical Axis 5\% greater than Horizontal.
(1) Any pipe under the heavy line will require a special design.
(2) 12" minimum cover, top of pipe to top of subgrade for steel, aluminum and concrete. 24" required minimum cover for Class IIIA and IIIB pipe under Standard Spec 520 or 608, or as polyethylene and polypropylene pipe under Standard Spec 530
(3) A thickness of $0.138^{\prime \prime}$ may be used for fill heights of minimum to 10 Ft . a thickness of $0.168^{\prime \prime}$ may be used for fill heights of greater than 10 Ft . but less than 26 feet.
(4) Class " B " Bedding required.

NOTE: For steel and aluminum pipe in the shaded portion of the table (>60 in. dia.), a corrugation size of 3" by $1^{\prime \prime}$ is generally more economical than $22 / 3^{\prime \prime}$ by $1 / 2^{\prime \prime}$. See Tables 2 and 7 .
$X=$ Do not use
For corrugated steel pipe in a 6 ", $8^{\prime \prime}$, or $10^{\prime \prime}$ diameter, the minimum thickness is $0.052^{\prime \prime}$ and 0.064 " respectively.
For corrugated aluminum pipe in $6^{\prime \prime}, 8^{\prime \prime}$ or 10 " diameter, the minimum thickness is $0.048^{\prime \prime}, 0.048$ " and 0.06 " respectively.

Corrugated polyethylene and corrugated polypropylene pipe in these diameters are available for use under the Class III-A and Class III-B bid items as specified in FDM 13-1-15 and FDM 13-1-17. Minimum fill height shall be 24 inches and maximum fill height shall be 11 feet for polyethylene (Class III-A) and 15 feet for polypropylene (Class III-B). It is not necessary to specify thickness for polyethylene or polypropylene pipe.

FILL HEIGHT TABLE 2 (1) Corrugated Steel Pipe - 3" x 1" Corrugations - H20 Live Load

Pipe Dia. In.	Waterway Area Sq. Ft.	Min. CoverIn. (3)	Maximum Height of Fill - Ft.				
			Metal Thickness in Inches (2)				
			0.064	0.079	0.109	0.138	0.168
60	19.6	12	24	30	44	53	58
66	23.8	12	22	27	40	48	53
72	28.3	12	20	25	37	44	49
78	33.2	12	18	23	34	40	45
84	38.5	12	17	22	32	37	42
90	44.2	12	16	20	29	35	39
96	50.3	12	X	19	28	33	37
102	56.7	24	X	17	26	31	34
108	63.6	24	X	X	24	29	32
114	70.9	24	X	X	23	27	31
120	78.5	24	X	X	X	26	29

FILL HEIGHT TABLE 3 (1)
Structural Plate Pipe 6" x 2" Corrugations - H2O Live Load

Pipe Dia. In.	Waterway Area Sq. Ft.	Min. Cover In. (3)	Maximum Height of Fill - Ft. (4)						
			Metal Thickness in Inches (2)						
			0.10	0.138	0.168	0.188	0.218	0.249	0.280
60	19.6	12	35	51	67	77	87 (93)	96 (110)	106 (120)
72	28.3	12	29	43	54	57 (64)	62 (77)	67 (91)	73 (100)
84	38.5	12	25	36	44	46 (55)	49 (66)	53 (78)	56 (85)
96	50.3	12	22	32	39	40 (48)	42 (58)	44 (68)	47 (75)
102	56.7	24	20	30	37	38	40 (55)	42 (64)	43 (70)
108	63.6	24	19	28	35	36	38 (52)	39 (61)	41 (66)
120	78.5	24	17	25	33	34	35 (46)	36 (55)	37 (60)
132	95.0	24	16	23	30	32	33 (42)	34 (50)	35 (54)
144	113.1	24	14	21	28	31	32	32 (45)	33 (50)
156	132.7	24	13	19	25	29	31	31 (42)	32 (46)
168	153.9	24	12	18	24	27	30	31	31 (42)
180	176.7	24	11	17	22	25	30	30	30 (40)

(1) Table 2 is valid for $5^{\prime \prime} \times 1^{\prime \prime}$ corrugations which may be used in lieu of $3^{\prime \prime} \times 1^{\prime \prime}$ corrugations for fill heights to 30 feet.
(2) The steel thicknesses shown are adequate for structural requirements only. Where corrosive and/or abrasive conditions exist, greater thicknesses should be specified.
(3) Minimum cover top of pipe to top of subgrade.
(4) Maximum fill heights shown in parentheses are permitted if the pipe is elongated - Vertical axis 5% greater than the horizontal axis.
NOTE: Corrugated steel pipe (CSCP) is normally more economical to use than structural plate pipe (SPP) for installations where either type will satisfy fill height requirements. The potential cost savings of the CSCP is possible because CSCP is factory assembled into transportable lengths whereas SPP must be field assembled from plates.

FILL HEIGHT TABLE 4
Corrugated Steel Pipe Arch - 2" x 1/2" Corrugations - H20 Live Load

				Round Pipe of Equal Periphery		
	Min. Size: Span x Rise (Inches)	Min. Thickness In. (1)	Max. Cover In. (2)	Meight of Fill Ft. (3)	Waterway Area Sq. Ft.	Waterway Area Sq. Ft.
17×13	0.064	18	13	1.1	Dia. Inches	
21×15	0.064	18	12	1.6	1.23	15
24×18	0.064	18	10	2.2	2.77	18
28×20	0.064	18	9	2.8	3.14	21
35×24	0.079	18	9	4.4	4.91	24
42×29	0.079	18	7	6.4	7.07	30
49×33	0.109	18	7	8.7	9.62	42
57×38	0.109	18	7	11.4	12.57	48
64×43	0.109	18	7	14.3	15.90	54
71×47	0.138	18	7	17.6	19.64	60
77×52	0.168	18	7	21.3	23.76	66
83×57	0.168	18	8	25.3	28.27	72

FILL HEIGHT TABLE 5
Corrugated Steel Pipe Arch (4)-3" x 1" Corrugations - H20 Live Load

				Round Pipe of Equal Periphery		
Size: Span x Rise (Inches)	Min. Thickness In. (1)	Min. Cover In. (2)	Max. Height of Fill Ft. (3)	Waterway Area Sq. Ft.	Waterway Area Sq. Ft.	Dia. Inches
40×31	0.064	18	12	6.4	7.07	36
46×36	0.064	18	12	8.7	9.62	42
53×41	0.064	18	12	11.4	12.57	48
60×46	0.064	18	12	14.3	15.90	54
66×51	0.064	18	12	17.6	19.64	60
73×55	0.064	18	15	22.0	23.76	66
81×59	0.079	18	15	26.0	28.27	72
87×63	0.079	18	14	31.0	33.18	78
95×67	0.109	18	12	35.0	38.48	84
103×71	0.109	24	11	40.0	44.18	90
112×75	0.109	24	10	46.0	50.27	96
117×79	0.109	24	10	52.0	56.74	102
128×83	0.138	24	9	58.0	63.62	108

(1) The steel thicknesses shown are adequate for structural requirements only. Where corrosive and/or abrasive conditions exist, greater thicknesses should be specified.
(2) Minimum cover top of pipe to top of subgrade.
(3) Allowable fill heights are computed on the basis that corner bearing pressure will not exceed two tons per square foot.
(4) Table 5 is also valid for the metric $125 \mathrm{~mm} \times 25 \mathrm{~mm}$ corrugation which may be used in lieu of the $3^{\prime \prime} \times 1^{\prime \prime}$ corrugations.

Fill Height Table 6

Structural Plate Pipe Arch - 6" x 2" Corrugations - H20 Live Load

Bid Item Number	Size	Waterway Area Sq. Ft.	Min. Thickness Inches (1)	Min. Cover Inches (2)	Max. Height of Fill Ft. (3)	Corner Radius Inches	Lay out Dimensions		
	Span x Rise (Ft. - Inches)						$\begin{gathered} \text { B } \\ \text { Inches } \end{gathered}$	R1 Feet	R2 Feet
527.0305	6-1 $\times 4-7$	22	0.109	18	15	18	21.0	3.07	6.36
527.0310	7-0 x 5-1	28			15		21.4	3.53	8.68
527.0315	8-2 \times 5-9	38		24	12		20.9	4.08	15.24
527.0320	8-10 x 6-1	43			11		21.8	4.24	14.89
527.0325	9-9 x 6-7	52			10		21.9	4.86	18.98
527.0330	$11-5 \times 7-3$	64			8		27.4	5.78	13.16
527.0335	$11-10 \times 7-7$	71			7		25.2	5.93	18.03
527.0340	$12-10 \times 8-4$	85			6		24.0	6.44	26.23
SPV. 0090	$13-3 \times 9-4$	97		36	13	31	38.5	6.68	16.05
SPV. 0090	14-2 x 9-10	109			12		38.8	7.13	18.55
SPV. 0090	15-4 x 10-4	123	0.138		11		41.8	7.76	17.38
SPV. 0090	$16-3 \times 10-10$	137			10		42.1	8.21	19.67
SPV. 0090	17-2 x 11-4	151			10		42.3	8.65	22.23
SPV. 0090	18-1 x 11-10	167	0.168		9		42.4	9.09	24.98
SPV. 0090	19-3 x 12-4	182			8		45.9	9.75	23.22
SPV. 0090	$19-11 \times 12-10$	200			7		42.5	9.98	31.19
SPV. 0090	$20-7 \times 13-2$	211	0.188		6		43.7	10.33	31.13

(1) The metal thickness shown are adequate for structural requirements only. Where corrosive and/or abrasive conditions exist, greater thicknesses should be specified at least for the bottom plates.
(2) Minimum cover top of pipe to top of subgrade.
(3) Allowable fill heights are computed on the basis that corner bearing pressure will not exceed two tons per square foot.

LAYOUT DIMENSIONS

FILL HEIGHT TABLE 7
Corrugated Aluminum Pipe 3" x 1" Corrugations - H20 Live Load

			Maximum Height of Fill - Ft.				
$*$ Pipe Dia. In.	Waterway Area Sq. Ft.	Min. Cover In. (2)	Metal Thickness in Inches (1)				
60	19.6		$\mathbf{0 . 0 6 0}$	$\mathbf{0 . 0 7 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 3}$	$\mathbf{0 . 1 6 4}$
66	23.8		12	17	23	31	32
72	28.3	12	12	16	21	31	31
78	33.2	18	X	13	19	30	30
84	38.5	18	X	X	17	29	30
90	44.2	18	X	X	16	29	29
96	50.3	18	X	X	16	29	29
102	56.7	18	X	X	X	27	29
108	63.6	18	X	X	X	25	28
114	70.9	18	X	X	X	X	28
120	78.5	18	X	X	X	X	28

FILL HEIGHT TABLE 8
Aluminum Alloy, Structural Plate Pipe 9" x 2 1/2" Corrugations - H20 Live Load

Pipe Dia. In.	Waterway Area Sq. Ft.	Minimum Cover In. (2)	Maximum Height of Fill - Ft.						
			Metal Thickness in Inches (1)						
			0.10	0.12	0.15	0.17	0.20	0.22	0.250
60	19.6	15	22	29	37	44	55	59	61
72	28.3	21	18	24	31	37	44	46	48
84	38.5	21	15	21	26	31	37	39	40
96	50.3	24	14	19	23	28	35	35	36
102	56.7	24	13	17	22	26	34	34	35
108	63.6	27	12	16	21	24	33	33	34
120	78.5	27	11	14	19	22	31	32	32
132	95.0	30	X	13	17	20	28	31	31
144	113.1	30	X	12	15	18	25	29	30
156	132.7	30	X	11	14	17	24	27	30
168	153.9	30	X	X	13	16	22	25	28
180	176.7	30	X	X	X	15	20	23	26

Note: $\mathrm{X}=$ Do not use - design strengths exceeded.
(1) The metal thicknesses shown are adequate for structural requirements only. Where corrosive and/or abrasive conditions exist, greater thickness should be specified.
(2) Minimum cover top of pipe to top of subgrade.

FILL HEIGHT TABLE 9
Corrugated Aluminum Pipe Arch, 2-2/3" X 1/2" Corrugations - H2O Live Load

Size	\qquad	Min. Cover In. (2)	Max. Height of Fill ft. (3)	Waterway Area Sq. Ft.	Round Pipe of Equal Periphery	
Span x Rise Inches					Waterway Area Sq. Ft.	Dia. Inches
17×13	0.060	18	12	1.1	1.23	15
21×15	0.060		10	1.6	1.77	18
24×18	0.060		8	2.2	2.41	21
28×20	0.075		7	2.8	3.14	24
35×24	0.075		6	4.4	4.91	30
42×29	0.105		6	6.4	7.07	36
49×33	0.105		5	8.7	9.62	42
57×38	0.135		6	11.4	12.57	48
64×43	0.135		6	14.3	15.90	54
71×47	0.164		7	17.6	19.64	60

(1) The metal thicknesses shown are adequate for structural requirements only. Where corrosive and/or abrasive conditions exist, greater thicknesses should be specified.
(2) Minimum cover top of pipe to top of subgrade.
(3) Allowable fill heights are computed on the basis that corner bearing pressure will not exceed two tons per square foot.

FILL HEIGHT TABLE 10
Aluminum Alloy Structural Plate Pipe Arch - 9" X 2 1/2" Corrugations - H20 Live Load

Size	Waterway Area Sq. Ft.	Min. Thickness, In. (1)	Min. Cover (2)	Max. Height of Fill (3)	Corner Radius	Layout Dimensions		
$\begin{gathered} \text { Span x Rise } \\ \text { Ft-In } \end{gathered}$						B Inches	$\begin{gathered} R_{1} \\ \text { Feet } \end{gathered}$	$\begin{gathered} \mathbf{R}_{2} \\ \text { Feet } \end{gathered}$
6-2 \times 5-0	25	0.100	$\begin{gathered} 24 \\ \text { Inches } \end{gathered}$	18	27 Inches	27.2	3.25	24.93
6-7 \times 5-8	30			16	31.8 Inches	32.5	3.46	5.82
8-1 $\times 6$-1	39			13		33.5	4.44	9.00
8-10 x 6-4	44		$\begin{gathered} 30 \\ \text { Inches } \end{gathered}$	11		35.6	5.27	7.75
9-11 \times 6-8	53			10		34.2	5.53	15.72
$11-5 \times 7-1$	64			9		35.3	6.51	18.50
$12-3 \times 7-3$	70		36 Inches	8		38.4	7.57	13.77
$13-1 \times 8-4$	87			8		42.0	7.40	11.97
$14-0 \times 8-7$	94	0.125		10		39.4	7.52	17.92
$14-8 \times 9-8$	110	0.125		10		44.0	7.57	13.85
$15-7 \times 10-2$	123	0.150		10		44.4	8.03	15.80
$16-9 \times 10-8$	137	0.150		10		47.9	8.75	15.52
$17-9 \times 11-2$	152	0.175		9		48.2	9.20	17.40
$18-8 \times 11-8$	167	0.175		8		48.5	9.65	19.44
$19-10 \times 12-1$	183	0.225		8		52.3	10.39	18.97
$20-10 \times 12-7$	200	0.250		8		52.5	10.83	20.93
$21-6 \times 12-11$	211	0.250		7		53.9	11.23	21.43

(1) The metal thicknesses shown are adequate for structural requirements only. Where corrosive and/or abrasive conditions exist, greater thicknesses should be specified at least for the bottom plates.
(2) Minimum cover top of pipe to top of subgrade.
(3) Allowable fill heights are computed on the basis that corner bearing pressure will not exceed two tons per square foot.

LAYOUT DIMENSIONS

Dimensions for Reinforced Concrete Arch and Elliptical Pipe

	Arch			Vertical Elliptical			Horizontal Elliptical		
Equivalent Round Size (Inches)	Rise x Span (Inches)	Waterway Area (Sq. Ft).	```Minimum Wall Thickness (Inches)```	Rise x Span (Inches)	Waterway Area (Sq. Ft.)	```Minimum Wall Thickness (Inches)```	Rise x Span (Inches)	$\begin{gathered} \text { Waterway } \\ \text { Area } \\ \text { (Sq. Ft.) } \\ \hline \end{gathered}$	Minimum Wall Thickness (Inches)
15	11×18	1.1	2.25						
18	13×22	1.6	2.5				14×23	1.8	2.75
21	15×26	2.2	2.75						
24	18×28	2.8	3.0				19×30	3.3	3.25
27							22×34	4.1	3.5
30	22×36	4.4	3.5				24×38	5.1	3.75
33							27×42	6.3	3.75
36	27×44	6.4	4.0	45×29	7.4	4.5	29×45	7.4	4.5
39				49×32	8.8	4.75	32×49	8.8	4.75
42	31×51	8.8	4.5	53×34	10.2	5.0	34×53	10.2	5.0
48	36×58	11.4	5.0	60×38	12.9	5.5	38×60	12.9	5.5
54	40×65	14.3	5.5	68×43	16.6	6.0	43×68	16.6	6.0
60	45×73	17.7	6.0	76×48	20.5	6.5	48×76	20.5	6.5
66				83×53	24.8	7.0	53×83	24.8	7.0
72	54×88	25.6	7.0	91×58	29.5	7.5	58×91	29.5	7.5
78				98×63	34.6	8.0	63×98	34.6	8.0
84	62×102	34.6	8.0	106×68	40.1	8.5	68×106	40.1	8.5
90	72×115	44.5	8.5	113×72	46.1	9.0	72×113	46.1	9.0
96	77×122	51.7	9.0	121×77	52.4	9.5	77×121	52.4	9.5
102				128×82	59.2	9.75	82×128	59.2	9.75
108	87×138	66.0	10.0	136×87	66.4	10.0	87×136	66.4	10.0
114				143×92	74.0	10.5	92×143	74.0	10.5
120	97×154	81.8	11.0	151×97	82.0	11.0	97×151	82.0	11.0
132	106×169	99.1	10.0	166×106	99.2	12.0	106×166	99.2	12.0
144				180×116	118.6	13.0	116×180	118.6	13.0

Fill Height Table 11
Reinforced Concrete Arch and Elliptical Pipe (All Sizes)

Type of Pipe	Maximum Height of Fill - Ft.			
	Class of Pipe (0.01" Crack D-Load)			
	$\begin{aligned} & \text { Class A-III } \\ & \text { Class VE-III } \\ & \text { Class HE-III } \\ & (1350 \text { D) } \end{aligned}$	$\begin{aligned} & \text { Class A-IV } \\ & \text { Class VE-IV } \\ & \text { Class HE-IV } \\ & (2000 \mathrm{D}) \end{aligned}$	$\begin{aligned} & \text { Class VE-V } \\ & \text { (3000 D) } \end{aligned}$	$\begin{gathered} \text { Class VE-VI } \\ \text { (4000 D) } \end{gathered}$
Arch	15	25		
Vertical Elliptical	15	25	35	45
Horizontal Elliptical	15	25		

NOTES:

(1) Minimum cover excluding pavement shall be 1 ft .
(2) Fill Heights were computed assuming Class " C " bedding. If Class " B " bedding is used, increase maximum height of fill by 20%.
Materials shall conform to AASHTO designation M206 for reinforced concrete arch pipe and AASHTO designation M207 for reinforced concrete elliptical pipe. Requires special provision. Use SPV. 0090 Bid Item.

Guidelines for Determining a Rural Area

The following is meant to assist in the defining a "rural area" for the purposes of "in-kind" culvert replacement. This guidance is not all inclusive. Good engineering judgement should be employed in determining rural versus urban or urbanizing areas of a project.

A Rural Area is:

A project area that is not within a defined municipal boundary, or an area where the population density averages $\mathbf{1 0 0 0}$ or more persons per square mile of urban area.

- The population density must correlate to the project area. If the project area covers only part of a populated area or municipal boundary, only those culverts within those areas require full $\mathrm{H} \& \mathrm{H}$ analysis.
- For annually revised population estimates, refer to the Wis. Department of Administration, Division of Inter-Governmental Relation's Website at: https://doa.wi.gov/demographics and reference the applicable population or population estimates. Other population projections may be obtained from the applicable Regional Planning Commission.

An area of the project in which the adjacent land is not used for commercial or industrial land uses.

- This includes a variety of commercial land uses such as strip commercial, office parks, shopping centers and downtown commercial.
- This classification also includes governmental, institutional, transportation and recreational uses that contain source areas (such as parking lots, streets, storage areas, large landscaped areas) generating an above average amount of rainfall runoff volumes and/or pollutant loads.

An area that is not surrounded by an area described above. Island parcels of land that are completely surrounded by urban land covers may also be considered urban, even though the existing land cover may be something else.

Culvert Sizing Quick Check

To confirm field observations, or where visual observation of a culvert is inconclusive, these tables in offer a check of culvert size for "replace in kind" structures. The tables trend towards being conservative and are intended for small watersheds typical to the maximum "replace in kind" culvert size described in this part. These tables shall not be used to size culverts requiring complete hydrology and hydraulic analysis. The tables can be used however as part of the QA/QC of the H\&H drainage design.
The tables require the user to have a general idea of land cover, soil type, and watershed area. This does not have to be an extensive delineation and characterization of the watershed. Only the basic characteristics of the watershed are required. The tables assume a time of concentration based on the size of the watershed. For additional information on selection of a curve number ("C") refer to FDM 13-10-5.3 and FDM 13-10 Attachment 5.2 Runoff Coefficients (C), Rational Formula; and Runoff Coefficients for Specific Land Uses.

This check should also be only part of the evaluation of "in kind" replacement. The tables are not meant to dictate the need to increase or reduce the size of an existing culvert, they are intended as a check. Still, in the event the in-place culvert size and the tabulated size are substantially different, a full H\&H analysis may be appropriate.

Typical Culvert Sizing - Western and Southwestern Wisconsin - Corrugated Metal Culverts

Drainage Area (acres)	Diameter of Culvert (inches)			
	Wooded/ Gentle Slope ($\mathrm{C}=0.2$)	Mixed Wooded/Open Space. Low to Medium Density Development (C=0.4)	Steeper Slopes with limited vegetative cover, Commercial Areas ($\mathrm{C}=0.7$)	Impervious ($\mathrm{C}=0.9$)
0-2	24	24	24	24
2-5	24	30	36	36
5-10	30	36	42	48
10-15	30	36	42	48
15-20	30	42	48	Perform H\&H
20-30	36	48	Perform H\&H	Perform H\&H
30-40	36	48	Perform H\&H	Perform H\&H
40-50	42	Perform H\&H	Perform H\&H	Perform H\&H
50-75	48	Perform H\&H	Perform H\&H	Perform H\&H
75-100	Perform H\&H	Perform H\&H	Perform H\&H	Perform H\&H

Additional Notes:

1. Assumes 25 -year storm for rural class roadway with ADT $<7,000$.
2. 25-year rainfall was derived from typical volumes in updated IDF curves, NOAA Atlas 14, Volume 8.
3. Time of concentration is assumed to increase and therefore design rainfall intensity decreases with drainage area size.
4. The pipes are assumed to not be completely submerged by backwater.
5. A maximum HW/D of 1.5 is assumed per FDM 13-15-5.5.
6. For culverts up to 100 feet.

Typical Culvert Sizing - Far Northwestern and Southeastern Wisconsin - Corrugated Metal Culverts

Drainage Area (acres)	Diameter of Culvert (inches)			
	Wooded/ Gentle Slope (C=0.2)	Mixed Wooded/Open Space. Low to Medium Density Development (C=0.4)	Steeper Slopes with limited vegetative cover, Commercial Areas ($\mathrm{C}=0.7$)	Impervious ($\mathrm{C}=0.9$)
0-2	24	24	24	24
2-5	24	30	30	36
5-10	30	36	42	48
10-15	30	36	42	48
15-20	30	42	48	Perform H\&H
20-30	36	48	Perform H\&H	Perform H\&H
30-40	36	48	Perform H\&H	Perform H\&H
40-50	42	48	Perform H\&H	Perform H\&H
50-75	48	Perform H\&H	Perform H\&H	Perform H\&H
75-100	48	Perform H\&H	Perform H\&H	Perform H\&H

Typical Culvert Sizing - Northeast Wisconsin - Corrugated Metal Culverts

Drainage Area (acres)	$\|c\|$ Wooded/ Gentle Slope $(\mathrm{C}=0.2)$	Mixed Wooded/Open Space. Low to Medium Density Development (C=0.4)	Steeper Slopes with limited vegetative cover, Commercial Areas (C=0.7)	Impervious (C=0.9)
	24	24	24	24
	24	24	30	36
$5-10$	24	36	42	42
$10-15$	30	36	42	48
$15-20$	30	36	42	Perform H\&H
$20-30$	36	42	Perform H\&H	Perform H\&H
$30-40$	36	48	Perform H\&H	Perform H\&H
$40-50$	42	Perform H\&H	Perform H\&H	Perform H\&H
$50-75$	48	Perform H\&H	Perform H\&H	Perform H\&H
$75-100$				

Additional Notes:

1. Assumes 25 -year storm for rural class roadway with ADT $<7,000$.
2. 25-year rainfall was derived from typical volumes in updated IDF curves, NOAA Atlas 14, Volume 8.
3. Time of concentration is assumed to increase and therefore design rainfall intensity decreases with drainage area size.
4. The pipes are assumed to not be completely submerged by backwater.
5. A maximum HW/D of 1.5 is assumed per FDM 13-15-5.5.
6. For culverts up to 100 feet.

Typical Culvert Sizing - Western and Southwestern Wisconsin - Concrete and Thermoplastic Culverts

Drainage Area (acres)	Wooded/ Gentle Slope $(\mathrm{C}=0.2)$	Mixed Wooded/Open Space. Low to Medium Density Development $(\mathrm{C}=0.4)$	Steeper Slopes with limited vegetative cover, Commercial Areas (C=0.7)	Impervious (C=0.9)
	24	24	24	24
	24	24	30	36
$2-5$	24	36	42	48
$5-10$	30	36	42	48
$10-15$	30	36	48	Perform H\&H
$15-20$	36	48	Perform H\&H	Perform H\&H
$20-30$	36	48	Perform H\&H	Perform H\&H
$30-40$	42	Perform H\&H	Perform H\&H	Perform H\&H
$40-50$	48	Perform H\&H	Perform H\&H	Perform H\&H
$50-75$	48			
$75-100$				

Typical Culvert Sizing - Far Northwestern and Southeastern Wisconsin - Concrete and Thermoplastic Culverts

Drainage Area (acres)	Diameter of Culvert (inches)			
	Wooded/ Gentle Slope ($\mathrm{C}=0.2$)	Mixed Wooded/Open Space. Low to Medium Density Development $(\mathrm{C}=0.4)$	Steeper Slopes with limited vegetative cover, Commercial Areas ($\mathrm{C}=0.7$)	Impervious ($\mathrm{C}=0.9$)
0-2	24	24	24	24
2-5	24	24	30	36
5-10	24	30	42	42
10-15	24	36	42	48
15-20	30	36	48	48
20-30	36	42	Perform H\&H	Perform H\&H
30-40	36	48	Perform H\&H	Perform H\&H
40-50	36	48	Perform H\&H	Perform H\&H
50-75	42	Perform H\&H	Perform H\&H	Perform H\&H
75-100	48	Perform H\&H	Perform H\&H	Perform H\&H

Additional Notes:

1. Assumes 25 -year storm for rural class roadway with ADT $<7,000$.
2. 25 -year rainfall was derived from typical volumes in updated IDF curves, NOAA Atlas 14, Volume 8.
3. Time of concentration is assumed to increase and therefore design rainfall intensity decreases with drainage area size.
4. The pipes are assumed to not be completely submerged by backwater.
5. A maximum HW/D of 1.5 is assumed per FDM 13-15-5.5.
6. For culverts up to 100 feet.

Typical Culvert Sizing - Northeast Wisconsin - Concrete \& Thermoplastic Culverts

Drainage Area (acres)	Diameter of Culvert (inches)			
	Wooded/ Gentle Slope $(C=0.2)$	Mixed Wooded/Open Space. Low to Medium Density Development (C=0.4)	Steeper Slopes with limited vegetative cover, Commercial Areas ($\mathrm{C}=0.7$)	Impervious ($\mathrm{C}=0.9$)
0-2	24	24	24	24
2-5	24	24	30	30
5-10	24	30	36	42
10-15	24	30	42	42
15-20	30	36	42	48
20-30	30	42	48	Perform H\&H
30-40	36	42	Perform H\&H	Perform H\&H
40-50	36	48	Perform H\&H	Perform H\&H
50-75	42	Perform H\&H	Perform H\&H	Perform H\&H
75-100	48	Perform H\&H	Perform H\&H	Perform H\&H

Additional Notes:

1. Assumes 25 -year storm for rural class roadway with ADT $<7,000$.
2. 25-year rainfall was derived from typical volumes in updated IDF curves, NOAA Atlas 14, Volume 8.
3. Time of concentration is assumed to increase and therefore design rainfall intensity decreases with drainage area size.
4. The pipes are assumed to not be completely submerged by backwater.
5. A maximum HW/D of 1.5 is assumed per FDM 13-15-5.5.
6. For culverts up to 100 feet.
